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Calculation of the structure factor of a system of interacting charged spheres based on the Ginoza solution
of the Ornstein-Zernike equation has been developed and implemented on a stand-alone spreadsheet.
This facilitates direct interactive numerical and graphical comparisons between experimental structure
factors with the pioneering theoretical model of Hayter-Penfold that uses the Hansen-Hayter renormal-
isation correction. The method is used to fit example experimental structure factors obtained from the
small-angle neutron scattering of a well-characterised charged micelle system, demonstrating that this
implementation, available in the supplementary information, gives identical results to the Hayter-Pen-
fold-Hansen approach for the structure factor, S(q) and provides direct access to the pair correlation func-
tion, g(r). Additionally, the intermediate calculations and outputs can be readily accessed and modified
within the familiar spreadsheet environment, along with information on the normalisation procedure.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In its simplest terms, the structure factor of a system describes
local correlations, related to the probability of finding a particle at
a given separation from another. In scattering experiments, the
structure factor is a measure of the interference of radiation scat-
tered from different objects and thus the correlations observed
provide a measure of local order. These correlations are dependent
on the way particles interact, from simple volume exclusion effects
to ‘sticky’ pair potentials for attractive particles and the screened
Coulombic repulsion of like-charged objects [1,2]. The structure
factor is often given the symbol S(q), measured in scattering exper-
iments as a function of the scattering vector, q. The functional form
of S(q) depends on the number concentration of objects as well as
the range, intensity and type of interactions that they experience.
The Fourier transform of the structure factor gives the pair correla-
tion function, g(r), that gives the probability, 47rg(r)dr, of finding
two particles in the separation interval r to r + dr. Its value tends to
unity at large separations where correlations are no longer
significant.
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In a large number of systems, particularly where water is the
solvent, particles will experience interactions dominated by the
repulsions between their surface charges. These repulsions are
screened by dissociated counterions and added salt, resulting in a
classical Gouy-Chapman double-layer interaction that can be
modelled with the Poisson-Boltzmann theory [3]. Well-studied
examples include micelles formed from ionic surfactants, polymer,
metal and oxide particles and charged globular proteins and poly-
electrolytes [1].

As well as wide applications in the analysis and quantitative
modelling of data from small-angle X-ray, neutron and light scat-
tering, the charged-sphere structure factor is central to many other
correlative analyses of fluid systems including theoretical studies
of colloidal glasses [4], structural forces in rigid and deformable
systems [5,6] and Monte Carlo simulations of interacting systems
[7]. Thus, a method to quickly and easily calculate charged-sphere
structure factors while still having access to the fitting equations
and process is of interest to a number of fields.

The most widely used construction to obtain the structure fac-
tor for such interacting charged systems, modelled as charged
spheres, was derived more than 30 years ago by Hayter and Pen-
fold [8]. The charged spheres are assumed to interact via a hard
core with diameter, o, that implies g(r)=0 for r<ag, plus a
repulsive screened Coulomb or Yukawa [9] pair potential:
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u(r) = (uo/r)exp(—xr), for r> o, where the constant, u,>0. This
work underpinned diverse advances in the field of particle and soft
matter systems over the past three decades by allowing rapid and
precise calculations and modelling to be performed.

The model for calculating the structure factor, S(q) uses the
known solution [10,11] of the Ornstein-Zernike equation [12] with
a direct correlation function, ¢(r) that has a screened Coulomb or
Yukawa form when the spheres are not in contact (r> o). In the
Mean Spherical Approximation (MSA), used in the Hayter and Pen-
fold model [8], the assumption that c(r) = —u(r)/(kgT) for r> ¢ is
used where kg is Boltzmann'’s constant and T the absolute temper-
ature. For low volume fractions of particles, the MSA can give the
unphysical result, namely, g(r) < 0 at small separations - that is, a
negative probability of finding a particle at a finite separation. Han-
sen and Hayter proposed a ‘renormalisation’ method [13] in which
the hard core diameter is increased to a larger value ¢’, with the
scaling parameter s=a/d’ <1 chosen so that g(r=0')=0 at the
same particle number density. Thus the theoretical basis for mod-
elling screened Coulombic interactions between colloidal particles
is to relate the constant u, to physical quantities such as particle
charge, relative dielectric permittivity of the solvent and the Debye
screening parameter, k that is related to the salt concentration by:
K1 = [e:0ksT/(2Nae?D)]1? where &, and & are the relative permit-
tivity of the solvent and the vacuum permittivity respectively, Na
is Avogadro’s number, e is the fundamental charge and I is the
solution ionic strength. A popular option is to use the linear
Debye-Hiickel model or the non-linear Poisson-Boltzmann model
to calculate the constant u, and the screening parameter, K.

Different approaches to the numerical evaluation of the original
analytic solution by Waisman [14] have been considered [15,16].
The most convenient is that based on the alternate analytic solu-
tion by Ginoza [17,18] that is adopted here.

2. Methods

The Hayter-Penfold/Hansen-Hayter model has been imple-
mented within closed, stand-alone software packages on a number
of platforms such as SASView [19] (international large scale facili-
ties collaboration), FISH [20] (Rutherford Appleton Laboratories),
the NIST fitting macros [21] produced for IGOR Pro (NIST, Gaithers-
burg, MD) and SASfit [22] (Paul Scherrer Institut). The computa-
tional details of these packages are not readily accessible to users
so there is limited scope for modifying the code. Given the current
capabilities of personal computers and tablets and the common
availability of spreadsheet programs on these platforms, it is
timely to make the Hayter-Penfold/Hansen-Hayter model avail-
able on a broader platform with the additional advantage that
details of the computational steps are openly available for users
to study and modify, and the type of input parameters (physical
quantities or non-dimensional values) can be chosen by the user.

The standard implementations of the Hayter-Penfold model [8]
are based on the Waisman solution [10] of the Ornstein-Zernike
equation with a Yukawa form for the direct correlation function,
c(r). They involve first finding numerically the correct zero of a
quintic polynomial and then an iterative Newton algorithm is used
to determine the scaling parameter s = /¢’ of the Hansen-Hayter
renormalisation [13].

Here, we use the Ginoza solution [18] of the same equation. For
repulsive interactions, this involves finding a unique positive zero
of a non-linear equation from which all other parameters are easily
determined (see Electronic supplement for details). The correct
scaling parameter, s is found interactively within the spreadsheet.

The structure factor, S(k) determined by the Ornstein-Zernike
equation [12] with a single-component Yukawa form [9] for the
direct correlation function: c(x)= —(y/x)exp(—kx), x=r/c > 1, and

g(x)=0 for x <1, is determined by only 3 fundamental non-dimen-
sional parameters: the volume fraction: 1 = tno>/6, where n is the
number density of particles, the dimensionless screening parame-
ter: k = ko, and the constant: y = u,/(kgT) > O that characterises the
strength of the repulsive interaction. However, current implemen-
tations of the Hayter-Penfold/Hansen-Hayter model [8,13] men-
tioned above require specification of physical parameters such as
the particle charge, the relative permittivity, particle radius, salt
concentration of a univalent electrolyte, temperature and particle
volume fraction. The precise relation between these physical
parameters to the 3 non-dimensional parameters (7, k, 7) depends
on an assumed model of the electric double layer repulsion and is
independent of the solution of the Ornstein-Zernike equation for
S(k). In the Hayter-Penfold/Hansen-Hayter model, the superposi-
tion or weak coupling approximation of the linear Debye-Hiickel
model is assumed with: u, = (Ze)?exp(ka)/[me.e0(2 + k7 )?], where
(Ze) is the charge on the particle and (&.¢) is the dielectric permit-
tivity of the solvent and both added salt and intrinsic counter-ions,
restricted to be univalent, contribute to the Debye screening
parameter, K.

In our implementation of the Ginoza form of the solution, which
gives the same numerical results as those given by current imple-
mentations of the Hayter-Penfold/Hansen-Hayter model, we offer
the option of calculating S(k) in terms of the 3 non-dimensional
parameters (#, k, 7). This option affords the flexibility of using a dif-
ferent model of the electric double layer repulsion, such as the
non-linear Poisson-Boltzmann model and electrolytes of different
valencies [23], to relate physical parameters to the 3 fundamental
non-dimensional parameters (7, k, 7) of the Ornstein-Zernike
equation. Furthermore, our implementations allow the user to
specify the ionic strength of the added salt and the valence of the
intrinsic counter-ions, whereas all current implementations of
the Hayter-Penfold/Hansen-Hayter model [8,13] are restricted to
univalent salts and counter-ions.

By implementing our solution on a spreadsheet, we take
advantage of the widespread familiarity with this common com-
putational environment and its general capabilities. It is easy also
to import and manipulate experimental data in a spreadsheet for-
mat. The built-in graphing options of the spreadsheet are used to
provide real time feedback during fitting and comparison
between model and experiment. Users have the flexibility to
use the spreadsheet environment to either modify details of the
model or export the results to other applications. The open nature
of the implementation further provides pedagogic value to new-
comers to the field.

3. Results and discussion

To demonstrate the ability of the routine to accurately model
experimental structure factors, comparison was made with struc-
ture factors obtained from small-angle neutron scattering of
charged sodium dodecyl sulphate (SDS) micelles in water (Fig. 1).
The scattering data were obtained from previous work [5], and
pseudo-structure factors were calculated by dividing the raw scat-
tering data by the calculated micelle volume fraction and a form
factor used consistently across all concentrations, representing
hard spheres of radius 18.5 A, after Bartlett and Ottewill [24]. This
method, although somewhat crude in its assumptions (i.e. that the
form factor is concentration independent), provides a relatively
accurate approximation of the structure factor in the low g range,
where the contribution from the form factor is approximately con-
stant. It is assumed that the background electrolyte contribution
comes from the non-aggregated surfactant monomers, and the
best fit value for these data is 5 + 1 mM. The data can then be con-
sistently fit to the level of agreement shown in Fig. 1 by assuming
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Fig. 1. Pseudo-structure factors from small-angle neutron scattering of SDS
micelles at different surfactant concentrations. Symbols are experimentally-derived
structure factors and solid lines are fits using the spreadsheet method described in
the text. The traces are offset vertically by multiplication (50 mM x 0.1,
200 mM x 10), for clarity of presentation.

26 charges per particle (micelle) and particle volume fractions of
0.011, 0.022 and 0.044 for 50, 100 and 200 mM SDS, respectively.

A much more precise procedure for obtaining experimental
structure factors from small-angle scattering utilises contrast var-
iation to obtain data sets for compositionally equivalent samples at
different contrast conditions [2]. A simultaneous model fit con-
straining structure factor across the data sets then provides an
accurate measure of the structure factor. However, this was not
possible with the data available here, and the proof of principle
for obtaining structure factors with experimentally reasonable
physical quantities is evident.

The spreadsheet-derived structure factors fit the experimen-
tally obtained data well across the low-q range, with physical
parameters that take reasonable values in line with literature
reports on SDS micelles [25,26]. The fitting is also identical to that
obtained using the same parameters in the SASView fitting pro-
gram [19], indicating that the Ginoza implementation here is
equivalent to the Waisman solution conventionally used.

4. Conclusion
We have presented a new method for calculating the structure

factor for interacting charged spheres, based on the Ginoza
solution [18] to the Ornstein-Zernike equation [12] with

renormalisation. To test the efficacy of the calculation, we fitted
structure factor data obtained from small-angle neutron scattering
of negatively charged surfactant micelles in aqueous solution [5].
In providing a flexible solution to the problem of inter-particle
structure factors and pair correlation functions on a spreadsheet
platform, we broaden the accessibility of an important tool that
has been indispensable in modelling data obtained by neutron,
X-ray or light scattering [1,2,8,13]. The open nature of the imple-
mentation further provides pedagogic value to newcomers to the
field and allows direct access to the input type, equations and fit-
ting procedure, in order to better control and understand structure
factors for a wide range of systems.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jcis.2014.03.023.
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