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The distinguishing features of water and apolar solute molecular potentials responsible for the 
behaviour of hydrophobic solutions are inferred from a consideration of the thermodynamic 
properties of bulk water. These molecular properties are built into exactly soluble models in one 
dimension, and their necessity underlined by a comparison of models which give normal and hydro- 
phobic solution thermodynamics. The form of solute-solvent and solute-solute molecular distribu- 
tion functions is explored, and used to infer the nature of solute induced structure and the solvent- 
mediated hydrophobic interaction between apolar molecules in water. 

1. INTRODUCTION 

No single theory is yet able to account for the properties of bulk water and 
aqueous solutions of apolar solutes. Attempts to formulate a statistical mechanical 
theory of aqueous systems usually involve complicated models which do not permit 
accurate treatment, and the essential physics is obscured by the approximations 
invoked. 

Several clear pathways towards an understanding of hydrophobic solutions can 
be discerned in the literature. A fundamentalist approach is to construct first a 
viable model for water, and then to graduate to solution properties. Molecular 
models of more or less reality can be constructed to mimic the observed properties 
of water and are already well deve1oped.l There are also model calculations for 
the interaction between " hydrophobic " molecules in water-like solventse2 A more 
pragmatic approach to solutions is to feed in known thermodynamic properties of 
water as in the scaled particle theory 3-5 or more recently by using the experimental 
angle-averaged oxygen-oxygen correlation functions of water to characterise its 
properties.6 Such theories, while involving one or two adjustable parameters do 
enjoy a certain measure of success in obtaining numerical agreement with observed 
solvation and solution properties. Nonetheless, since such approaches have already 
built in the unique features of water, their capacity to provide an understanding for 
the properties of hydrophobic solutions at a molecular level is diminished7 This is 
doubly so if it be borne in mind that such theories often necessarily rely on approxi- 
mate equations of liquid state physics or approximate techniques whose validity is 
still unclear. 

Another class of theories chooses to focus attention on the structured water 
presumed to surround hydrophobic solutes. This type of approach has its origins 
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in the concept of a (statistical) " iceberg " around apolar solutes. This idea intro- 
duced by Frank and Evans,* allows one to interpret the high heat capacity as a 
reflection of the energy needed to '' melt down " such " structures 77 .  Examples of 
attempts to quantify the ill-defined concept of structure are the mixture models of 
Ben-Naim and of Nkmethy and Scheraga lo, l1 who approach the problem of 
hydrophobic interaction by considering the effects of apolar solutes in altering the 
distribution of molecules in a mixture of ordered and disordered clusters. Much 
care has been given to the construction of a rigorous definition of the mixture model 
or quasi-mixtures in terms of molecular distribution functions. The advance 
represented by the work of these authors is certainly of major importance. However, 
it is probably fair to say that despite a long history, the status of mixture models is 
still obscure. 

From a statistical mechanical viewpoint the degree of solute-induced solvent 
structure is well defined and a knowledge of the molecular distribution functions is 
sufficient to characterise a system completely. There has been a series of recent 
papers motivated by this philosophy which focuses attention on the calculation and 
nature of the distribution functions that determine solute-induced solvent structure 
and solvent-mediated solute-solute interactions for model systems. 2-1 Also extant, 
and predating such calculations, is a conceptually simple mean field theory which 
parameterises the same quantities. While such calculations are still quite some 
way from a complete description of aqueous systems, they help to delineate the 
interplay between solute/solvent size ratios, strength of molecular potentials, and 
thermodynamic parameters such as pressure and temperature. From this brief 
resum6 it is clear that the development of a theoretical understanding of hydrophobic 
solutions has evolved along several disparate but complementary paths. The 
situation has been reviewed in more detail elsewhere.l* 

Even if refinement of these various approaches provides a precise quantitative 
description of hydrophobic solution properties there would still remain a large gap 
to be bridged. What is missing are simple explicit analytic models which capture 
and exhibit those essentials of the problem at a molecular level which the experi- 
mentalist knows intuitively must be at the heart of the matter.lg The aim of this 
paper is to attempt just that by (1) isolating which of many possible factors at a 
molecular level could be primarily responsible for the unusual features of hydrophobic 
solutions; and by (2) building exactly soluble models which do illustrate how such 
factors conspire to produce these features. These models are one-dimensional, 
deliberately so, because exact analytical solutions can be obtained. Any conclusions 
are not, therefore, affected, by approximation methods needed to handle more complex 
models. The use of one-dimensional models is at first sight absurd and deserves 
comment. First, a minor observation: far from critical points, all bulk liquid 
properties are matched by equations reminiscent of, and generalisations of the van der 
Waals theory, and are therefore independent of dimensionality. More important is 
the simplicity of one-dimensional models which belies their strength. If the inclusion 
of any one molecular property in a model is the only such property which can give 
out hydrophobic-like solution thermodynamics this will constitute strong corrobo- 
rative evidence that this molecular property plays an overriding determining role in 
real aqueous systems. 

In the next section we briefly recapitulate the unusual bulk properties of water 
and point out how they can be understood from very general considerations in terms 
of the strong and highly directional hydrogen bonds. In section 3 we shall then 
construct models which show how these unusual molecular properties of water can 
conspire with those of apolar solutes to yield hydrophobic solution thermodynamics. 
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2052 HYDROPHOBIC SOLUTIONS 

From calculated molecular distribution functions we can infer the degree of solvent 
structure near " hydrophobic " solutes, as well as the behaviour of such structures in 
solute-solute interaction. Our results also indicate that extreme care must be 
exercised in attempting to deduce the nature of the hydrophobic interaction from the 
low solute mole fraction behaviour of activity coefficients and osmotic pressure. 

2. BULK WATER 

In searching for an analytic model for hydrophobic solutions, it is essential to 
determine first how the anomalous bulk properties of water are linked to molecular 
properties. Of the anomalous bulk properties, especially deserving of recapitulation 
are : high melting and boiling points ; high value of dielectric constant ; the minimum 
in the isothermal compressibility I C ~  (at 1 atm) as a function of temperature (for most 
liquids xT is an increasing function of temperature) ; high value of the heat capacity 
(around 9 k per molecule compared with 3 k from translational and rotational degrees 
of freedom) ; and the density maximum at 1 atm between 0 and 4°C. The structure 
of most simple liquids is determined primarily by the hard core repulsive part of the 
intermolecular potential and the attractive tail can be treated as a perturbation. 
By contrast, in water, because of the strong (quasi-chemical) and highly directional 
(tetrahedral) nature of the hydrogen bonds between molecules, the attractive part of 
the intermolecular potential is of comparable importance to, and can even dominate, 
the hard core repulsion in determining thermodynamic quantities. This loose 
observation is important to our subsequent theme. It can be made more explicit 
and illustrated if we consider the conditions necessary for the existence of the density 
maximum, at constant pressure, in a one dimensional model system. 

For a one dimensional fluid with nearest neighbour interactions, the exact equation 
of state is given by eqn (Al) and (A2). At constant pressure P, the temperature 
dependence of the density is governed by the form of the enthalpy function H(x) = 
Px + u1 l (x) ,  as a function of intermolecular separation. Analysis of eqn (Al) reveals 
that if the intermolecular potential ull(x) has a hard core at x = R and an energy 
minimum located at the same position, then, irrespective of the pressure, the system 
cannot have a density maximum as a function of temperature since H(x) also has a 
minimum at x = R. However, if the minimum of ull(x) is located at a larger 
intermolecular separation than that of the hard core, then the system may exhibit a 
density maximum at constant pressure provided the enthalpy function H(x) also has 
an absolute minimum at a position away from the hard core in addition to the 
minimum x = R. In water a situation similar to that just posed is brought about by 
two factors: the strong and highly directional hydrogen bonds which operate 
effectively at intermolecular separations which are larger than close packed, and the 
relatively weak dispersion interactions which are effective at smaller separations. 

For a brief illustration of this argument for the existence of the density maximum 
and for the link between this property and the compressibility minimum consider a 
one-dimensional fluid in which the intermolecular potential is 

u(x) = m 7 x < R  
= o  7 R < x < 2R-a (1) 

= o  7 x > 2R. 
= - 8  < 0, 2R-a < x < 2R 

We note that this potential satisfies the criterion for the existence of a density 
maximum, namely that the potential minimum is located at a larger intermolecular 
separation than the hard core part of the potential. It is clear from eqn (1) that the 

D
ow

nl
oa

de
d 

by
 N

at
io

na
l U

ni
ve

rs
ity

 o
f 

Si
ng

ap
or

e 
on

 1
8 

O
ct

ob
er

 2
01

0
Pu

bl
is

he
d 

on
 0

1 
Ja

nu
ar

y 
19

78
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/F
29

78
74

02
05

0
View Online

http://dx.doi.org/10.1039/F29787402050


D. Y .  c. C H A N ,  D .  J .  M I T C H E L L ,  B .  w. N I N H A M  AND B .  A .  P A I L T H O R P E  2053 

range of this potential permits interaction only between nearest neighbours. From 
the results given in the Appendix we have calculated the density [eqn (A.l)] and the 

isothermal compressibility KT = y2) . The results, showing the characteristic 

density maximum and compressibility minimum of water, are given in fig. 1. With 
increasing pressure, the maximum and minimum occur at lower temperatures. This 
is consistent with the " vanishing " of the density maximum and compressibility 
minimum in liquid water at high pressures. More detailed calculations on one- 
dimensional lattice and continuum models as well as two-dimensional interstitial 
lattice models to illustrate these properties of water may be found in the work of 
Bell et aL2'* 21 and of Ben-Naim.g 

To sum up : the distinguishing bulk properties of water due to the strong and 
highly directional hydrogen bonds can be reflected in a model by a molecular potential 
whose energy minimum is located away from hard core contact. While other effects 
such as many-body potentials and molecular asymmetry have not been considered, 
such factors are common to a number of fluids besides water, which do not have 
unusual solution thermodynamics. These factors do not therefore appear to be 
crucial. 

P a p  T 

1 i I 1  
1 .o 2.0 

kTIE 
FIG. 1.-Temperature dependence of the density p and isothermal compressibility KT for a one- 
dimensional fluid with the molecular potential given by eqn (1). The reduced pressure is PR/E = 1.5 

and the well width is a / R  = 0.4 and the ordinate scale refers to both curves. 

3. HYDROPHOBIC SOLUTIONS 

We commence discussion of the properties of hydrophobic solutions with a 
summary of relevant thermodynamic quantities. The chemical potential or partial 
free energy of a solute molecule (species 2) in a solution with a solute mole fraction 
X2 at temperature T and pressure P is ,u2(X2, P, T) .  Adopting as the reference state 
that of pure unmixed solvent and solute molecules at the same P and T, the partial 
free energy of mixing is 

(2)  &2@2, p,  T )  = PZ(X2, p, T)-P2(1, p, T).  
However it will be convenient to use excess quantities, that over and above values 
for ideal solutions, denoted by the superscript E : 

A&X2, P, T) = Ap2(X2, P ,  T)-Ap\dea'(X2, P ,  T) .  (3) 
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2054 H Y D R O P H O B I C  S O L U T I O N S  

Other quantities of interest are the partial excess enthalpy AH;, entropy AS:, heat 
capacity at constant pressure ACF2 and the partial volume change AV; : 

Ap; = AH;-TAS; 
a 

As; = - 8 7  (AP?), 

We now briefly contrast the difference between normal and hydrophobic solutions 
in terms of these excess quantities. We shall confine our discussion to the limit of 
infinite dilution X2 --+ 0. By normal solutions we mean those mixtures of simple 
liquids which have been most studied in the literature. Concerning these there is 
general agreement that at least their thermodynamic properties are well understood. 
Examples are mixtures of inert gases, non-polar hydrocarbon, and mixtures of polar 
solutes and solvents. For normal solutions the enthalpy AH: and the entropy 
AS: have the same sign and so give opposing contributions to the free energy. 
However one always has 1AH;I > ITASFl so that Ap: is dominated by and has the 
same sign as AH:. Both ACF2 and AV: are small and can be of either sign.7 

On the other hand, hydrophobic solutions (aqueous solutions of apolar solutes) 
are characterised by a large and positive excess free energy of mixing that is due to a 
large negative entropic contribution. The enthalpy is small and can be of either sign. 
The accepted interpretation of this phenomenon by Frank and Evans” * is that 
hydrophobic solutes can induce extensive “ structuring ” of surrounding water 
molecules with a consequent large entropy change upon solution. Due to the rather 
open structure of bulk water, molecules in the vicinity of apolar solutes with which 
they only interact via weak dispersion forces can, while still retaining the hydrogen 
bonds, rearrange to form solvent cages in some way reminiscent of the ice like 
crystalline hydrates of noble gases and small hydrocarbon molecules. 2 3  This picture 
is further supported by the large positive values of the heat capacity of ACF2 which 
reflect the energy needed to “melt down” such a structured solvent. The large 
negative value of AV: indicates that in dilute solutions at least, water molecules 
near apolar solutes rearrange to more efficient packing configurations. 

Note that scaled particle the~ry,~g which is exact for very small and very large 
solutes, assumes that for very large solutes the solvation energy is just the interfacial 
energy, y ,  times the solute surface area. But since ay/aT < 0, the entropy of solution 
of any large solute in water is positive, opposite to that for small solutes, and since 
y > 0 the enthalpic contribution must again dominate as in normal solutions. With 
all other things equal, the solution properties of apolar solutes must revert to normal 
as the solute size increases. We shall illustrate these points with some model 
calculations in the next section. 

4. MODEL CALCULATIONS 

For reasons discussed in the Introduction, we now examine the interplay between 
the solute-solvent and solvent-solvent intermolecular potential as well as solute/ 
solvent size ratio on the thermodynamic behaviour of dilute solutions using a one- 
dimensional model. Effects upon the solvent-solute and solute-solute correlation 
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functions will also be given. Initially we consider for simplicity, only nearest 
neighbour interactions for solute and solvent particles of the same size. 

EFFECTS OF INTERMOLECULAR POTENTIALS 

Given a nearest neighbour interaction potential uij(x) between species i and j at 
separation x, the partial excess free energy of the solute at infinite dilution is known 
to be 24 

A P W ,  p ,  T )  = - kT In (G,/Fl 1F22) ( 5 )  
where 

Fij  = exp { - [u i j (x )+Px] /kT)  dx. J: 
The corresponding enthalpic contribution to the excess free energy is 

AH," = 2h12-h11-1~22 
with 

hij = FG1 [uij(x) + P x ]  exp { - [ui j(x) + P x ] / k T )  dx. J: 
The " volume " change upon solution is 

where 
AVF = 2V12 - V11- V2, 

Gj = x exp { - [uij(x)+ P x ] / k T )  dx. so 
For calculations, we choose potentials of the form 

U j ( X )  = co x < R  
= - A i j / X 2  R < x < 2 R  
= o  x > 2R 

where R is the hard core size of the particle and the x-, distance dependence mimics 
that of a one-dimensional array of parallel plates interacting under dispersion forces 
with the coefficients A i j  identified as Hamaker 

The effects of varying the pressure and interaction parameters on the therrno- 
dynamic behaviour of the solution are summarised in table 1. 

If A l ,  is less than but not too close to &(A11+A12) one finds that A& AH;, 
AS: and AV: are all positive and AC,", is negative (case 1). Conversely when A12 is 
greater than but not too close to +(A12+A12) (case 2) all the above inequalities are 
reversed. For both cases lAH:l > IApil and !AH:] > T]AS; l .  In other words, the 
change in enthalpy opposes that in entropy but the former still dominates-similar 
to the behaviour in normal solutions. Further, at high pressures we also have 
IAH:I % TI ASEl, reminiscent of regular solutions. When the interactions between all 
species in the mixture are similar, A12 = +(All +A, , ) ,  various possibilities arise. 
Of special interest is the case when the enthalpy almost vanishes and all the thermo- 
dynamic quantities obey the same inequalities as those of a hydrophobic solution 
(cf. table 1, case 3). It is interesting to note that the Hamaker constantsfor therather, 
small dispersion interaction due to electronic correlations in water + hydrocarbon 
systems also satisfies case 3.25 However, unlike hydrophobic solutions the mag- 
nitudes of the non-vanishing terms in case 3 are much smaller than those in case 1 or 2. 
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2056 H Y D R O P H O B I C  SOLUTIONS 

For case 3 varying the temperature or pressure changes the thermodynamic inequalities 
to those of case 1 or 2. When A l l  and Az2  are widely different (by a factor of 2 say) 
but A is still the arithmetic mean, the thermodynamic inequalities again become more 
like those of case 1 or 2. We remark parenthetically that case 2 is not allowed if 
interactions are due to dispersion forces [for dispersion forces A I 2  < +(Al + A 2 2 )  
always]. 

TABLE 1 .-TYPICAL THERMODYNAMIC INEQUALITIES OF NEAREST NEIGHBOUR ONE-DIMENSIONAL 

(A) Effects of molecular potential 
SOLUTIONS AT INFINITE DILUTION. (SEE TEXT FOR DISCUSSION). 

thermodynamic properties 

case (1) A l z  < +(Al1+Az2) 
case (2) A12 > &(Al1+Az2) 
case (3) A l z  x +(All+Azz) 

A& AH;, A@, AV; > 0, ACF2 < 0 
A& AH:, A@, AVZ < 0, AC& > 0 
AS:, A @  < 0, A@, ACE2 > 0, AH; x 0 

(B) Effect of pressure [cases (1) and (2) only] 

high pressure ]AH;]  $ TIAS:l 
PRIkT > 1 {AV!, ACpE2 small 
low pressure IAHgI N TIAS;[ 
PR/kT < 1 {IAHZl $ IA@I 

We see then that by adjusting intermolecular potentials and external conditions, 
one can almost obtain hydrophobic-like thermodynamics. However when various 
thermodynamic quantities satisfy the required “ hydrophobic ” inequalities (case 3, 
table l), the entropic contribution to the excess energy, T[ASZI, is very small ( N 0.2 kT/ 
particle) compared with ‘‘ normal ” one-dimensional solutions ( -2  kTlparticle). This 
is because when the solute size is bigger than or equal to a solvent particle, the 
introduction of a solute particle between two solvent molecules “ breaks up ” a 
solvent-solvent “ bond ” and replaces it by two solute-solvent ‘‘ bonds ”. This does 
not allow the solvent particles to maintain their interaction while accommodating a 
solute particle, as is possible in aqueous solutions. Next we move on to consider 
the effects of smaller solutes which will allow solvents on either side of the solute to 
interact. A similar model which allows for the formation of solvent n-mers has 
been put forward by Lovett and Ben-Naim 26 to study solute effects in a mixture 
model of water. 

EFFECTS OF SOLUTE SIZE 

(i) THERMODYNAMICS 

Consider a one-dimensional solution in which the solute particle size R2 is less 
than that of the solvent particles R1.  This allows for the possibility of solvent 
particles on either side of the solute to interact. In this way, we can study the effects 
of the ability of water molecules to form “ pseudo-clathrates ’’ or solvent cages 
around small solutes upon solution thermodynamics. This is the only property 
which this one-dimensional model has in common with water. 

In order to exhibit analytically the thermodynamics of this model, we choose as 
the solvent-solvent interaction the square well potential 
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The solute-solvent interaction is treated as a hard core repulsion 

Note that this choice for the solute-solvent potential is a severe test of the solute size 
effect on solution thermodynamics since no allowance is made for “ adjustments ” in 
the solute-solvent potential as in the previous example. 

The thermodynamics of this model is straightforward. Eqn (5)  for the partial 
excess free energy of the solute at infinite dilution is generalized to 

where Fl 
complex shown in fig. 2 : 

A P W ,  p ,  T )  = -kTln ( - F 1 2 l / r ; ; l F 2 2 > ,  (14) 
is a configurational integral corresponding to the solvent-solute-solvent 

F121 = [; drS‘ dY exp ( - [u ,2 (Y)+u , , (x )+u ,2 (x -Y)+Pxl lkT) .  (15) 
0 

When the solute size becomes equal to or bigger than that of the solvent particle, 
the presence of a solute breaks up a solvent-solvent “ bond ” and the quantity F121 
factorizes : F121 = F f 2 ,  to give the earlier result. Eqn (12)-(15) give 

A&O, p ,  T )  

where P = l/kT. This model is capable of giving hydrophobic-like thermodynamics 
(TAS; 4 0, TIAS:[ + H;, large A@,, etc.). Typical results are given in table 2 for 

FIG. 2.-Solvent-solute-solvent complex of a pseudo-clathrate model where u1 l(x) is the solvent- 
solvent potential and u&) is the solute-solvent potential, cf. eqn (15). 

the case R J R ,  = 0.6. Results from the nearest neighbour one-dimensional model 
(R2/R1 = 1) which exhibit normal solution properties are included for comparison. 
At higher temperatures the solution properties revert to normal behaviour again 
(IAHFl % TIAS:(, etc.). The experimental hydrophobic effect also vanishes at 
elevated temperatures. 

One further quantity that is of interest is the behaviour of the solvent chemical 
potential at low solute mole fractions. We write 

(17) ApF(X2, P ,  T )  = ApF(0, P,  T) + BXZ + . . ., 
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TABLE 2 .-COMPARISON OF THERMODYNAMIC PROPERTIES OF CLATHRATE AND NEAREST NEIGH- 
BOUR ONE-DIMENSIONAL MODELS AT INFINITE DILUTION (ppx1 = 1.0, ENERGIES ARE IN UNITS 

OF kT)  

clathrate 
model 

R21R1 = 0.6 

AP%, p,  T )  2.09 
AH; 0.06 
TAS5 - 2.03 
A 'C/?IRl - 0.77 

ACpEzlk 4.87 

nearest neighbour 
model 

R2/R1 = 1 

3.55 
4.52 
0.97 
0.57 
0.59 

1.0 20 3.0 4 0  

x/R1 
FIG. 3.--Solvent-solute pair distribution function g12(x) at reduced pressure PRI /kT = 1 .O, solute/ 
solvent size ratio R2/R1 = 0.6 and solvent-solvent potential well depth c/kT = (a) 2.0 (normal 
solution thermodynamics), (b) 4.0 (hydrophobic solution thermodynamics), cf. eqn (12) and (1 3). 

xlR1 
FIG. 4.--Solute-solute potential of mean force W2&) = - kTln gZ2(x) at reduced pressure PR1 / 
kT = 1.0, solute/solvent size ratio Rz/Rl  = 0.6 and solvent-solvent potential well depth c/kT = (a) 

2.0 (normal solution thermodynamics), (6) 4.0 (hydrophobic solution thermodynamics). 
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where the coefficient B is 
B = +(F;2/Fl21- 1). 

It is easy to see that for our square well fluid, B is always negative, a situation at 
variance with that of hydrophobic  solution^.^' When only nearest neighbour 
interactions are possible (R2 2 Rl), B vanishes since F121 = F;2. This is a direct 
consequence of the lack of connectivity in one-dimensional models. 

Nevertheless, with this simple calculation, we have illustrated the importance of 
the ability of water to form solvent cages in giving rise to typical hydrophobic solution 
thermodynamics. In one dimension, the formation of such cages is only possible 
if the solute is smaller than the solvent; this is an artifact of the model. In three 
dimensions, where a number of solvent molecules can cooperate to form solvent 
cages, the restriction on solute/solvent size ratio will be such that the interaction 
energies between solvent molecules forming the solvent cages should not differ 
appreciably from those of molecules in bulk. We have deliberately chosen the 
simplest solvent-solvent potential [eqn (12)] to illustrate our ideas and to demonstrate 
the minimum requirements needed to give hydrophobic solution thermodynamics. 
The use of more complicated solvent-solvent potentials, e.g., eqn (1) or an extension 
to include next nearest neighbour interactions, will in no way alter our conclusions. 

D I S T R I B U T I O N  FUNCTIONS 

We now go on to examine the way in which solute-solvent and solute-solute 
distribution functions vary in the one-dimensional model when the system exhibits 
either normal or hydrophobic-like thermodynamic behaviour. In fig. 3 we exhibit 
the temperature dependence of the solute-solvent pair distribution function g 2(x)  
for the clathrate model which can have hydrophobic-like properties [cf. table 21. 
In fig. 4 we exhibit the solute-solute potential of mean force W22(x) = - kT In g22(x) 
where g2, (x)  is the solute-solute pair distribution function. Expressions for these 
quantities are given in the Appendix. 

From the figures we can see that when hydrophobic-like thermodynamics prevail, 
the solvent molecules are more structured around the solute as indicated by the higher 
first peak in g12(x). In the same regime, the potential of mean force WZ2(x) has a 
minimum at the position where the solutes are separated by one solvent particle, 
rather than at contact. This suggests that solutes prefer to retain the surrounding 
solvent cage during interaction. This is a simple illustration of the observation that 
the process of two solutes coming into ‘‘ contact ” is not just a simple reversal of the 
process of solution.7* 2 2  

Finally from the results of this one-dimensional pseudo-clathrate model consider 
what information can be deduced from the mole fraction dependence of thermo- 
dynamic quantities such 2s the excess solute chemical potential and the second osmotic 
virial coefficient Bg about the nature of the solute-solute interaction. For PR,/ 
kT = 1.0, &/kT = 4 and R2/R1 = 0.6 we find that [cf. eqn (17) and (18)] 

while the second osmotic virial coefficient is 
B = -3.3 (19) 

= -0.38. 
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For the one-dimensional model, B is always negative, thus nothing can be deduced 
from the sign of this coefficient about the form of the solute-solute potential of mean 
force W2,. The second osmotic virial coefficient B; always contains a positive 
contribution from the hard core part of g,,(x). Even if this contribution is known, 
it is almost impossible to deduce the complicated form of W2, (cJ fig. 4) since B: is 
only a weighted integral of the solute-solute potential of mean force. It is clear that 
little detailed information about solute-solute interaction can be inferred from such 
thermodynamic measurements. 

5. CONCLUSION 

We have attempted to exhibit the relation between the properties of water and 
apolar solutes and the unusual thermodynamic properties of dilute aqueous solutions 
of apolar solutes. This has been done through the use of simple solute models. 
The density maximum at atmospheric pressures as well as the compressibility 
minimum can be understood in terms of the low density tetrahedral crystalline 
structure favoured by the strong hydrogen bonds. Similarly the characteristic 
thermodynamic properties of hydrophobic solutions can be traced back to two factors : 
(a) the similarity between the electronic polarizabilities of water and most small 
apolar solutes results in a small contribution from dispersion interactions to the 
enthalpy of solution ; (b) the open nature of the liquid water structure facilitates the 
possibility for water molecules around apolar solutes to rearrange to form solvent 
cages while still maintaining the hydrogen bonds between the solvents. This again 
results in a small change in enthalpy but a large change in entropy. Estimation of 
the effect of this mechanism using one-dimensional " pseudo-clathrate " models 
confirms this picture. From this model calculation we also seen the relative stability 
of such solvent cages during solute-solute interaction through the study of solute- 
solute distribution functions. We emphasize that it is very difficult to deduce 
information about the nature of the solute-solute interaction by studying the mole 
fraction dependence of solvent chemical potentials or second osmotic virial coefficients. 
Such information can only come about by considering molecular distribution 
functions. Finally we remark that extension of the clathrate model to the more 
realistic potentials, eqn (1) or (ll), does not alter our conclusions. 

Following his visit to Canberra, Prof. F. Franks commissioned the authors to 
review the subject of solvent structure and hydrophobic soIutions.l* At the same 
time he issued a challenge to us to come up with a simple analytically soluble model 
in two or three dimensions. Honour was satisfied by the coinpromise reached in 
this paper. We thank Prof. Franks for his patient tutelage and for the opportunity 
to draw on his erudition. We are grateful to Zeev Elkoski for pointing out a serious 
error in an earlier version of the manuscript. 

APPENDIX 

We give a summary of the formulae needed to compute distribution functions in 
one-dimensional models. The partition function of a one-dimensional N particle 
system with nearest neighbour interactions can be written as a ( N + 1 )  fold convolu- 
tion. This problem is easily soluble if one takes the Laplace transform of the partition 
function with the pressure as the transformed variable or equivalently work in the 
isobaric ensemble. 
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For a one-component system with nearest neighbour potential zcl l(x) the equation 
of state is known to be 2 8  (p = l / kT)  

where 

B,,(a) = Im e-ax e-BftII(x) dx ( A 3  
0 

and p is the number density, P the pressure and the prime in eqn (A.l) denotes a 
differentiation with respect to the argument. 

The presence of solute-solvent complexes such as that shown in fig. 2 requires 
straight-forward extension of known methods.2 The expressions for the solute- 
solvent and solute-solute distribution functions are : 

where the operator 9-l( } denotes inverse Laplace transform with respect to the 
variable s and 

Clzl(a, b)  = Jr dx Jm dy e-ax e-by exp { -P[u12(y)+u12(x)+~11(x+y)]) (A.5) 
0 

Bij(a) = dx e-OrX exp { -Puij(x)) ,  i, j = 1,2 ( A 4  s: 
where u1 2(x) and u2,(x) are the solute-solvent and solute-solute potential respectively. 
The fugacity z is given by 

z-1 = B,,(PP). (A 07) 
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