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An efficient field-only nonsingular surface integral method to solve Maxwell’s equations for the components of
the electric field on the surface of a dielectric scatterer is introduced. In this method, both the vector wave equation
and the divergence-free constraint are satisfied inside and outside the scatterer. The divergence-free condition is
replaced by an equivalent boundary condition that relates the normal derivatives of the electric field across the
surface of the scatterer. Also, the continuity and jump conditions on the electric and magnetic fields are expressed
in terms of the electric field across the surface of the scatterer. Together with these boundary conditions, the scalar
Helmholtz equation for the components of the electric field inside and outside the scatterer is solved by a fully
desingularized surface integral method. Compared with the most popular surface integral methods based on the
Stratton–Chu formulation or the Poggio–Miller–Chew–Harrington–Wu–Tsai (PMCHWT) formulation, our
method is conceptually simpler and numerically straightforward because there is no need to introduce intermedi-
ate quantities such as surface currents, and the use of complicated vector basis functions can be avoided altogether.
Also, our method is not affected by numerical issues such as the zero-frequency catastrophe and does not contain
integrals with (strong) singularities. To illustrate the robustness and versatility of our method, we show examples in
the Rayleigh, Mie, and geometrical optics scattering regimes. Given the symmetry between the electric field and the
magnetic field, our theoretical framework can also be used to solve for the magnetic field. © 2020 Optical Society of

America

https://doi.org/10.1364/JOSAA.37.000284

1. INTRODUCTION

There have been two recent independent developments in
formulating computational electromagnetics (CEM) scattering
[1] in terms of surface integral equations [2,3] that are concep-
tually very different from the venerable theoretical framework
of Stratton–Chu, which was established almost 80 years ago
[4,5] or the Poggio–Miller–Chew–Harrington–Wu–Tsai
(PMCHWT) formulation [6–8] or the potential-based CEM
methods [9,10]. These earlier methods either entail solving
for surface currents or charges at boundaries or for the scalar
and vector potentials, whereas the recent works are based on
solving directly for components of the electric field. One of
the field-only formulations had its genesis in the study of scat-
tering from (i) infinite rough surfaces [11] some 25 years ago,
(ii) finite dielectric bodies [12] more than a decade ago, and has
been recently generalized with an extensive use of differential

geometry [2]. The other field-only formulation [3,13] focused
on the use of nonsingular surface integral equations for the field
components. This method stems from an observation that the
physical phenomena are finite and well behaved on boundaries,
and thus should not contain mathematically singular kernels. In
this method, the divergence-free condition was satisfied via the
identity

∇
2(r · E )+ k2(r · E )= 2∇ · E = 0,

where r is the position vector and resulted in an additional
Helmholtz equation for r · E that led to a 9N × 9N system of
linear equations, where N is the number of surface nodes [13].

In this paper, we combine the above two field-only integral
methods to obtain a nonsingular integral formulation, which
when discretized yields a 6N × 6N system of linear equations.
Therefore, the framework developed in this paper gives a 56%
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reduction in memory requirements and subsequently leads to
faster solution times. Furthermore, this approach turns out to
be conceptually simple and can provide direct access to values of
the field and its normal derivatives on the boundary of the scat-
terer. The implementation is free of mathematical singularities
and facilitates the use of simple, efficient, and accurate surface
integration algorithms. It also should be noted that this paper
is a natural generalization of our previous publication [14]. In
Ref. [14], we considered the much simpler case of scattering
by a perfect electric conductor (PEC) in order not to obscure
the conceptual simplicity and elegance of the method by the
nonzero internal fields.

The paper is organized as follows. The theoretical framework
of our formulation is explained in Section 2. In Section 3, we
consider numerical examples of interest to the optics com-
munity in the Rayleigh, Mie, and geometric optics scattering
regimes. Finally, some concluding remarks are presented in
Section 4, as well as a prescription for how to modify our
formulation if the magnetic fields are of primary interest.

2. FIELD-ONLY FORMULATION

In a source-free, linear, homogeneous medium, the propagation
of a time-harmonic electric field E (r) exp(−iωt), with t denot-
ing time and ω denoting the angular frequency, is governed by
the vector wave equation

∇
2 E (r)+ k2 E (r)= 0, (1)

where k =
√
εµω is the wavenumber, with ε and µ being the

permittivity and permeability of the medium, respectively.
Thus, each Cartesian component of E satisfies the scalar
Helmholtz wave equation

∇
2 Eα + k2 Eα = 0, α = x , y , z. (2)

The electric field is also divergence-free, i.e.,

∇ · E = 0. (3)

Thus, in principle, there are only two independent components
of E that have to be determined.

In a typical scattering problem, an incident wave, E inc, is
scattered by a dielectric body, and the resulting scattered field
outside the scatterer and the transmitted field inside the scatterer
are to be determined. After accounting for the fact that the
scattered field, E sc, obeys the Sommerfeld radiation condition
[15], the transmitted field, E tr, is finite inside the scatterer,
and both E sc and E tr satisfy Eq. (3), we see that there are only
four unknown scalar functions (two for each domain). These
functions are usually found by solving Eq. (2) and applying
the continuity conditions for the tangential components of the
electric and magnetic fields. In our formulation, the key point
of departure from the formulation outlined above is to cast the
divergence-free condition in the 3D domain as a boundary
condition. Since the problem is elliptic in nature, this should
always be possible. Casting the divergence-free condition as a
boundary condition enables us to directly solve for the compo-
nents of E . Furthermore, it guarantees that E sc (E tr) satisfies
the divergence-free condition in the 3D domain outside (inside)
the scatterer [2,14].

The value of ∇ · E on the scatterer’s surface S can be
expressed using differential geometry as a combination of
the normal component of E on S and the normal as well as the
tangential derivatives of E on S [see Eq. (A12) in Ref. [14] or
Eq. (23) in Ref. [2]]. That is, at any point on the surface S, we
have

∇ · E = n ·
∂E
∂n
− κEn +

∂E t1

∂t1
+
∂E t2

∂t2
= 0, (4)

where κ is the mean curvature. In Eq. (4), n is the unit normal
pointing into the scatterer, En = n · E is the normal compo-
nent of E , and E t1 = t1 · E and E t2 = t2 · E are the tangential
components of E along the two mutually perpendicular tangen-
tial unit vectors t1 and t2. The normal and tangential derivatives
are defined by ∂(·)/∂n = n · ∇(·) and ∂(·)/∂t j = t j · ∇(·) for
j = 1, 2, respectively.

We will use Eq. (4) to decompose the standard surface integral
representation written for the three Cartesian components of
the electric field into its normal and tangential components.
Outside the scatterer, we use Green’s second identity to express
the solution of Eq. (2) for the scattered field, E sc(r0), in terms of
integrals over the surface values

c 0(r0)E sc
α (r0)+

∫
S

E sc
α (r)

∂G(r, r0)

∂n
dS(r)

=

∫
S

∂E sc
α (r)
∂n

G(r, r0)dS(r), α = x , y , z, (5a)

where c 0 = 4π if r0 /∈ S (i.e., when r0 is in the 3D domain out-
side the scatterer). If r0 ∈ S (approached from the exterior 3D
domain), then c 0 is the solid angle subtended at r0. The integral
representation of the transmitted field, E tr, inside the scatterer is
given by

c in
0 (r0)E tr

α (r0)−

∫
S

E tr
α (r)

∂G in(r, r0)

∂n
dS(r)

=−

∫
S

∂E tr
α (r)
∂n

G in(r, r0)dS(r), α = x , y , z, (5b)

where r0 is inside the scatterer. Equation (5b) follows directly
from the application of Green’s second identity to Eq. (2) with
Eα = E tr

α , and the two minus signs appear because the nor-
mal vector points into the scatterer. In Eq. (5b), c in

0 = 4π if
r0 /∈ S (i.e., r0 is inside the scatterer), and c in

0 is the solid angle
if r0 ∈ S when r0 approaches S from inside the scatterer. It is
worth mentioning that c 0 + c in

0 = 4π if r0 ∈ S. In Eq. (5),
Green’s function is G(r, r0)= exp(ik|r − r0|)/|r − r0|,

where k denotes the appropriate wavenumber for the region,
i.e., k = kin =

√
εinµinω for G in(r, r0) (inside the scatterer) or

k = kout =
√
εoutµoutω for G(r, r0) (outside the scatterer).

At this point in the formulation, we see that Eq. (5) contains
12 unknown functions on S: namely, {E sc

α , ∂E sc
α /∂n} and

{E sc
α , ∂E sc

α /∂n}, α = x , y , z. In order to determine the 12
unknown functions, we need 12 equations. Six of these equa-
tions come from Eq. (5). Three more equations come from the
continuity conditions satisfied by the electric field on S, namely,

E tr
n = εoi(E inc

n + E sc
n ), εoi ≡ εout/εin, (6a)
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and

E inc
t j
+ E sc

t j
= E tr

t j
, j = 1, 2. (6b)

The last three equations come from the continuity condition
satisfied by the normal derivative of the electric field, ∂E/∂n,
on S.

To derive these last three equations, we write Eq. (4) for the
total exterior field, E sc

+ E inc, and subtract the corresponding
equation for the transmitted field, E tr. Then, after using Eq. (6),
we obtain

n ·
∂E tr

∂n
= κ(εoi − 1)

(
E sc

n + E inc
n

)
+ n ·

∂E sc

∂n
+ n ·

∂E inc

∂n
.

(7a)

Equation (7a) only provides a continuity condition for the
normal component of ∂E/∂n. To obtain a continuity condi-
tion for the tangential components of ∂E/∂n, we express the
continuity condition for the tangential components of H on S,
i.e.,

H inc
t j
+ H sc

t j
= H tr

t j
for j = 1, 2, (7b)

in terms of the electric field to obtain (see Appendix A for details)

(εoi −µio)
∂

∂t j

[
E inc

n + E sc
n

]
+ κ j (1−µio)

[
E inc

t j
+ E sc

t j

]

+µio

(
t j ·

∂E inc

∂n
+ t j ·

∂E sc

∂n

)
= t j ·

∂E tr

∂n
, (7c)

where µio ≡µin/µout, κ j is the local curvature along the t j

direction and j = 1, 2. In the limitµio = 1, Eq. (7c) reduces to(
1− ε−1

oi

) ∂E tr
n

∂t j
= t j ·

∂

∂n

[
E tr
−
(
E inc
+ E sc)] (8)

for j = 1, 2. Equation (8) states that in a nonmagnetic medium,
the tangential components of the normal derivative of the electric
field are discontinuous across an interface by an amount pro-
portional to the tangential derivative of the normal component of
the electric field inside the scatterer. Furthermore, if there is no
scatterer, i.e., εoi = 1, then Eq. (8) reduces to the expected form,
namely, t j ·

∂
∂n (E

inc
+ E sc)= t j ·

∂
∂n E tr for j = 1, 2.

Lastly, we note that Eqs. (6) and (7) are simply Eqs. (9) and
(19) in Ref. [2], respectively, written in a different notation.
Furthermore, Eq. (7) (or equivalently, Eq. (19) in Ref. [2]) is not
widely known to the scientific community but is an essential
equation for our surface integral method.

A. Numerical Solution

One approach to obtaining a numerical solution is to directly
discretize the surface integral equations given by Eq. (5) [16].
This approach will yield a system of linear equations that
can be solved for the chosen unknowns: {E sc

n , E sc
t1 , E sc

t2 } and
{n · ∂E sc/∂n, t1 · ∂E sc/∂n, t2 · ∂E sc/∂n}. Unfortunately,
this approach requires the discretization of singular kernels
(Green’s function and its normal derivative) and, therefore,
much care must be taken to avoid numerical difficulties [16].

Another approach would be to use our recently developed
robust and accurate desingularized method [3,13], where the
singular behavior of Green’s function and its normal derivative
is “subtracted out” before the discretization. This is the method
we have chosen to use here, and it is explained in more detail in
Appendix B (also see [14]).

From Appendix B, we see that the nonsingular version of
Eq. (5) is given by∫

6

[
∂ p(r)
∂n
− p(r0)

∂g (r)
∂n
−
∂ p(r0)

∂n
∂ f (r)
∂n

]
GdS(r)

=

∫
6

[
p(r)− p(r0)g (r)−

∂ p(r0)

∂n
f (r)

]
∂G
∂n

dS(r), (9)

where f and g are auxiliary functions that “subtract out” the
singular behavior of the kernels. For the interior problem, p is
one of the Cartesian components of the transmitted field, i.e.,
p = E tr

α , α = x , y , z, and 6 = S. Similarly, for the exterior
problem, p is one of the Cartesian components of the scattered
field, but 6 = S + S∞, where S∞ is an artificial sphere of infi-
nite radius. Note that the contribution from S∞ is generally
nonzero because f and g may not decay as fast as the scattered
field at infinity. However, with our choice of f and g , the inte-
grals over S∞may be performed analytically, and thus are not of
much concern; see Appendix B.

For the exterior problem, after discretizing the surface S into
six-noded quadratic triangular elements [3,13], the surface
integral Eq. (9) is converted into a surface element matrix system
connecting all N nodes to their normal derivatives via

H · p sc
= G ·

∂ p sc

∂n
. (10a)

In Eq. (10a), p sc
= E sc

α (withα = x , y or z) represents a column

vector with all of the N node values of p sc, and ∂ p sc

∂n is a similar

column vector for the normal derivatives of p sc. For explicit
examples of G and H, see Appendix B in Ref. [14]. Another
matrix system can be constructed for the transmitted field
(interior problem) but with Hin and Gin matrices, which can
also be obtained following the same procedure demonstrated
in Appendix B in Ref. [14]. These matrices differ fromH and G
becauseHin andGin do not contain contributions from integrals
over S∞, and the Green’s function inside the scatterer has a
different wavenumber, k. For completeness and to facilitate the
development that follows, we explicitly write this relationship as

Hin · p tr
= Gin ·

∂ p tr

∂n
, (10b)

where p tr
= E tr

α andα = x , y or z.
We need to use the boundary conditions given by Eqs. (6) and

(7) to eliminate p tr and ∂ p tr

∂n from Eq. (9). However, the bound-

ary conditions are written in terms of the normal and tangential
components, and Eq. (9) requires the Cartesian components. To
reconcile this mismatch, we project the normal and tangential
basis onto the Cartesian basis {ex , e y , ez}, i.e.,

Eαeα = [nαEn] eα +
[
t1αE t1

]
eα +

[
t2αE t2

]
eα, (11a)
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∂Eα
∂n

eα =
[

nα

(
n ·
∂E
∂n

)]
eα +

[
t1α

(
t1 ·

∂E
∂n

)]
eα

+

[
t2α

(
t2 ·

∂E
∂n

)]
eα, α = x , y , z, (11b)

where nα = n · eα , t1α = t1 · eα , t2α = t2 · eα , and E denotes
E sc or E tr. Finally, using Eq. (11) and the boundary conditions
at all of the nodes on the surface, we obtain a 6N × 6N system
of linear equations for the chosen boundary unknowns. This
linear system is given by

nxH t1xH t2xH −nxG −t1xG −t2xG
n yH t1yH t2yH −n yG −t1yG −t2yG
nzH t1zH t2zH −nzG −t1zG −t2zG
H̄nx

in H̄t1x
in H̄t2x

in −nxGin −µiot1xGin −µiot2xGin

H̄n y

in H̄t1y

in H̄t2y

in −n yGin −µiot1yGin −µiot2yGin

H̄nz
in H̄t1z

in H̄t2z
in −nzGin −µiot1zGin −µiot2zGin



×



E sc
n

E sc
t1

E sc
t2

n · ∂E sc

∂n

t1 ·
∂E sc

∂n

t2 ·
∂E sc

∂n


=


0
0
0
Bx

By

Bz

 , (12a)

where

H̄nα
in = εoinαHin − κ (εoi − 1) nαGin

− (εoi −µio)t1αGin
∂

∂t1
− (εoi −µio)t2αGin

∂

∂t2
, (12b)

H̄t1α
in = t1αHin − κ1(1−µio)t1αGin and

H̄t2α
= t2αHin − κ2(1−µio)t2αGin, (12c)

and

Bα =−εoinαHin E inc
n − t1αHin E inc

t1 − t2αHin E inc
t2 + nαGin

[
κ(εoi − 1)E inc

n + n ·
∂E inc

∂n

]
+ t1αGin

×

[
(εoi −µio)

∂E inc
n

∂t1
+ κ1(1−µio)E inc

t1 +µiot1 ·
∂E inc

∂n

]
+ t2αGin

[
(εoi −µio)

∂E inc
n

∂t2
+ κ2(1−µio)E inc

t2 +µiot2 ·
∂E inc

∂n

]
,

(12d)

withα = x , y , z.
The assembly of Eq. (12) is straightforward, except perhaps

for the last three terms in the first column of Eq. (12a) because
they contain tangential partial derivatives; see Eq. (12b). We
explain the numerical implementation of these tangential
derivatives as well as the derivatives that are used to calculate
the curvatures κ1 and κ2 in Appendix C. When the 6N × 6N
matrix system of Eq. (12a) is compared to the 9N × 9N matrix
system in Ref. [13], it is clear that the memory required is
reduced by 56% (92 versus 62). Furthermore, the 9N × 9N
matrix system contained many zero entries, whereas Eq. (12a) is
a full matrix system.

If there is no scatterer, i.e., a transparent object, then
kin = kout, µio = 1, εoi = 1, and Gin = G, but Hin and H differ
by a factor 4π on the diagonal. In this case, we see that Eq. (12)
yields the expected solution: namely, E sc

= 0 and consequently

E tr
= E inc. In Ref. [13], it was also shown that this framework

applied to planar dielectrics reverts to the Fresnel equations and
Snell’s law.

If the scatterer is a PEC,µio = 1 and εoi→ 0 as the imaginary
part of εin goes to infinity, then only the fields outside of the PEC
scatterer are nonzero, and on the boundary of the PEC scatterer,
the tangential components of the total electric field, E inc

+ E sc,
vanish. Furthermore, Eq. (7a) reduces to

n ·
∂E sc

∂n
− κE sc

n =−n ·
∂E inc

∂n
+ κE inc

n , (13)

which agrees with our previous result; see Eq. (12) in Ref. [14].
Also, it can be shown that the first three rows of Eq. (12a) reduce
to a 3N × 3N linear system that is the same as Eq. (13) of our
previous paper [14], where a more detailed discussion of the
PEC case can be found. It is also instructive to exhibit the lim-
iting forms of the last three rows of Eq. (12a) when εoi = 0 and
µio = 1. For example, in this limit, the fourth row reduces to

Gin

{
nx

[
κE sc

n − n ·
∂E sc

∂n
+ κE inc

n − n ·
∂E inc

∂n

]

+ t1x

[
∂E sc

n

∂t1
− t1 ·

∂E sc

∂n
+
∂E inc

n

∂t1
− t1 ·

∂E inc

∂n

]

+t2x

[
∂E sc

n

∂t2
− t2 ·

∂E sc

∂n
+
∂E inc

n

∂t2
− t2 ·

∂E inc

∂n

]}
=−Hin

[
t1x E sc

t1 + t2x E sc
t2 + t1x E inc

t1 + t2x E inc
t2

]
. (14)

The first line in the above equation is just Eq. (7a) with
E tr
= 0, εoi = 0, and µio = 1. The second and third lines

are Eq. (7c) for t1 and t2, respectively. The last line becomes

zero because the tangential components of the total electric
field vanish on the PEC surface. All terms in brackets are now
zero. A similar derivation can be carried out for the fourth and
fifth row of Eq. (12a). Thus, the constructed matrix system is
self-consistent and reverts to the correct physical limits for a
transparent or a PEC object.

Finally, Eq. (12a) can be solved numerically to obtain val-
ues of E sc and ∂E sc/∂n on the surface of the scatterer and,
subsequently, values of ∂E tr/∂n and E tr on S can be found
by postprocessing. E tr can be found by using Eqs. (6b) and
(6a), and ∂E tr/∂n can be obtained by using Eqs. (7a) and (7c).
Thus, after the postprocessing, we have all electric fields and
their normal derivatives on S, and therefore, we can compute
the electric field anywhere inside and outside the scatterer.
For example, this can be done via the formulation given in
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Ref. [17] so that the numerical results are not affected by the
near-singular nature of Eq. (5). Although we have chosen to
work with the exterior field’s boundary unknowns, i.e., E sc and
∂E sc/∂n, it is also equally valid to choose the interior field’s
boundary unknowns, i.e., E tr and ∂E tr/∂n. This choice may be
of interest in photonics applications and is further discussed in
Appendix D.

3. RESULTS

We illustrate the developed framework with several carefully
chosen examples that show the interaction between different
types of scatterers and the incident wave. These examples are:

1. Scattering by an Au nanosphere located at different posi-
tions inside a SiO2 shell whose size is comparable to the
wavelength of the incident wave, i.e., when the wavenum-
ber k times the characteristic size a of the scatterer is of order
1, ka ∼ O(1). The numerical procedure for this core-shell
particle case is slightly more complicated due to the pres-
ence of multiple domains. When r0 is located on SSiO2 , the
6 in Eq. (9) for the exterior domain is 6 = SSiO2 + S∞
and 6 = SSiO2 + SAu for the interior domain. When r0

is located on SAu, the 6 in Eq. (9) for the exterior domain
is 6 = SSiO2 + SAu and 6 = SAu for the interior domain.
This example illustrates the Mie scattering regime (optical
wave phenomenon) and is of interest, for example, in light
absorption enhancement applications for thin-film solar
cells [18];

2. scattering of visible light by two Au nanoparticles with
different shapes but having the same volume. This example
shows how the shape can be used to tune the resonance
wavelength and the absorption cross section when the

characteristic length of the particle is much smaller than
the wavelength of the incident wave. This scattering
example is in the Rayleigh scattering regime and such quasi-
electrostatic scattering problems are often encountered in
micro- and nanophotonics;

3. scattering by a dielectric oblate spheroid where the scatterer
acts as a lens. In this example, the dimension of the spheroid
(lens) is larger than the incident wavelength, and thus this
example is approaching the geometrical optics regime.

In all these examples, the incident wave is a plane wave given
by E inc

= E0 exp(ikz)ex .

A. Mie Scattering Example

The scattering of a plane wave by a particle in air consisting of
a metal Au core of radius 60 nm embedded into a SiO2 shell of
radius 90 nm is selected as an example for Mie scattering. We
chose the size of the shell to be consistent with what is used in
thin-film solar cells to enhance light absorption [18]. Note that
the core of the particle is not necessarily situated at the center of
the shell. The total electric field vectors and the intensity con-
tour plots are shown in Fig. 1(a) for the incident wavelength of
520 nm (green light). In this example, the index of refraction of
the SiO2 shell is nSiO2 = 1.47 [19], and the index of refraction
of the Au core is nAu = 0.65+ 2.02i [20]. The plots in Fig. 1(a)
are shown in the y = 0 plane with the center of the core (1) con-
centric with the shell, (2) shifted by (20 nm)ex , (3) shifted by
(14.14 nm)ex + (14.14 nm)ez, and (4) shifted by (20 nm)ez.

From the electric field vector plots in Fig. 1(a), we see that
the electric fields in the Au core are obviously out of phase from
those in the SiO2 shell. The angular scattering intensities in
the z= 0 plane are shown for all four cases in Fig. 1(b). From

Fig. 1. (a) Total electric field vectors and contour plots of |E tot
|
2/|E0|

2 in the y = 0 plane are shown for four cases when the center of the core is
(1) concentric with the shell, (2) shifted by (20 nm)ex , (3) shifted by (14.14 nm)ex + (14.14 nm)ez , and (4) shifted by (20 nm)ez . (b) The angular
scattering intensity for the above four cases in the z= 0 plane is shown. For the concentric case, the corresponding Mie series solution is also shown for
comparison. (Cases 2 and 3 are shown in Visualization 1.)

https://doi.org/10.6084/m9.figshare.9888005
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Fig. 1(b), we also see that our numerical results agree very well
with the Mie series solution [21,22]. The maximum relative
difference between the two solutions is less than 0.6%.

B. Rayleigh Scattering Example

In the previous example, we illustrated the ability and the accu-
racy of our field-only nonsingular surface integral method
to solve scattering problems in the Mie scattering regime,
ka ∼ O(1). When ka is close to zero, that is, within the quasi-
electrostatic limit, the scattering problem enters the Rayleigh
scattering regime. The Rayleigh scattering regime is widely
observed in microphotonics and nanophotonics, with broad
applications such as sensing of chemical and biological species
[23]. We present the effect of the scatterer’s shape at a fixed
volume on the absorption cross section σa of an Au particle in
water with the refractive index of nH2O = 1.33. The Au particle
is illuminated by the plane wave of wavelength varying from
380 to 750 nm in steps of 5 nm. The absorption cross section is

calculated from the time-average Poynting vector via

σa =

(
1

I inc

)
1

2

∫
[E tot
× (H tot)∗] · dS, (15)

where I inc
= (1/2)vpε0|E0|

2, vp is the speed of the electro-
magnetic wave in water, and * denotes the complex conjugate.
From Fig. 2(a), we see that for the spherical Au particle of diam-
eter d = 10 nm, the resonant wavelength occurs at around
540 nm. The complex index of refraction on resonance is
nAu = 0.48+ 2.23i [20]. Once again, the results produced via
our field-only nonsingular surface integral method and the Mie
series [21,22] are in excellent agreement. Note that, even though
in this example the ratio d/λ� 1, our method is not affected by
any zero-frequency numerical instability issues.

Consider next a nanospherocylinder Au particle with the
same volume as the sphere above. The length of the sphero-
cylinder is l = 14.74 nm, and the aspect ratio between its length
and width is l/d = 2. From Fig. 2(b), we can see that when the

Fig. 2. Absorption cross section of (a) Au sphere and (b) Au sphero-cylinder (cylinder with rounded spherical sides) is shown. In (a), the continu-
ous line is obtained from the Mie series solution, while the symbols are calculated via our field-only nonsingular surface integral method. In (b), the
volume of the sphero-cylinder particle is the same as the volume of the sphere in (a).

Fig. 3. Contour plots of |E tot
|
2/|E0|

2 (a) in the y = 0 plane, (b) in the z= 0 plane, for a lens-shaped object approaching the geometrical optics
regime. The instantaneous electric field vectors are also indicated. See also Visualization 2.

https://doi.org/10.6084/m9.figshare.9888011
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long axis of the sphero-cylinder is orientated along the polariza-
tion direction of the incident wave, the resonance wavelength
is redshifted to 610 nm. The complex index of refraction on
resonance is nAu = 0.22+ 3.02i [20], and the peak absorption
cross section is enhanced almost sixfold relative to the Au sphere
with the same volume.

C. Nanolens Example

In the previous two examples, we tested our method in the Mie
and Rayleigh scattering regimes. We now turn our attention
to the geometrical optics regime, where ka > O(1). Consider
a dielectric oblate spheroid (x 2

+ y 2)/a2
+ z2/b2

= 1 with
aspect ratio of a/b = 2 and length of ka = 5. The spheroid
is characterized by the index of refraction of nin = 1.5 and is
suspended in air with the short axis parallel to the polarization of
the incident wave. From Fig. 3, we see that the wave is focused
after it passes through the oblate spheroid, thus indicating
the focusing ability of the oblate spheroid that is similar to
an optical lens. The values of the electric field were obtained
via our method by first solving Eq. (12) and then using the
method described by Sun et al. [17] to compute the field inside
and outside the oblate spheroid. Note that the accuracy of this
method is not affected by the near-singular nature of the kernels
when the observation point is near the boundary. If we were
to use a conventional approach with its near-singular Green’s
function-based kernels, then obtaining these values would have
been numerically challenging.

4. CONCLUSIONS

The electric field on, near, inside, and far away from a dielec-
tric scatterer can be obtained easily with the proposed surface
integral method. The solution satisfies both the vector wave
equation and the divergence-free constraint inside and out-
side the scatterer. The accuracy of the solution is improved by
employing a fully desingularized surface integral method.

Some typical numerical examples were chosen representative
of nano- and micro-optical systems. A dielectric scattering
sphere was extensively tested and compared against classical Mie
theory and a (nano) lens was also considered.

In our previous publication on scattering from PEC bodies
[14], we listed a number of advantages of our surface integral
method over the most popular methods based on the Stratton–
Chu [4,5] or the PMCHWT [6–8] formulation. In this paper,
we have shown that these advantages carry over to the dielec-
tric case. For completeness and ease of reference, we list these
advantages here once more.

1. Our method is conceptually simple and numerically
straightforward because it focuses on solving directly for
physically important quantities, namely, the electric field
and its normal derivative on the surface of the scatterer. One
of most obvious applications of this method is its usefulness
in computing the optical force on the dialectic particles;

2. our method does not need to work with intermediate quan-
tities such as surface currents. As such, elaborate vector basis
functions (such as Rao–Wilton–Glisson (RWG) [24,25])
are not required, and the standard boundary element tech-
niques can be employed. Furthermore, our method only

requires a boundary element solver for the scalar Helmholtz
equation;

3. the robust, effective, and accurate nonsingular surface inte-
gral method [17,26] (also see Appendix B) that is based on
nonsingular integrands and uses quadratic surface elements
provides a more precise representation of the boundary
geometry;

4. our method may be advantageous in solving time-domain
scattering problems using inverse Fourier transforms [27]
because it directly solves for the electric field;

5. the framework presented here is not affected by certain
numerical issues encountered in other implementations.
For example, there are no integrals with strong singularities
[28] and the zero-frequency catastrophe [9,29] is avoided
altogether.

Given the symmetry between the E field and the H field, our
theoretical framework can also be used to solve for the H field.
One only needs to replace E by H , H by−E , and interchange
ε withµ in the formulas given above.

APPENDIX A: CONTINUITY OF H-FIELD ON THE
INTERFACE

The tangential component of H in the t1 direction can be
expressed as Ht1 = t1 · (n× H). The magnetic field can be
expressed in terms of the electric field via (ωµ)H =−i∇ × E .
Thus, for the tangential component of the magnetic field we
have(ωµ

i

)
Ht1 =−t1 · (n×∇ × E )= t1 ·

∂E
∂n
− n ·

∂E
∂t1

. (A1)

Writing ∂E/∂t1 as

∂E
∂t1
≡
∂(Enn+ E t1 t1 + E t2 t2)

∂t1

= n
∂En

∂t1
+ En

∂n
∂t1
+ t1

∂E t1

∂t1
+ E t1

∂ t1

∂t1
+ t2

∂E t2

∂t1
+ E t2

∂ t2

∂t1
,

using ∂n/∂t1 =−κ1t1 and ∂ t1/∂t1 = κ1n, with κ1 the curva-
ture in the t1 direction (see identities (A9)–(A11) in Ref. [14])
yields

n ·
∂E
∂t1
=
∂En

∂t1
+ κ1 E t1 . (A2)

Applying Eqs. (7b) and (A1) to the incident, scattered, and
transmitted fields yields

1

µout

[
t1 ·

∂(E inc
+ E sc)

∂n
− n ·

∂(E inc
+ E sc)

∂t1

]

=
1

µin

[
t1 ·

∂E tr

∂n
− n ·

∂E tr

∂t1

]
, (A3)

and, after using Eq. (A2), we obtain the desired result [Eq. (7c)].
A similar derivation can be done for the tangential component
in the t2 direction.
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APPENDIX B: NONSINGULAR SURFACE
INTEGRAL EQUATION

A brief description of the nonsingular surface integral method
to solve the scalar Helmholtz equation is now presented. Take
a scalar function p(r) that satisfies the 3D Helmholtz equation
∇

2 p(r)+ k2 p(r)= 0, where, for example, p represents one of
the Cartesian components of the electric field. The nonsingular
surface integral equation is given by [26]∫

S

[
p(r)− p(r0)g (r)−

∂ p(r0)

∂n
f (r)

]
∂G
∂n

dS(r)

=

∫
S

[
∂ p(r)
∂n
− p(r0)

∂g (r)
∂n
−
∂ p(r0)

∂n
∂ f (r)
∂n

]
GdS(r),

(B1)

where r is the source point and r0 is the field (observation)
point. The functions f (r) and g (r) in Eq. (B1) must satisfy the
Helmholtz equation and also satisfy the following conditions at
r = r0:

f (r0)= 0, n(r0) · ∇ f (r0)= 1, (B2a)

g (r0)= 1, n(r0) · ∇g (r0)= 0. (B2b)

The functions f (r) and g (r) are not uniquely determined;
see Klaseboer et al. [26] and Sun et al. [17] for more details. Note
that the solid angle will be eliminated using this framework. In
this paper, we used two standing wave functions for f and g , i.e.,

f (r)=
1

k
sin(kn(r0) · [r − r0]), (B3a)

g (r)= cos(kn(r0) · [r − r0]). (B3b)

If the Helmholtz equation is solved in the domain exterior to
the scatterer, an additional factor 4π p(r0)must be added to the
left-hand side of Eq. (B1) due to the particular choice we made
in Eq. (B3). This contribution results from evaluating Eq. (B1)
over a fictitious surface at infinity and depends on the choice of
f and g . Equation (B1) is essentially the standard boundary ele-
ment method implementation, where a known analytic solution
p(r0)g (r)+ [∂ p(r0)/∂n] f (r) has been subtracted. In this
context, p(r0) and ∂ p(r0)/∂n are constants (for one particular
node r0). This framework has been extensively tested for the
Helmholtz equation in sound waves [17], electromagnetic scat-
tering [13], and even elastic waves in solids [30]. Due to the fact
that the formulation is nonsingular, Gaussian quadrature can be
used on all elements (including the previous singular ones) and
the implementation of higher-order elements is straightforward.

Although the desingularized surface integral framework is
not essential to solve the considered electromagnetic scattering
problem, it does greatly improve the ease of implementation
of the matrix systems G and H [see Eq. (10) and Appendix B in
Ref. [14]], and it also improves the accuracy of the solution.

APPENDIX C. PARTIAL DERIVATIVES MATRIX

The tangential derivatives, ∂/∂t1 and ∂/∂t2, can be obtained
from the directional derivatives. Suppose that the tangential

derivatives are sought at node 1 of the six-noded quadratic
surface element shown in Fig. 4. Assume that the side 1-4-2 is
represented by ξ and the side 1-6-3 by η. Unit vectors in these
two directions are denoted by eξ and eη, respectively. While
t1 and t2 are perpendicular to each other, in general, eξ and
eη are not. The directional derivative in the ξ -direction can be
written as

Dξ f = eξ · ∇ f = eξ ·
[

t1
∂ f
∂t1
+ t2

∂ f
∂t2
+ n

∂ f
∂n

]

≈
f4 − f1

l41
, (C1)

where l41 denotes the Euclidean distance between nodes 1
and 4. Note that to obtain Eq. (C1), we used a simple numerical
approximation to the directional derivative. Similarly, for the η
direction we use nodes 6 and 1 to obtain

Dη f = (eη · t1)
∂ f
∂t1
+ (eη · t2)

∂ f
∂t2
≈

f6 − f1

l61
. (C2)

Solving Eqs. (C1) and (C2) yields

∂ f
∂t1
=

1

D

[
(eξ · t2)

f6 − f1

l61
− (eη · t2)

f4 − f1

l41

]
, (C3a)

and

∂ f
∂t2
=

1

D

[
(eη · t1)

f4 − f1

l41
− (eξ · t1)

f6 − f1

l61

]
, (C3b)

where the determinant D= (eξ · t2)(eη · t1)− (eξ · t1)(eη · t2).
Notice that Eq. (C3) expresses ∂ f /∂t1 and ∂ f /∂t2 in terms of
the values at the nodes. The simplest possible implementation
is shown above, but a more accurate quadratic scheme can be
obtained by using nodes 1, 4, and 2 in the numerical derivatives
for ξ . As a further improvement, the above scheme has been
applied to all elements surrounding node 1 and was averaged by
the number of surrounding elements. The implementation for
other nodes is very similar. In the numerical implementation, f
is the unknown variable E sc

n and thus, ∂/∂t1 and ∂/∂t2 become
N × N matrices, which have to be multiplied with the matrix
t1αGin to contribute to the terms H̄nα

in in Eq. (12).
The matrices representing ∂/∂t1 and ∂/∂t2 can also be

elegantly employed to calculate the curvatures κ1 and κ2 via
[Eqs. (A9c) and (A9d) in Ref. [14]]

κ1 =−t1 ·
∂n
∂t1

and κ2 =−t2 ·
∂n
∂t2

. (C4)

Fig. 4. Quadratic surface patch with six nodes is shown.
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APPENDIX D. LINEAR MATRIX SYSTEM

We now demonstrate how to assemble the linear matrix system
of equations in terms of the interior field E tr and ∂E tr/∂n fol-
lowing the same procedure given in Section 2.

To write n · ∂E sc/∂n in terms of E tr and ∂E tr/∂n, we can
rearrange Eq. (7a), and after using Eq. (6a), we have

n ·
∂E sc

∂n
= κ(εio − 1)E tr

n + n ·
∂E tr

∂n
− n ·

∂E inc

∂n
, (D1)

where εio ≡ εin/εout.
To write {t1 · ∂E sc/∂n, t2 · ∂E sc/∂n} in terms of E tr and

∂E tr/∂n, we express the continuity of the tangential compo-
nents of H on S given by Eq. (7b) in terms of the electric field
withµoi ≡µout/µin and j = 1, 2 (see Appendix A for details),

(εio −µoi)
∂

∂t j
E tr

n + κ j (1−µoi) E tr
t j

− t j ·
∂E inc

∂n
+µoit j ·

∂E tr

∂n
= t j ·

∂E sc

∂n
. (D2)

As such, the linear system in terms of E tr and ∂E tr/∂n can be
found to be


H̄nx H̄t1x H̄t2x

−nxG −µoit1xG −µoit2xG
H̄ny H̄t1y H̄t2y

−n yG −µoit1yG −µoit2yG
H̄nz H̄t1z H̄t2z

−nzG −µoit1zG −µoit2zG
nxHin t1xHin t2xHin −nxGin −t1xGin −t2xGin

n yHin t1yHin t2yHin −n yGin −t1yGin −t2yGin

nzHin t1zHin t2zHin −nzGin −t1zGin −t2zGin



×



E tr
n

E tr
t1

E tr
t2

n · ∂E tr

∂n
t1 ·

∂E tr

∂n
t2 ·

∂E tr

∂n

=

Ax

Ay

Az

0
0
0

 , (D3a)

where

H̄nα
= εionαH− κ (εio − 1) nαG − (εio −µoi)t1αG

∂

∂t1

− (εio −µoi)t2αG
∂

∂t2
, (D3b)

H̄t1α
= t1αH− κ1(1−µoi)t1αG and

H̄t2α
= t2αH− κ2(1−µoi)t2αG, (D3c)

and

Aα =H
[
nαE inc

n + t1αE inc
t1 + t2αE inc

t2

]
− G

[
nαn ·

∂E inc

∂n
+ t1α t1 ·

∂E inc

∂n
+ t2α t2 ·

∂E inc

∂n

]
,

(D3d)

withα = x , y , z.
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