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The nature of solvent structure around ions is considered using a model of hard spheres with embedded
point charges in a solvent of hard spheres with embedded point dipoles. The statistical mechanics of this
model is treated in the mean spherical approximation which is a natural extension of the Debye-Hiickel
theory of electrolytes to include discrete charges and dipoles of finite size. Our results include (i) a
modified expression for the Born energy which had been used empirically to fit solubility data, (i) explicit
forms for the polarization density about an ion from which we can deduce the orientation order of the
dipolar solvents and the validity or otherwise of the concept of a “local” dielectric constant near charged
bodies, and (iii) the form of the interaction free energy (potential of mean force) between ions at
separations comparable to the solvent size. In presenting these results which are given in detail in Section
IV only a familiarity with the general description of this model given in Section II is assumed; it will not

be necessary to refer to the mathematical detail in Section III.

I. INTRODUCTION

A survey of the recent literature will reveal a continu-
ing interest in the role of solvents in determining the in-
teraction between solute molecules. The nature of in-
direct solvent mediated or structural interactions in
nonionic model systems has been considered in a num-
ber of recent papers. These included mean field theo-
ries,‘ asymptotic analysis of corrections to the contin-
uum theory of dispersion interactions due to solvent
structure, ? the use of the integral equation approach
(Percus Yevick and Hypernetted Chain) to elucidate the
role of intermolecular potentials*~" and size effects, ?
exact analysis using one-dimensional models, *!° as
well as studies using machine simulation.!! For ionic
or electrolyte systems, there are also attempts to go
beyond the “primitive” model in which the solvent is
treated only as a continuum of given dielectric constant.
One approach was to retain the continuum nature of the
solvent but to parameterise unknown effects due to the
molecular structure of the solvent upon the ion-ion in-
teraction potential by the addition of the so called “cav-
ity” term and a “Gurney” potential.'?> Another approach
is to treat both the ions and solvents on a equal, molecu-
lar basis, albeit using model potentials, These model
systems have been solved under certain approxima-
tions!®~1% and analyzed in the asymptotic regime!®!7to
give expressions for the large separation behavior of
ion—-ion, ion-solvent, and solvent-solvent interactions.
The contribution of solvent structure to the short range
interaction between ions has been considered only by
Monte Carlo simulations, 1% 1°

In this paper we consider a model electrolyte solution
comprised of a mixture of ions of equal size, modeled
as hard spheres plus embedded point charges, in a di-
polar solvent, modeled as hard spheres (of different
gize to those of the ions) plus embedded point dipoles.
Our interest is to study, in the limit of vanishing ionic
concentration, the structure of solvent molecules about
an ion and its effect on the interaction or potential of
mean force between two ions. We treat ion—dipole and
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dipole-dipole interactions in the Mean Spherical Approx-
imation (MSA) while the ion-ion interaction is obtained
using a nonlinear MSA, This approximation is analogous
to the Debye~Hiickel theory for electrolytes extended to
handle discrete molecular size and the ion-dipole and
dipole-dipole potential (see Sec. II for details),

We have three major results. Firstly, we derive an
expression for the electrostatic contribution to the ionic
solvation energy (Born energy) which differs from that
given by the continuum picture or the primitive model.
It has the same form which had been found empirically
to fit solvation energies in aqueous and nonaqueous elec-
trolytes. The second result is the polarization density
of solvent molecules near an ion. Apart from giving a
measure of the orientation structure of dipolar solvents
about an ion, the results cast doubt on the validity of
assigning a lower dielectric constant or using a spatially
varying dielectric constant to account for so called di-
electric saturation effects near charged particles or
charged surfaces, The third results, the potential of
mean force between ions, gives an indication of solvent
effects on ion pairing. A comparison is made with
available Monte Carlo results.

In the next section we give a physical description of
the nature of the approximations used in this calculation
and to relate this to the more familiar Debye~Hiickel
and Poisson-Boltzmann approximation, It is aimed to
provide a physically perspicuous picture of the approxi-
mations used here for the readers not already au fait
with the rather difficult liquid state literature. The for-
mal details of the solution of this model as well as
asymptotic forms of the distribution functions are given
in Sec. ITI. The main results, given in Sec. IV can be
assimilated without reference to the details in Sec. II.
The paper closes with a discussion on the failure of the
MSA to give a physical description of the properties of
electrolytes beyond the Debye-Hiickel limiting law.

1. DESCRIPTION OF THE MODEL

Here we give a description of the model jonic solution
and the physical interpretations behind the approxima-
tions which we make, The ionic solutes are treated as
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hard spheres of diametey R, number densities p,,
Pg, ... valencies 2y, 25, ... which satisfy the electro-
neutrality condition

Zi:p¢z‘=0 .

The solvent is modeled as a fluid of hard spheres of
number density p,, diameter R, with embedded point di-
poles of dipole moment p. The intermolecular poten-
tials have the form:

2.1)

ion-ion
u“(’r) =%, Y<Ry
2
z,24¢ (2.2
= i’ y > Rl s )
ion-dipole
(e, w) =<, 7<R13=3(Ry +R,)
_=ziep(w) - ¥ (2.3)
= l;z ) > 7>R12 >
dipole~dipole
udd(wl’ r, 0)2)=°° y <R,
2
D 2.4
= - “_7311 , 7”>R,, (
and
Dyy=filwy) * 377 = 1)« i{w,) , (2.5)

where e is the protonic charge and | the 3 X3 unit tensor.
f(w) is a unit vector in the direction of the angle vari-
able w={6, ¢) with [ dw =4x., The subscripts i,4, %, ...
will hereafter be reserved for ionic quantities and the
subscript d for dipoles. The vector r specifies the rela-
tive position of'the centers of the molecules and is di-
rected from the first molecule towards the second, e.g.,
in u,(r), r=ry~-r,.

In a microscopic description of a fluid the quantity
which embodies the important features of molecular
structure is the probability of finding two particles in a
given configuration or equivalently the pair distribution
Sfunction g=1+h, where b i8 the fofal correlation func-
tion. The potential of mean force W which describes
the interaction between two particles averaged over the
configurations of the rest of the particles in the system
is given by (8=1/kT)

BW=—Ing=-1n(l+h) . (2.6)

Our aim, therefore, is to calculate one of the quantities
W, g, or h, whichever is most convenient .

We give a pedagogical derivation of the Mean Spheri-
cal Approximation (MSA) by reformulating the Debye-
Hickel and Poisson-Bolizmann theory in term distribu-
tion functions. Then it will become clear that the MSA
is a logical extension of Debye-Hiickel theory to include
finite in size. Consider an agsembly of overall neutral
point charges in a medium of unit dielectric constant.
The electrostatic potential at a distance » from an ion
having valence z, is

bilr) =22 +fdr'Zk:‘—’R"3:5_’ig(T’9-. (2.7)
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The first term on the rhs is the direct Coulomb poten-
tial. Contributions to §,(r) from the adsorption excess
of other ions about the ith ion are contained in the sec-
ond term, To be exact, the pair distribution function
g, should appear in place of the total correlation func-
tion k;, =g, ~1. However, the constant term vanishes
because of the charge neutrality condition [Eq. (2, 1)].
The mean electrostatic energy between two ions : and j
is z,edy(r). The Debye—Hiickel or Poisson~Boltzmann
theory approximates the potential of mean force by the
mean electrostatic potential, that is, we write

(2.8)

Combining Eqs. (2.7) and (2. 8) gives a closed set of
equations for the total correlation functions, &, ,(r),
which is equivalent to the Poisson-Boltzmann equation,
However, for point ions, this leads to nonintegrable di-
vergences in h,,(r) as »~0. If hy,(r)<1 we can expand
the logarithm in Eq. (2.8). Keeping only the linear
term and write

hy(r) = = Bz, e,(r) 2.9

gives the Debye-~Hiickel theory. This can be readily
verified by combining Eqs, (2,7) and (2, 9) and noting
that the z,,(r) or y,(r) is of the form ~e™"/r.

BW y(7) == 1In(1 + k(7)) = Bz e (7) .

If the ions have finite size, a hard sphere diameter,
R, say, thecenters of any two ions must be separated by
at least one diameter. Thus we have the exact condition
on the pair distribution function

g"('r)=1 +h”(’y)=0 . (2.10)
Now we can write the resuit of combining Eqs. (2.7)
and (2.8) as

In(1 +hyy (7)) = ¢y (7) +Zp,fdr'h,,,(r’)ck,(|r -r'|).

(2.11)
The direct correlation function c,,(7) is given by
2
e
cy(r)=-~ Bzyz :t =—Bu,(v), r>R. (2.12)

This form for c;,(») is only valid for »> R, because for
<Ry, hy(r) is given exactly by Eq. (2.10) so we must
use Eq. (2.11) to determine ¢ (7) for y<R,. Equations
(2.10)~(2, 12) constitute the nonlinear MSA or EXP-
MSA. It can be regarded as a natural extension of the
Poisson-Boltzmann equation to include finite ion size.
The MSA further replaces In(1 +k,,(r)) by ky,(7) in Eq.
(2.11), This last approximation gives a Debye-Hiickel
type approximation with finite size and has the added
advantage that the resulting linear equations for k,,(r)
have analytic solutions.

For the ion/dipole mixture, the physics is similar
and additional equations like (2, 11} are required to de-
scribe ion-dipole and dipole-dipole correlations. It is
important to note that with a dipolar solvent, it is not
possible to consider point dipoles as with the case for
ions. As r—0, the ™ divergence in the dipole-dipole
potential renders the concept of a point dipole unphysi-
cal.?’ In the limit in which the ions and dipoles are
completely discharged, the MSA reduces to a hard
sphere fluid to be solved in the Percus-Yevick approxi-
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TABLE I. Multiplication table for the angular convolution 1/47 [ A(w;, wy)B(w;, wdw;.

B(ws,wy)
A(wi, (-03)

1 Ay Dy E, E,
1 1 0 0 0 E,
A 0 3 8y 5Dy, 3 Eq 0
Dy 0 3Dy, 3 (D1p +24y,) 3E, 0
< Ey 0 3 E, $E, H 0
E, E, 0 0 0 3 (Dyy +Ay5)

mation which is known to give a good description for such
gystems.

In the next section, we give the solution of the lin-
earized version of Eq. (2.11) for a system of hard
sphere ion and dipoles. However, in interpreting the
results for the ion-~ion potential of mean force in the
limit of zero ionic concentration we shall retain the non-
linear equation for the ion-ion correlation function,

IN. THE MSA: METHOD OF SOLUTION

Adelman and Deutch!® and Blum!* have solved the sta-
tistical mechanics of an equal size hard sphere ion/di-
pole mixture in the MSA, Their method of solution re~
quires considerable dexterity in the manipulation of ro-
tational invariants. Our solution for the case of unequal
size ion/dipole mixture is along the lines of Wertheim’s
solution of the MSA dipolar fluid, 2° and where possible
we retain his notation, Explicit answers are obtained
by the Baxter-Wiener—Hopf factorization method, 2!

The MSA for the hard sphere ion/dipole mixture can
be cast as the golution of the Ornstein-Zernike (0Z)
equations for the ion—ion correlation function

ki) =cyylr) + Zk:Pkfds il ~8]yls)

+ %fdws dscy(r -8, Wgdh,(wg,8) , (3.1a)

the ion-dipole correlation function

Big(r, w3) = c (T, w5) + Z:Pkfds canl|r = 8] )ygls, wy)

+ %r'fd"’s d8 ¢yt ~8, wylhyws, 8, w,)

(3.1b)
the dipole—ion correlation function

hyy(wy, T) = cqy{wy, T) + Zpkfds Canl@y, T = 8)hyy(s)
*

+ %;—fd% ds cywy, r -8, wghy(wsy, 8) ,

(3.1¢)
and the dipole-dipole correlation function

hag(@y, T, ©Wy) = cqglwy, T, w,)

+ ;pk fds calwy, © =B (8, w,)

+ %fdwa d8¢gylwy, T =8, Welhyy(wy, 8, w5) ,

(3.1d)
where the summation is over all ionic species. The
MSA closure conditions for the OZ equation are

2
ciy(r) == ﬁz—;ﬁ—e—, r>Ry (3.2a)
¢ 1alr, ) = ﬂ%&EZ . r>Ry (3. 2b)
Cay(wy, T) == 'Z‘LﬁTe&Ei s Y>Rp (3.2¢)
Bu?
cdd(wiy T, w2)=7’D12 ’ v>Ry, (3. 2d)
where Dy, was defined in Eq. (2.5) and
Eo=fi(wy) 7, a=1,2, (3.3)

We recall our convention that the vector r in Eqs. (3.2b)
and (3.2¢) is directed from the first particle towards
the second, and the subscripts , j,%, ... denote ions and
d, dipoles. In addition to Eq. (3.2) we also have the
exact hard core conditions

hy(r)=-1, ¥<R, (8.4a)
hyglr, W) =hg(wy, ) ==1, r<Ry, (3. 4b)
hywy, T w) =<1, 7<R,. (3.4c)

We can proceed to examine the decomposition of the
correlation functions into various angular components.
If we introduce the angular function

Ay = fi{wy) * filw,) (3.5)

we find that the function 1, E, A, and D form a closed
set under the angular convolution 1/47 [ A(w;, w3)B(ws,
wy)dw;. The multiplication table for these quantities is
get out in Table I, This can be derived using the identi-
ties

+ J# 8@ =0 (3.6)

& Jw i@iw =4 3.7)

and noting that for T=3%% -1 we have the matrix multi-
plication
TTr=T+21. (3.8)

The existence of a closed set of angular functions to~
gether with the fact that all ions have the same hard
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sphere diameter strongly suggest an ansafz of the form

[N =) +2,2,7(r) (3.92)
Fralt, w9) =f58(r) + 2, F E(7)E, (3.9b)
Ffalwy, D) =5 (r) =z, FE(r)Eq (3.9¢)
Faalw, 7, ) =F5R(r) +f 4(r)Agy +f P(r)Dyy (3.9d)

where f stands for k or ¢ and by symmetry fI5 =755,
The functions f%5 (@, 3=1 or 2) will later turn out to be
the Percus-Yevick hard sphere correlation function
which describes density ~density correlations. This un-
satisfactory feature of the MSA is due to its failure to
take into account the angle averaged potential which af-
fects density~density correlations. Charge-charge cor-
relations are given by f¢, charge—dipole by %, and
dipole-dipole by 2 and f°. Note that all these functions
only depend on r=Ir|. This form of the decomposition,
in particular, the simple explicit dependence on valence
follows from the fact that all ions have identical size.
Otherwise the hard sphere correlation functions will
also depend on the valence and furthermore terms in E;
and E, will have to be added to the dipole—dipole corre-
lation functions, Eq. (3.9d).

The problem is now reduced to solving for the seven
functions introduced in Eq. (3.9). We use this decom-
position in the OZ equation (3.1) and effect the Fourier
transform over r space using the convolution theorem,
However, because of the dependence upon £ in the angu-
lar functions E and D, functions associated with these
quantities transform in a slightly different way, Adopt-
ing the notation

k) = fdr e*FrA(r) (3.10)
the Fourier transform of Eq. (3.1) becomes
o () = By (R) + 20,8 () egy (R)
k
+ b fdwséu(k,wa)iiu(ws, K) (3.11a)

By, wg) = Cuqlk, wy) + thau(k);lua(k, w)
kR

D . - -
+ ot Jawy T, ll, @), k, w;)  (3.110)

Ry @4, K) = Tgy(wy, K) + D 0,E 0001, W)y (R)
kR
+ 8L [a0,8, 01k, 00, k) (3.11¢)
ﬁdd(wbk’ “’2) = Ead(wb k, “’z) + Zpk‘édk(wlr k)r"hd(k: 0)2)
kR

+ %:r'fdwa Calwy, K, wa);l“(“’a, k,w;) ,

(3.114d)

where [f=h or &, cf., Eqs. (3.9)]
Fuy(RY =F15¢R) + 2,2, 7C () (3.12a)
f-u(k: w,) =f (k) + 2, 5(R)E, (3.12b)
Fulwy, k) =F58(E) - 2, FE(R)E, (3.12¢)
Faswy, K, @q) = FE8(R) +7 2(R) Ay, +F2(k) Dy, (3.12d)
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with
Eo=fiwy) -k, a=1,2 (3.13)
Dyg=fi(wy) + (3kk = 1)+ fi(wy) (3.14)
and
FO(k) = — dr fo " ar i,k )f () (3. 158)
FE(k) =~ 4m f " ar 723 (kr)f E(v) (3.15b)
0
fle)=4n f “ar 7% (k)A(r) (3.15¢)
0

f being f% (a, 8=1,2), 72 or £ ¢ and j,(x) is the spheri-
cal Bessel function, 22

We must now combine Egs. (3.11) and (3, 12) to see
how the various angular components are coupled by the
angular convolution. Before doing so it is convenient to
construct two orthogonal angular functions out of A and
D. These are

J*=A+2D (3.16a)

J=A-D (3.16b)
with corresponding coefficients (f=h or ¢)

fr=fe+of? (3.17a)

fr=fa-72. (3.17b)

With the aid of Table I we can summarise the result of
combining Eqs. (3.11), (3,12), (3.16), and (3.17) as

ﬁas(“’b w,) =Caplwy, wy)
1 - -
+E Zprfdw Bcav(wl’ “’S)hra(“’s’ w,)
T
(3.18)

when the angular components are represented as vec-
tors, Eq, (3.18) has the form

(1] 1] 1 4, 0 o o][t]

E, Ey E, &7 0 o0 o E,

E,| =|E,| +p}0 0 1 iE, 0 E,

7| | o o £ ¥ ol

ke ke Lo 0 0 o W)l
(3.19)

It is now a straightforward matter to use Eq. (3.19) to
write out explicitly the various coupled equations gen-
erated by the angular convolution. In all there are
seven distinct equations which decouple into three sepa-
rate groups, We list first the scalar (angle independent)
functions:

I REP(R) =258(k) + (Z‘:p.) ET(RREE (k) + p,Eig (R) R (R)
(3.20)
0: (k) =2 (k) + (Z‘)p;) EHR(R)RTS (R) + p CiE (R)TES (k)

— S8R + (z:p) BRI (k) + 0, 28 (k)RS (k)

=h57(k) (3.21)
On: #55(k) = &58(k) + (Z‘:m) FR(R)RTE (k) + pgea(R)RES (R)
(3.22)
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From the closure relations, Egs. (3.2) and (3,4), we
can see that these three equations are just the OZ equa-
tions with the Percus-Yevick closure for a mixture of
hard spheres of diameter R, at density (3, p,) and di-
ameter R; at density p,. The solution to these equations
are known.?! The remaining scalar equation, which can
be decoupled from the hard sphere equations by the elec-
troneutrality condition [Eq. (2.1)], together with the E
and J* functions form the next group of coupled equa-
tions

IV: 7SR =2°(0) + 02 (ECR) — do 2 (RPR)  (3.23)
V: RB(R) =25(R) +p, B2 (RIC(R) + b0, (IRE(R)
=25(k) + p, 2 (R)RE(R) + 2p, ()R (R) (3.24)
VI (k) = () - pt2(00R2(k) + 08" (WA (R) ,  (3.25)
where
chZplzz‘ . (3.26)

Again it follows from the closure conditions (3. 2) that
this group of functions C, E, and J* describe correla-
tions due to electrostatic interactions. Finally the J~
function is decoupled from the rest:

VIE: 77(R) =27(k) + 40,8 (R)A7(R) . (3.27)

The J* and J ~ functions also occur in the MSA solution
for the pure hard sphere dipole fluid.?" Here we see
that the J ~ function is not affected by the addition of ions
and therefore remains the same as that for the pure di-
polar fluid.

The decoupling of the J ~ function has a simple physi-
cal interpretation, Consider a dipolar system in an ex-
ternal electric field, E*** which couples with the system
by an additional term in the Hamiltonian of the form
—u - E*'_ From linear response theory the induced di-
pole moment in & space is'%

() =Blup) - E™(r)
= {B/ (4n)’ f dw1dw i (w1)heel @y, k, ‘92)}1(@2)} - B R)

=(8/9 (B)[E - E=H(k)] +(8/9F ()[R X E™{R)] .
(3.28)

Now it is obvious that k* and 2~ are, respectively, the
longitudinal and transverse (relative to %) response func-
tions of a dipolar system. The electrostatic Coulomb
potential is a longitudinal field and therefore only cou-
ples with J* functions while the transverse response of

a dipolar system is unaffected by the addition of ions.

In fact it is possible to give a definition of the longi-
tudinal dielectric constant of an ion/dipole mixture in
the MSA via the Stillinger~Lovett condition, ?> We sketch
the derivation briefly only as details may be found in
Ref. 16. We begin with Eqs. (3.23) and (3.24) and let
the various functions have expansions of the general
form as &~ 0'¢:

RC(k) =RC(0) + RPRS + - - -
RER) =RRf+---

4nBe’
B2

(k) = - P I

Solvent structure around ions

EE(k)=—ﬂ%39‘-+kéf+=w

ek =C(0) +--- , (3.29)

where %S, kf, 5, and ¢f are constants.

Combining Egs. (3.23), (3.24), and (3.29) we can
equate coefficients of powers of £, The electroneutral-
its; condition follows from equating the coefficients of
e

pC(0)=-1. (3.30)

The coefficients of 2° gives the Stillinger—Lovett .con-
dition:

- 4mBp /3
2 27¢
1 =51
4‘”66 pch’2 { 1- Epd-é-v(o)
from which we can identify the longitudinal dielectric
constant of the ion dipole mixture, ¢,

__1__ =1— 47TﬁP¢IJ-2/3
€ 1= 5pz*(0)

This quantity measures the longitudinal response of the
dipoles which takes into account the presence of the
ions, but the direct response of the ions, namely the
conductivity, has been substracted out. Experimentally
one would measure ¢ at a frequency too high for the
ions to respond (above the plasma frequency, say) and
yet low enough so that the dipoles still see an essen-
tially static field.

(3.31)

(3.32)

Before we proceed to extract asymptotic forms for the
distribution functions in the limit of low ionic concentra-
tion let us briefly recapitulate the known MSA results
for a pure dipolar fiuid.?’ It can be shown that z* and
¢ satisfy the Percus~-Yevick equation for hard spheres
at renormalized reduced densities. In particular

1 - 3p,2*(0) =q(28) = ¢, (3.33a)
1-3p,87(0)=q(- &) =q., (3.33b)

where g(n) is the Percus- Yevick hard sphere inverse
.compressibility at reduced density n

(1 +2n)?

= —t (3.34
and the constant ¢ is the solution of the equation
1+ 4¢)? -2t 4
- { £) (1 £) - ”deu2 . (3.35)

R T LR (R

The dielectric constant of the pure dipolar fluid is given
by
€=4q,/4- . (3.36)

It is independent of the hard sphere diameter of the di-
poles and is only a function of the dipole moment and
number density of the fluid through the dimensionless
constant

4nppgn®

y.=3 9 (3.37)

A. Asymptotic forms of distribution functions

At low ionic densities (p,~ 0), the large distance be-
havior of the distribution functions can be obtained di-~
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rectly from Eqs. (3.23)-(3.25) at £~0. From Egs.
(3.2), (3.12), and (3.15) we have as k-0

47pe

)~ ~ =3 (3.38a)
25 (k) - ~ 4#:'@:—“ . (3. 38b)
Combining Egs. (3.23) and (3.24) we get
. z© - 3P (-C-. aE-E)
re(k) = — (3.39
(k) = (1= 0,21 - 3p,E*) + 3p pgC=E" )
4wBe 1
- el K7 k-0 (3. 40)
with the aid of Egs. (3.29), (3.33), and 3.36). Here
2
K2 = 2mBoce (3.41)
€
is the classical Debye screening parameter, Fourier

inversion of Eq. (3.40) gives the asymptotic form
(7 =)

2
hyy(7r) - :——z-‘%ﬁie"‘lf . (3.42)

From Egs. (3.24) and 3.39) we can obtain the asymp-
totic form of the ion-dipole distribution function

z5(1 + Pailc‘)

RE(k) = i 3.43
RE(R) 7’1‘_—5‘0—,)- ( )
dniBe(u/q) k
- € By’ k=0 (3.44)
or in 7 space
it )= SEERLE) (30 5) e (3.05)
Similarly from Eq. (3.25) we get
-, t-p c Z° + ¢FeF)
k)= £ ~ 3.46
( ) (1 pc )(1 - 3p¢c ) + 3p¢:pdcgclr ( )
+€K
Ak o B .47
whence from Eqs. (3.17), (3.27), and (3.29)
R2(8)~ - 3B fa gt -
rP(k)~ - 3¢ (n/q.) Pl k-0 (3.48)

or in r space the asymptotic form of the dipole—dipole
correlation function is

. 2

had(wly r, wz)"" -ﬁ(—z{g;)e"D'Du 3y VY>>, (3. 49)

We note the appearance of the expected exponential
screening in all the correlation functions where at low
ionic concentrations the decay length is the classical
Debye value, The effective dipole moment in Eqgs.

(3. 45) and (3. 49) coincides with the earlier result!’

€~1
crf_ /___( )u
u/q _33)
U

= 1= 3p,200)

= p(1+3ph(0)) = (1 + $p,(RA(0) - %2(0)) (3.50)
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and has the interpretation that the intrinsic dipole is re-
placed by the dipole plus its surrounding polarization
density.

B. The Born energy

The Born energy, that is, the change in free energy
due to electrostatic interactions for the transfer of one
ion from vacuum into solution at infinite dilution, can
be obtained from the coupled equations (3.23)-(3.25),
with p,=0. Since the functions f¢, f £, and f* (f=h or
¢), which describe electrostatic interactions, depend
only upon 2= {kil, they can be transformed back into »
space by a one-dimensional Fourier inversion

Flx)= 51; f dk e (k) . (3.51)
The relation between these “one-dimensional” functions
(upper case) and their “three-~dimensional” counterparts
(lower case) follows from Eqs. (3.15) and (3.51): (f
=hor ¢)

FSa(x) =27 fw dr Po(x/v)r S 4(x)

FE) =21 [ drPy(x/ryrf 5(r) (3.52)

FP(x) =27 f”d'er(x/r)rfD(r) ,

where Py(x) =1, Py(x)=x, P,y(x)=3(3x"-1) are Legendre

polynomials; or equivalently

2arfSAr) =- ;—TFC' A(7)
2nrfE(r) = (% - g-r-) FE(y) (3.53)

1d\1 (r
22D, . _ il Tt D,
f 2y = ﬁ(rdr) rj; F2x)dx .
Baxter’s method?! provides uncoupled one dimensional
integral equations for H(x) and C(x).

By definition, the interaction energy of a single ion
with charge (ze) with a dipolar fluid is

Egon = %ffdrdw uy(r, w)g,,(r, w) (3.54a)
47
=~ 3—p,p.z e f drh®(y) , (3. 54b)

Ry

where the second equality follows from Egqs. (2. 3),

(3.4), (3.9), and Table I. From Eq. (3.52) we see that

since r®(7) =0 for »<Ryy=3(R, +R,;), H%(x) is a linear

function of x in the same range and is continuous at
HE(x) =27x f drh®(v)=xHf , x <Ry (3.55)

Ry
and the constant Hf is required in the expression for the
interaction energy

Egorn=~ %paﬂzzer . (3.56)
We find Hf from Eq. (3.24) at p,=0
hE(k) = 25(k) + $p 2" (R)RE(R) (3.57)
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where *(%) is that for a pure dipolar fluid and is
known.?® Baxter’s factorization®! gives for x> S,
=3(R, - Ry)

1 R2
HE(x) == Qfi(x) + 3p, fo Q*(y)HE(x ~ y)dy (3.58)
or using Eq. (3.55) when §y;<x <Ry,
R,
xHE = - QF(x) + 30, HF fo “r-9)Q"(y)dy , (3.59)
where??
$0eR Q" (%) =24£[5a((x/Ry)* ~ 1)
+b((x/Ry) =1)], 0<x<R, (3. 60)
=0 otherwise
1+4§ 1/2 3g (3. 61)

=z 07 P {IoeER

and ¢ is the solution of Eq. (3.35). Baxter’s method
also provides another equation for C(x)

R2
- CE(x) =Qf(x) - 3p, fo Q(9)QE(x +y)dy , x>Sy .

(3.62)
From Egs. (3.2), (3.9), and (3.52)
CE(x)=2nf ar(x/r)r(Ben/7)
x
=2nBel. , x=Ry (3.63)
whence from Eq. (3, 62)
QE(x)=-2mB8e/q"?, x=Ry, (3.64)
using this result in Eq. (3.59) at x =R, gives
HE= 2mfep/q" (3.65)

L7
{;?1z+'3§‘i7z fo dny‘(y)}

and the final expression for the Born energy can be ob-
tained from a coupling constant integration and using
Eq. (3.60)

e
Frorn =j0‘ (EBon/e)de

)
3
Ri2 - 1 fﬁg)

A discussion on the interpretation of this result is given
in Sec. IV.

(3.66a)

(3.66D)

C. The polarization density about an ion

In this section we derive an expression for the polar-
ization density about a single ion of charge (ze) at in-
finite dilution, p,=0. By definition the polarization
density P(»)=P(r)7 is

Plr) =8 [dw gile, 0)(u@) - P

= 3pguh(r) . (3.67)

In the limit »— « this has the form expected from mac-
roscopic electrostatics

Chan, Mitchell, and Ninham:
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=(€=1)2e
P(r)-'ngc(T)_( 477 )(1’2 ’ (3.68)
where we have used Eq. (3.45) with k,=0. From Eq.
(3.53) we see that
1 |1 d
By Lt )loe v dE
hE(r) = me{vH () il (1’)} , (3.69)

where HE(7) is given by Eq. (3.58), and has the asymp-
totic form, cf. Eq. (3.45),

2nBeu
b

+

HE(y) - -~ (3.70)
If we introduce a dimensionless function F(7) by

Hor)= TEL (7 () +1)

+

(3.71)
then it follows from Eqs. (3.55), (3.58), and (3. 65) that,

Re
F(7)=_£ [';‘de‘(S)]F('}’—- S)ds y 7>R12

) , 1 (3.72)
TR R

L)

¥<Ryp .

Since the integral equation for F(7) only relies on earlier
values and the kernel is known [Eg. (3. 60)} F(») can be
generated by a simple trapezoidal rule. The polariza-
tion density can then be written as

P(r) -1 dF(r)
Pmac('r) =T dr

Numerical values of P(7)/Pg,.(7) will be presented in
Sec. IV together with a discussion of the implications of
the results.

+F(7) . (3.173)

D. The potential of mean force between ions

We derive the potential of mean force between two
ions of charge (z;e) and (z,¢) in a dipolar fluid in the
limit of zero ion density (p,=0) and equal size ions and
dipoles, R;=R,=R. lon-dipole and dipole~dipole dis-
tribution functions are calculated in the MSA. However,
a nonlinear or EXP—MSA scheme is used to interpret
the result for the potential of mean force between the
ions. That is, for the ion-ion correlation function, &,
or the potential of mean force, W;; we use

gi;=1+hy; =exp[riF*] (3.74)
or equivalently
W, =W, (3.175)

where h“s" is the ion—ion total correlation function cal-
culated in the MSA. R can be readily shown that when
this nonlinear MSA is used to calculate the interaction
between charged surfaces across a Debye~Hiickel elec-
trolyte (“primitive” model with point ions) the result is
equivalent to the so-called superposition or overlap ap-
proximation in electrical double layer theory. ?

We require the MSA ion-ion correlation function which
can be obtained from the appropriate factorized equation
of Baxter with p,=0.%' This gives
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H () =Q°(7) ~ 3p, foanz(S)HE(v—s)ds , 2R

=2 fmds sh®(s) . (3.76)

We have already seen how to calculate H%(r) in the pre-
ceding section. Differentiation of Eq. (3. 76) followed
by an integration by parts gives

—2mric(r) = L) 0 (OB - 95

R E
-t f [M]HE(r—s)ds , *2R.
3 4 ds
3.77
The unknowns to be determined are Q°(»), Qf(»), and
HE(- ),

The properties of @5(7) for >R can be obtained from
the Baxter equation?!

Re~r
CHN=Qh() -dpq [ QEGQlrs)ds, r20.

Now since Q*(»)=0 for »>R [cf. Eq. (3.60)] and for
r>R

CE(v) =2m'f dslae—z‘L
A s

=27Ben , =R (3.79)

we get
QE(») =2nBen, v=R. (3.80)

The properties of @5(7) for »<R follows from the fac-
torized equation?!

HE(r) =QH(») + 3p, fo " QE(s)H(r~s)ds, »>0. (3.81)

Here H*(v) is that for a pure dipolar fluid and is known
to be a quadratic function for »<R?®
36¢
H'(r) = HY(0 +(—-)'rz r<R.
) (0) ok

From Egs. (3.55), (3.81), and (3.82) we see that Q5(+)
must be also a quadratic function for <R and since
Q%(7) is continuous at »=R it must be of the form

QE(r) =alr* - R?) + bR(r - R) + 2nBen, (3.83)

where the constants ¢ and b can be determined by sub-
stitution into Eq. (3.81). This gives

_ (27Beu/RY)
4=l +12c—4ah

(3.82)

4
x {125(1 +4£) - 6¢ [125 + ﬁ%ﬁ%ﬁ]} (3.84)
p— \2nBey /R?)
“A+128 -4y
x {(1 +8¢&) [12’g + 1-1-%4—;)72%)_:—5] - 7222} . (3.85)

The constant H*(~ 9, required in Eq. (3.77), can be
determined by observing that #%(#) is an odd function of
r and therefore

2953
HE(= =) = = HE(x)
==27lim7» f ds h¥(s)
roown »

==27r f ds (Be,.;)
49,8

»

_ 2wBep

4.
Finally the function Q°(#) required in Eq. (3.77) can be
obtained from the Baxter equation’!

(3.86)

C%r) =Q%(r) - %p,,j(;oQﬁ(s)in(r+s)ds , r>0. (3.87)

Now for >R, Q%(#) is a constant [Eq. (3.64)]. Thus
differentiating Eq, ‘(3. 87) with respect to » and using the
fact that

4 e c
drC (r) ==2arc(»)
=278¢*, >R (3.88)
we get
de(y) _ 2 >
o —Znﬁze , ¥>R. (3.89)

Having determined Q°(»), Q&(7), and H%(~ ) we can
now calculate the electrostatic part of the MSA ion-ion
total correlation k€ using Eq. (3.77). This can be done
most efficiently by making the substitution

2
h(r) = - -fir[l +G(n)], (3.90)

where the dimensionless function G(r) is given by

R
G(r) =3(e - 1){[ ds[2A(s/R)+BIF(r - s5)
0

-(A+B~- 1)F(r)} ,  (3.91)

where F(7) is the solution of Eq. (3.72) and the constants
A, B are related to a, b of Egs. (3.84) and (3.85) by

a A
{ } =(27B8eu/RY) { } .
b B

Following Eq. (3.75) we relate the MSA correlation
functions to the potential of mean force between two
ions of charge (z,¢) and (z,e) by [cf. Eq. (3.9a)]

(3.92)

BW,,(r) = = (B™3(x) + 2,2,k°(¥)) , (3.93)

where h78(y) is the hard sphere total correlation func-
tion in the Percus-~Yevick approximation.

IV. RESULTS AND DISCUSSION

We present numerical results for the Born energy,
the polarization density about an ion, and the ion-ion
potential of mean force for an ion/dipole mixture in the
MSA in the limit of zero ionic density. Implications of
these results on real electrolyte systems as well as con-
straints in developing more realistic model systems will
be discussed,
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A. The Born energy

The Born energy is the electrostatic contribution to
the interaction free energy between an ion of charge ze
and a solvent in which the ionic density is zero. For
an ion/dipole system the statistical mechanical expres-
sion for the Born energy Fy,., iS given by Eqs. (3. 66a)
and 3,54a). For our mean field theory of a hard sphere
ion/dipole mixture Fy,, can be written as [cf. Eq.

(3. 66b)]

_ (ze)? ( 1)
FBorn"‘ Z(EIR1 +Rs) 1_6 ’ (4. 1)
where R, is the ionic hard sphere diameter and
3
RSE (%—i‘;é[i)Rz . (4.2)

Here R, is the dipole hard sphere diameter and the con-
stant £ (0< £<3) is related to the dipole number density,
dipole moment, and the dielectric constant, ¢ of the pure
dipolar fluid [see Eqs. (3.35)-(3.37)]. Consequently R,
is a length which depends only on the properties of the
dipolar fluid. Inthe limit of a large ion (R;/R;~ =) Eq.
(4.1) reduces to the clagsical expression for the Born
energy.

It is interesting to note that an empiri8a1 formula of
the form identical to Eq. (4.1) has been used for some
time to fit experimental solvation energies of ions and
free energies of transferring ions between different
solvents. 2* For aqueous electrolytes, the literature
values of R, for cations lies in the range 0. 64-0.84 A
and for anions 0.1-0.42 A. In the MSA, with dielectric
constant ¢ =80 (£ =0.178) Eq. (4.2) gives R, =0,56 A
for R,=3 A.

The interpretation of Eq. (4.1) in terms of a contin-
uum picture of the solvent ion lead to two differing views
of the arrangement of solvent molecules in the vicinity
of the ion. If one adopts the view that in a continuum
picture, the solvent should have the bulk value of the di-
electric constant up to the surface of the bare ion then
the appearance of the factor (3R, +R,) instead of 3Ry, in
the expression for the Born energy would be interpreted
as “dielectric saturation.” That is, “irrotationally
bound” dipoles in the vicinity of the ion produce a low
value for the dielectric constant and this is parameter-

T Y T T

g6
o |
o

2k

Ry/R;=0 _

80
7.8 // i
A /. e
% o
\ 48
2t

A i i —_—

1 2 3 4
IR,

FIG. 1. The normalized polarization density, P/Py,, [cf.

Eqgs. (4.3) and{(4.4)] about a point ion, R;/R;=0, as a function
of the distance, r from the center oftheion. Curvesarelabeled.
with the dielectric constants of the dipolar solvent.
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3

r/R,
FIG. 2. The normalized polarization density, P/P, about an
ion of the same size as the dipoles, Ry/R,=1, as a function of
the distance, » from the center of the ion. Curves are labeled
with the dielectric constants of the dipolar solvent.

ized by having a shell around the ‘ion of thickness R, with
unit dielectric constant. However, if one recognizes
that the solvent molecules have a finite diameter R, then
the centers of any solvent molecule and the ion cannot
be separated by a distance less than 3(R, +R,). If be-
yond this distance the solvent can be characterized by
-the bulk dielectric constant and then one would expect
iR, to appear in place of R, in the expression for the
Born energy. Now since 0< £<3, R, is always less than
%Rz, therefore, the solvent appears to have bulk dielec-
tric properties at distances from the ion which are
smaller than the separation of closest approach between
an ion and a dipole. Thus the local dielectric constant
appears higher due to the adsorption of dipoles or ex-
cess polarization around the ion. The situation becomes
clearer when we examine the polarization density about
an ion when it can be demonstrated that the concept of a
local dielectric constant becomes extremely tenuous.

B. The polarization density

The orientation order of dipolar solvent molecules
near an ion is contained implicitly in the polarization
density or the induced dipole moment per unit volume
in the vicinity of the ion. We present results for the
polarization density P(r)=P(r)7 about a single ion in the
MSA in the limit of zero ionic concentration. The sta-
tistical mechanical definition of P(y) is

P() =5t [0 g, r, ) @) - ) . (4.3)
In the limit - « this has the form expected from
macroscopic electrostatics
_fe =1\ ze
P(r) = P = (S52) 25 (0.9

Our results are given in terms of the ratio P(¥)/Ppg(7).
The dipolar fluid is chosen to have bulk dielectric con-
stant ¢ equal to 80 (¢ =0.1785), 48 (¢=0.159), and 7.8
{£=0.086)., According to the MSA a hard sphere dipolar
fluid with the density and intrinsic dipole moment of
water (u =1.8 D) has a dielectric constant of 48 at room
temperatures. A dipole moment of 2.62 D is needed to
give a dielectric constant of 80 under the same condi-
tions. The value 7,8 is chosen to facilitate comparison
with available Monte Carlo results on ion/dipole mix-
tures, In Figs. 1 and 2 we plot the ratio P(r)/P,,, (r)
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for ion/dipole size ratio R{/R,=0,1. The polarization
density near the ion oscillates about the macroscopic
-value, in contrast to that predicted by a recent mean
field theory.?® The effects of increasing the ion/dipole
size ratio, R,/R, or lowering the bulk dielectric con-
stant is similar; namely, the peaks in P(7)/Py,.(7) be-
come lower, broader, and occurs at larger distances
from the ion. In one case (¢ =80) the polarization den-
sity has an opposite sign to the macroscopic value within
the first shell, This indicates that due to the strong
alignment of dipoles immediately adjacent to the ion,
solvent molecules which are just away from contact with
the ion will in fact prefer to orientate in the opposite di-
rection. Although this phenomenon cannot be excluded
from physical considerations, there is still a possibility
that it is an artifact of the MSA.

The magnitude of the oscillations in P(7)/P,,.(7) is of
particular relevance to the concept of a “local” dielec-
tric constant near an ion due to “dielectric saturation,”
In electrostatic theory the displacement vector D, the
macroscopic electric field E_,., and macroscopic polar-
ization density P_,. are related by

D=Eg, + 477Pmac=€Emac s (4.5)

where ¢ is the bulk dielectric constant. In a region
where macroscopic theory does not apply, we can still
write

D=E +4nP {4.6)

and then to attempt as usual to define a “local” dielec-
tric constant by

D=¢ E . (4.7)

Specifically for an ion of charge (ze) in a dielectric we
have D=ze/r’, Ep,,=ze/e?’, and P, is given by Eq.
(4.4). Now combining Eqs. (4.5)-(4.7) we find the gen-
eral result

E € P-P
E__ =1_€_1(——m). 4.8

From the results in Figs. 1 and 2 the large value of ¢
(compared to unity) and oscillations P(»)/P,,(+) imply
that the “local” dielectric constant as defined in Eq.
(4.7) is an oscillatory function of distance which can
even become negative. This is quite different from the
normal assumption that ¢, ,, is either a step function

BW;

FIG. 3. The potential of mean force between two univalent
ions of the same size as the dipoles, Ry=R,=R; for ions have
the same signs ( ), opposite signs (- - - - -| ). The function
Be?/er is shown as (— — —) and the dielectric constant of the
dipolar solvent is 80.

2055

FIG. 4. The potential of the mean force between two univalent
ions of the opposite signs and having the same size as thedipoles,
Ri=R;=R, ( ). The function —fe’/er is shown as (— - —)
and the dielectric constant of the dipolar solvent is 48. )

(representing bound solvent molecules) or some smooth-
ly varying (positive) function of distance. While such
models were able to give good {fit to experimental re-
sults, they may be painting an erroneous picture of the
physical situation and as such should be treated with
caution. )

C. The potential of mean force between ions

We calculate the potential of mean force, W, between
two ions of charge (z,¢) and (z,¢) from the MSA correla-
tion function by using a nonlinear or EXP-MSA inter-
pretation in the final step,

BW () = = WA (7) }
== (B"8(x) +2,2,h°())) *

It can be shown that when this scheme is used to calcu-
late the interaction between charged surfaces across a
Debye~Hiickel electrolyte (“primitive” model with point
ions) the result is equivalent to the superposition or
overlap approximation in electrical double layer the-
ory.? The decomposition in Eq. (4.9) is peculiar to
the MSA when all the ions have the same size. The
term #™%(») accounts for the solvent mediated interac-
tion between ions due solely to the hard sphere part of
their potentials (purely size effects). This is calculated
in the Percus-Yevick approximation which is known to
give a good description of hard sphere fluids. Electro-
static interactions (charge-charge, charge—dipole, and
dipole-dipole) are contained in the term n(y). We give
results for W;; for the case of equal size ions and di-
poles (R;=R,=R) at zero ionic concentration, and 2y,
Zy= +1.

(4.9}

The potential of mean force between univalent ions are
shown in Figg, 3-5. The dielectric constants of the
solvent are 80, 48, and 7.8, respectively, obtained by
varying the dipole moment. The reduced density of the
solvent is held constant at pR®=0.8, The continuum
theory result in Figs. 3-5 correspond to 7=300 K and
R=3 A. The hard sphere contribution to the potential
of mean force is less than 5% in all cases, cf. Fig. 3.
The deep minimum in the potential of mean force be-
tween ions of opposite signs W,. at » =2R suggest the
possibility of a relatively stable ion-pairing configura-
tion where the jons are separated by one dipolar solvent
molecule (Figs, 3 and 4). It is also interesting to note
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FIG. 5. The potential of mean force between two univalent ions
of opposite signs and having the same size as the dipoles, Ry
=R,=R, ( ), The function —pe*/er is shown as (— - —)
and the dielectric constant of the dipolar solvent is 7.8. Monte
Carlo results (Ref. 18) are shown as (- - -) with the error bar
indicated by (I).

the minimum at »= R in the potential of mean force be-
tween ions of like sign (Fig. 3). Here, when the dielec-
tric constant of the fluid is high, two like ions in close
proximity are behaving like a doubly charged ion and
the negative change in Born energy (relative to two ions
at infinite separation) can be comparable to the positive
direct unscreened Coulomb repulsion, In Fig. 5 we
compare our results with available Monte Carlo data. 18
It is clear that the large interaction at small separation,
mitigated by the small dielectric constant, cannot be
described properly by the MSA, which after all is only
a linear theory. Nonetheless the MSA should at least
contain the correct trends,

V. THE MSA AT FINITE IONIC CONCENTRATIONS

A natural progression from the work of the previous
section is to consider the case of finite ionic concentra-
tions. Here the thermodynamic quantity of interest is
the mean activity coefficients for the ions from which
we can check, for example, the validity of the extended
Debye-Hiickel theory. Blum!* had expressed the ther-
modynamic properties of an equal size ion/dipole mix-
ture in the MSA in terms of the solution of seven simul-
taneous algebraic equation. Two of those equations ap-
peared with typographical errors in his paper. Denoting
equations in Blum’s paper! by the prefix B, Eq. (B2,24)
should read (in Blum’s notation)

ay =(by/Dy)[1 + by/12 +5bo(b + by/3) + b} /12] (5.1)
and Eq. (B2.25) should read
Kio={(bs/28){1 + ay[3b, + 5(1 - b,/24) ]} . (5.2)

Blum gave an explicit expression for the mean ionic
activity coefficient in the limit of low ionic concentra-
tions. This expression was obtained via the energy
equation. As he had omitted to account for the ionic
concentration dependence of the ion—dipole and dipole—
dipole interaction energy, his expression for the activity
coefficient differed from the Debye—Hiickel limiting law
by a factor of the dielectric constant {Eq. (B5. 6)].

We derive an expression for the activity coefficient
for an equal size ion/dipole mixture by a direct charg-
ing process instead of via the energy equation. Consider
the addition of an extraneous charge of magnitude ¢ to

Chan, Mitchell, and Ninham:

Solvent structure around ions

an ion/dipole mixture. The change in electrostatic free
energy for this process is

2T ln‘y—:jo-qdq {lZp,fdr Bgg(r)uy(r)

+ %fdr AW B (T, )u,fr, w)} (5.3)

2 172
Ly + 9 (P
_Rb°+R (3[)) by .

(-]

Here h,; and h,, describe the distribution of ions and di-
pole about the charge q. The constants b, and b; which
represent contributions to lny from ion-ion and ion-
dipole interactions are implicit functions of ionic con-
centration and can be obtained from Blum’s seven simul-
taneous equations.

We have computed Iny using Eq. (5.3) as well as
Blum’s expression Eq. (B5.5). The results are not
equal since the MSA only gives approximate pair dis-
tribution functions. However in both cases Iny as a
function of ionic concentration failed to exhibit the char-
acteristic turning point. The MSA predicted that Iny is
a monotonic function of ionic concentration but follows
the Debye-Hilckel limiting law as the ionic concentration
tends to zero, The failure of the MSA can be traced to
its inability to handle the large unscreened ion-ion in-
teraction at small separations where it gave large nega-
tive values for the pair distribution functions between
ions of opposite signs,

VI. CONCLUSION

In this paper, we have tried to gain some insight into
the behavior of solvent molecules in the neighborhood of
ions and their role in determining the short range part
of the ion—ion potential of mean force. We have chosen
as our model hard sphere ions in a solvent of hard
sphere dipoles. Solutions are obtained in the MSA.

This is because of its analytical tractability and close
lineage with more familiar mean field theories, We
have been able to recover a familiar empirical correc-
tion to the Born energy, indicate the pitfalls in assum-
ing empirical functional forms to describe dielectric
saturation and to demonstrate deviations from the con-
tinuum description of ion—ion interaction at close sepa- '
rations where because of the discrete nature of the sol-
vent, the solvent molecules can no longer screen the
Coulomb potential properly. Due to its inherent inability
to handle nonlinearities, the fluctuation potential and
image effects the MSA cannot be relied upon to give ac-
curate quantitative description of ion-dipole systems.
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