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The detailed structure of the double layer is investigated using a model fluid consisting of hard spheres with
embedded point charges in a solvent of hard spheres with embedded point dipoles against a hard wall with
smeared-out surface charge. Such a model treats solute and solvent particles on an equal basis, unlike the
primitive model of electrolytes. The statistical mechanics is solved using the mean spherical approximation
for all interactions. This limits the validity of any results to the regime of low ionic concentrations, where, in
this approximation, the model fluid has the correct limiting behavior for bulk thermodynamic quantities. In
this regime, simple analytic results for the surface properties are given, which are correct to order (kR). In
particular, the surface potential has the classical Stern layer form, with solvent structuring responsible for the
inner layer capacitance. This result is the first derivation, as opposed to postulation, of Stern layer behavior.
In addition, the polarization density oscillates about the continuum theory result for 3-4 molecular

diameters away from the surface. Such behavior shows the difficulty in defining a local dielectric constant

close to the surface.

I. INTRODUCTION

Theoretical studies of the electrical double layer be-
gan some seventy years ago when Gouy' and Chapman®
constructed their mean field theory based on the Poisson—
Boltzmann equation. The Gouy-Chapman theory, which
is based on the “primitive” model electrolyte, has served
as an extremely useful conceptual framework, In many
instances, it provided good quantitative descriptions of
the behavior of colloidal systems that are due to elec-
trostatic interactions. However, in the “primitive”
model, the solvent is only regarded as a dielectric con-
tinuum, consequently it has been necessary in some
instances to ' modify the Gouy—Chapman picture to include
solvent structure effects. The earliest and perhaps
the most significant modification is due to Stern® who
suggested that there should be a thin region adjacent to
the charged surface, possibly with different dielectric
properties from the bulk solution, from which all ions
are excluded. Thus in one phenomenological model
Stern was able to subsume effects due to ion and solvent
size as well as solvent structure into one parameter—
the inner layer capacitance (per unit area) €, /4nd, where
€, is the dielectric constant of this Stern layer and 4 is
its thickness. Subsequent modifications to the Stern
picture include a position dependent and electric field
dependent (dielectric saturation) dielectric constant for
the inner region of the double layer. While such at-
tempts were able to account for experimental (thermo-
dynamic) observations with not unphysical choices of
parameters in the models, nevertheless, they still rely
on the “primitive” model and consequently we cannot
be certain that these models actually give an accurate
description of the detailed structure of the double layer.

The only unambiguous method of investigating the
structure of ions and solvents near charged surfaces is
to employ a “civilized” model in which both the ions
and the solvent are treated on an equalbasis—as dis-
crete particles.* Thus any structuring of the solvent
that gives rise to distance-dependent dielectric con-
stants or dielectric saturation effects should emerge
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as a natural consequence of calculations based on such
models, Due to the inherent complexities of the
“civilized” model, we can only deal with model sol-~
vents and ions that are still some way from the ultimate
problem of interest—aqueous electrolytes. One ap-
proach that enjoyed some success in fitting experimen-
tal data is to treat only the monolayer of solvent adja-
cent to the electrode as discrete molecules, The elec-
trolyte located beyond this first layer is modelled as a
continuum according to the Gouy—Chapman theory. For
a recent review of the various models based on this
approach see Ref, 5.

In this paper we consider a model electralyte solution
comprised of a mixture of ions of equal size, modeled
as hard spheres plus embedded point charges in a dipolar
solvent, modeled as hard spheres (of different size to
those of the ions) plus embedded permanent point di-
poles. We study the structure of this model electrolyte
at a uniformly charged planar surface in the mean
spherical approximation (MSA). This approximation is
a linear theory, analogous to the Debye~Hiickel theory,
extended to handle finite molecular size in a consistent
fashion. A pedagogical but heuristic discussion of this
approximation for the non liquid state specialists is giv-
en in an earlier paper.® In this model the concept of an
inner layer region emerges as a natural consequence of
the perturbation of the electrolyte structyre by the
charged surface and the thermodynamic properties can
be easily interpreted in terms of the classical Stern
picture, Furthermore, it is not difficult to demonstrate
that a machine simulation of this relatively simple
problem will at least for the time being require an ex-
horbitant amount of computer time; consequently any
approximate analytic solution will be useful.

In view of the complicated nature of the solution,
which relies heavily on earlier work, the layout of this
paper will be slightly unorthodox. In Sec. O, we give
a detailed description of the model and the limitations of
our approximation. The results of our calculations will
be given in Sec. III, where a comparison with the clas-
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sical Stern model will be made. While this is the most
important section of this paper, it will stand independent
of the detailed workings in Sec. IV or any prior knowl-
edge of the MSA for ion-dipole mixtures. The paper
closes with a short conclusion.

{l. THE MODEL

The electrolyte is modeled as a mixture of ions and
dipolar molecules. The dielectric constant is determined
by specifying the molecular properties of the dipolar
solvent,

The ionic solutes are taken to be hard spheres of equal
diameter Ry, number densities p,, p,, *°*, valencies
2y, 25, + - which satisfy the bulk electroneutrality con-
dition .

Z‘:MZFO .

The solvent is modeled as a fluid of hard spheres of
number density p,, diameter R,, with embedded per-
manent point dipole of dipole moment y. The inter-
molecular potentials have the form:

(2.1)

ion-ion,
uij(r) =%, r<Ry
2
2;2.€
= _‘_'rj__ ? r> Rl ’ (202)
ion-dipole,
Ug(r, W)=, 7<R1p=3(Ry +Ry)
_=z;eplw o
_=2 % ) , >Ry, 2.3)
dipole-dipole,
Ugg(Wy, Ty w2)=°° ’ 7 <Ry
2
- uh
= _—‘175_2 ’ r> Rz ’ (2°4)
and
Dy, = b(wy) - 322 -1). L(w,) , @.5)

where ¢ is the protonic charge and I the 3% 3 unit tensor.
B (w) is a unit vector in the direction of the dipole moment
whose orientation is specified by the angular variable
w=(0, $) with [ dw =47, The subscripts i, j, &, - -+ will
hereafter be reserved for ionic quantities and the sub-
script d for dipoles.

It is obvious that this model electrolyte system is
still rather unsophisticated. Effects such as polariza-
tion of the ions and solvents have been omitted alto-
gether. However, we believe we have the basic ingre-
dients to take the first step away from the “primitive”
model electrolyte.

The structure of this ion—dipole mixture at a uniformly
charged planar surface is obtained by first considering
the structure about a single spherical colloidal particle
of diameter Ry(> R,) and valence z,. The structure ata
planar surface is then recovered by taking the limit R,
—~o  zo—~=, but at constant surface charge density o
=zge/mR%. This limit is only taken when it is “safe” to
do so without causing any divergences. The interaction
potentials between the surface and the ions and dipoles
are:
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surface~ion,
Uyg(r, w) = , 7<Ryg=3(Ry +Ry)

2
z,zq€
= ’ ¥> Ry ,

” (2.6)
surface-dipole,
Upg(T, W)= , 7<Ry=32(Ry + Ro)
S Thk@E g, (2.7

with the subscript o referring to quantities associated
with the surface. Note that for potentials of the form
given by Eqs. (2.6) and (2.7), the surface or wall is
assumed to have unit dielectric constant. Since the use
of the MSA closure for ¢, (¥) and c,,(r) precludes the
treatment of image interactions,  this choice of the value
of the wall dielectric constant is consistent with the
capabilities of the MSA,

The main statistical mechanical problem is to evaluate
the density distribution of ionic species p,;(r)=p,;[1
+h,;(r)] and dipolar species p,q(r, w)=p,[1 +h,(T, w)]
around the colloidal particle. Here hy;(¥) is the sur-
face (or colloidal particle)—ion indirect correlation
function at a distance r from the center of the colloidal
particle and k,,(r, @) is the indirect correlation func-
tion between the surface and a dipole at position r and
orientation w, All thermodynamic quantities associated
with the surface can be written in terms of 4, ,(r) and
hod(r’ w)'

Il. RESULTS

As stated in Sec. 1, the MSA treatment of an ion-
dipole mixture at a charged surface is only a linear
theory. Even so, the final results, though analytic, are
still intractable. For example, in the general expres-
sion for the surface potential, Eq. (4.36), which is valid
for all ionic concentrations and ion/dipole size ratios,
the physical content is not immediately apparent. How-
ever, for the interesting limit of a dilute electrolyte,
that is, when kR; <« 1 where k! is the Debye screening
length, simple and physically perspicuous results can be
extracted. Before we present results in this regime, it
is useful to briefly recapitulate the classical Debye-
Hiickel result for the purpose of comparison with and in-
terpretation of our new results.

A. Debye-Hiickel theory with Stern correction

Consider the classical Stern picture in Fig. 1 where
a Stern layer of thickness 4 and dielectric constant ¢,
has been set up adjacent to a planar surface with uniform
surface charge density ¢ and surface potential y,. The
ionic solution is confined in the region x> 0, where the
dielectric constant is €. In the Debye~Hiickel theory,
the relation between the surface charge o and surface
potential ¥, is

<1+~§- Kd) .
€

The adjustable parameter in this model is the capacitance
(per unit area) C, of the Stern layer given by

470

1/’o=';K— 3.1
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x=0

FIG. 1. Classical Stern model] of the double layer.

C,=¢,/4nd . (3.2)

The capacitance of the diffuse part of the double layer is
€K

Cyq1 = e 3.3)

Another macroscopic quantity that contains information
about the structure of solvents in the double layer is the
polarization density or dipole moment per unit volume
P(x). This is a measure of the degree of polarization
or orientation of the solvent molecules due to the pres-
ence of the charged surface. In the macroscopic contin-
uum theory P.,.(x) is given by

put=(5) {552 ()
=(€—€:—1-)cre"‘", x20 (3.4)
since the potential profile is given by
z/»(x)—‘-IE e™, «x=0. (3.5)

Having stated these familiar results, we can examine
the corresponding quantities for the ion~dipole mixture
at a charged surface.

B. MSA results for ion—dipole mixtures

The analytic results given in this section are derived
in Sec. IV. Their validity is limited to low electrolyte
concentrations i.e., kR, <« 1. All expressions are cor-
rect to order (kR,) and terms proportional to (xR, or
higher powers have been neglected,

For the bulk ion-dipole mixture, the dielectric con-
stant will in general be a function of the properties of
the dipoles and also of the ionic concentration. It turns
out however, that to order kR,;, the dielectric constant
is the same as that of the pure dipolar fluid®®® and its
value is given by

€=q(2t)/q(- ¢) , 3.6)
where
_(1 +2x)2
=TT 3.7

and the parameter ¢ (0 < £<3) is the solution of the equa-
tion
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(1+4¢)

_ (1-2¢p
q(z€) ‘(I(- €)= (1 _25)4 -

1+¢)*

Consequently the Debye screening parameter retains
its normal definition

k2=4me? Y p,23 /€kT .
]

_ 4mpgu®
T

(3.8)

(3.9)

1. Surface charge vs surface potential

An important quantity in electrical double layer prob-
lems is the relationship between the surface charge and
surface potential. The statistical mechanical definition
of the surface potential of a spherical colloidal particle
of diameter R, is

bo= (RO/Z) fdr'
Bog(r’, @) (W) -7

1
Idr ,[dw T I’ =IRrIZ

where we have chosen the origin of the coordinate system
to be at the center of the colloidal particle. The signifi-
cance of the three terms in Eq. (3. 10) is as follows. The
first term is the direct Coulomb potential due to the colloi-
dal particle, The second term accounts for the potential due
to the charge distribution about the colloidal particle.
The expression for the charge density 3 ;p,z, eh, () fol-
lows from the definition of the local ionic concentration,
viz. p,[1+k,,(r)] and the bulk electroneutrality condition
Eq. (2.1). Contributions to the surface potential from
the dipolar species is given by the third term on the
right-hand side of Eq. (3.10). Although the number
density of dipoles at position r with orientation w is
pal1+hyy(r, w)], the constant term vanishes because of
the angular integration,

24PyZ ehoylr) (r")
|r’—zR0r|

(3.10)

We have evaluated the necessary integrals and then
passed to the limit Ry~ to obtain the surface potential
Py at a flat surface. The result, correct to order xR,

and kR, , is
470 -1 R
=—|1 1 =&
Yo= o [ +2 Rl(* x Rl)]
The dimensionless constant XA is only a function of the
properties of the pure dipolar fluid and its value is given
by

(148
x_(hzg)A

or, more simply, in terms of the dielectric constant ¢
22(1 +2)t =16¢ (3.13)

[cf. Egs. (3.6)~(3.8)]. This constant is related to the
scale length R, encountered earlier in the MSA expres-
sion for the Born energy of an ion in a dipolar solvent®;

(3.14)

To begin our discussion of the physical significance
of Eq. (3.11) and its relation to classical theory we
note that in the limit of point ions and dipoles (R, R,
—0) we recover the Debye-Hiickel result without the
Stern correction [cf. Eq. (3.1) with d=0]. We can also
recover the “primitive” model result by letting R, ~0
to get

(3.11)

(3.12)

2R,=R,/A<R, .
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47

0= ?’2- (1 +%KR1)

P (3.15)

(cf. Eq. (3.1) with €,=¢). We recognize that this is the
Debye-Hiickel result with a modification to exclude ionic
centers from a layer one ionic radius (R,) thick adjacent
to the surface. To lowest order in kR,, this is the cor-
rection to the Debye—-Hiickel result due to finite ion size.
To the same order in ionic concentration this resultalso
coincides with the MSA expression for a “primitive”
model electrolyte at a charged surface.'® However, for
an ion-dipole mixture of finite particle sizes Eq. (3.11)
indicates that in addition to the capacitance due to the
diffuse part of the electrical double layer, Eq. (3.3),
there are separate contributions to the total double

layer capacitance from the ions:

Cion =€/27R, (3.16)
and from the dipolar solvent:
Csolv = (€/€ - 1)(K/21}'R2) . (3. 17)

The contribution corresponding to C,,,, Will give an ad-
ditional term to the entropy of the double layer due to
solvent structuring, However, for small values of kR,
this is not a very large effect.

We now attempt to relate our surface charge-surface
potential relationship derived for an ion-dipole mixture
at a charged surface to the Stern result.

For simplicity we consider the special case of equal
size ions and dipoles and so set R; =R, =R in Eq. (3.11).
On comparing this with the Stern result in Eq. (3.1),
we can make the formal identification

d_R 1 €_1>
€, 2\ x /"

(3.18)

Now, we have two possible ways of identifying the thick-

ness d and dielectric constant ¢, of the effective Stern
layer of the ion-dipole mixture.

(a) I we choose the thickness d of the Stern layer to be
a molecular radius (see Fig. 2) i.e., d=3R, then we
would expect €, =1, since the centers of all molecules
(ions and dipoles) are excluded from the region with
iR of the surface. However, Eq. (3.18) gives, for
d=3R, a dielectric constant

x=0

FIG. 2. Ion-dipole model of the surface.
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x/R

FIG. 3. Polarization density at the surface. R{=R,=3 i,
pgR*=0.8, T=298 K; ¢ =80, Electrolyte concentration=0.01M,

. €
ST Tie-D

For € =80, Eqs. (2.13) and (3.19) give €¢,=2.6. Thus,
in this interpretation, the effect of solvent structure in
the region x > 0 is to increase the dielectric constant of
the Stern layer above unity.

(3.19)

(b) If, on the other hand, we choose to fix the dielec-
tric constant of the Stern layer to be unity, then Eq.
(3. 18) gives the thickness of the Stern layer to be

—~ (3.20)
where the last inequality follows from Eqgs. (3.12) and
(3.13). In other words, as a result of solvent structure
the region of unit dielectric constant from which all ions
and dipoles are excluded appears thinner than the molec-
ular radius.

As we shall see in the next section, both interpreta-
tions arise from the attempt to model the complex di-
electric response of a structured region of ions and
solvent molecules adjacent to the surface by an equivalent
system consisting of regions of uniform dielectric con-
stant. (In this respect, the Stern picture is analogous to
the Gibbs dividing surface construction in adsorption
problems.) In particular, a region of high local dielec-
tric constant near x =0 could give rise to interpretations
(a) and (b). To examine more closely the structure at
the interface, we now investigate the polarization den-
sity.

2. Polarization density

The polarization density or dipole moment per unit
volume is a measure of the local dielectric response or
orientational order of the dipolar solvent in an applied
field. The statistical mechanical definition of the po-
larization density around the spherical colloidal par-
ticle P(#) = P(»)r is

PO =25 [ dwholr, @) (@) ) . (3.21)
The polarization density P(x) at a planar charged sur-
face is obtained by taking the limit of an infinitely large
colloidal particle, Ry~«~. In Fig. 3 we plot the ratio
P(x)/Ppq.(x) [see Eq. (3.4)] as a function of the distance
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x from the charged surface. Here P(x) is calculated to
lowest order in «R. Within 3~4 molecular diameters
from the surface there are significant deviations in
P(x) from the macroscopic result. Although the magni-
tude of the oscillations may be overestimated due to the
linear nature of the MSA, the oscillatory nature of
P(x)/Ppa.(x) indicates the strong cooperative alignment
of dipolar molecules that are located near the surface.
This oscillatory form of P(x)/Ppa.(x), which can only
come from a discrete (rather than continuum) treat-
ment of the solvent, is similar to the polarization den~
sity around a single ion in a dipolar solvent.® In the
regime kR << 1, the form of P(x) is insensitive to the
electrolyte concentration, since it is determined mainly
by the properties of the dipolar fluid. Effects of the
electrolyte can only be important at distances ~™!
from the surface (i.e., for low concentrations, at dis-
tances much greater than R).

For the result in Fig. 3, the total polarization
[3P(x)dx is in excess of that given by macroscopic
theory. That is, a discrete treatment of the solvent
allows for the possibility of a larger depolarizing field
due to the dipoles. Consequently, if we were to use
some sort of “local” dielectric constant to characterize
the dielectric response of the solvent near the surface,
this local dielectric constant would be larger than the
bulk value.

The result in Fig. 3 also shows the difficulties in
justifying the use of a position-dependent local dielectric
constant. Since our model, which has no such local di-
electric constant, still reproduces the Stern layer form
for the ¥, — o relationship, the ability to mimic thermo-
dynamic properties of the surface is, by itself, no justi-
fication for a particular choice of the form of a local di-
electric constant.

Finally we note that to order xR the asymptotic form
of P(x) far from the surface, kx> 1, is the same as the
macroscopic value P, (x), cf. Eq. (3.4). This is con-
sistent with the observation that to order xR the dielec-
tric constant of the ion-dipole mixture is the same as
that for the pure dipolar fluid.

3. Charge density

In the MSA the number density of ions of species i
(valence z;) near the charged surface has the form

p4(x) =™ (x) +2,0°(x) -

The linear decomposition into a hard sphere part (hs)

3.22)

and charge part (C) proportional to the valence is a direct

consequence of the linearity of the MSA. The hard
sphere contribution p™(x) is the Percus-Yevick density
profile of a hard sphere solute of diameter R;, density
(Z:p;) in a hard sphere solvent of diameter R,, density
Pz, against a hard wall. At typical liquid solvent densi-
ties (o, R3~0.8), p™(x) will exhibit the characteristic
oscillatory behavior. However, the local charge density
212 1€p(x) is independent of p™(x) in the MSA because of
the bulk electroneutrality condition, Eq. (2.1), and the
linear form of Eq. (8.22). In fact, for low electrolyte
concentrations, kR, << 1, the local charge density [pro-
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portional to p€(x)] is very similar to the Debye—Hiickel
result.

IV. METHOD OF SOLUTION

In this section, we give details of the solutions of an
ion-dipole mixture against a charged wall in the MSA.
The method of solution is an adaptation of Wertheim’s
solution for the MSA dipolar fluid!! and the Baxter fac-
torization method of the Ornstein-Zernike (OZ) equa-
tion which had been applied previously to the bulk ion-
dipole mixture.® As the present work draws heavily on
the bulk ion-dipole problem, the reader will be assumed
to have a fair degree of familiarity with the content and
notation in Ref. 6 (hereafter referred to as I).

The bulk ion-dipole problem begins with the OZ equa-
tion

has(Ly 2)=cas(l, 2)+ 2 B [ coy(1, 3) (3, 2) a3,
4.1)

where a, 8, 7, --- denote both ionic (i, j, &, ---) and
dipolar species (d) and the variables 1, 2, 3, - -+ denote
both spatial and angular coordinates. In the MSA, Eq.
(4.1) is supplemented by the closure conditions [see
Egs. (2.2)-(2.5)]

has(l, 2)==1, |ry=13| <Ry=3(R, +Rs) (4.2)

CmB(ls 2) = _uaB(I, 2)/kT ’ (4. 3)

The major step in Wertheim’s method as applied to this
problem is to recognize that Eqs. (4.1)~(4.3) have solu-
tions for # and ¢ that can be written as linear combina-
tions of the angular functions 1, E,=fi(w,) T, Ay,

= (w;) « B {(w,) and Dy, = i (w,) + (BFF - 1) . k(W) with coef-
ficients that are only functions of v, =!r, ~r,!, This
decomposition enables Eq. (4.1) to be written as a set
of OZ-like equations whose correlation functions only
depend on the distance between the centers of the mole-
cules and not their orientations. The Baxter method can
then be used on this latter set of equations (see I for de-
tails).

|ry =1 > Rys -

Turning now to the problem of an ion-dipole mixture
at a charged wall, the quantities we want are the ion-
wall, k,(r), and dipole-wall, h,,(w, r), indirect cor-
relation functions. The QOZ equations for these two cor-
relation functions can be written in the general form

Raolls 2)=Cat, 2+ 2 B [ casll, )@, 208,
(4.4)

where summation is over all ionic and dipolar species in
the fluid mixture. The MSA closure on %,, and ¢, is
[see Egs. (2.6) and (2.7)]

han(l, 2)=-1 ’ lrl_r2‘<Rao (4-5)

cmo(l, 2) = —uaa(]-; 2)/kT ’ (4. 6)

The bulk direct correlation functions c,; are assumed

to be known from the bulk problem. We proceed, as in
the bulk problem, with the decomposition {see Eq. (I 3.9),
equations from Ref. 6 are prefixed by I] (f=% or ¢)

|r1-12]> Rq, .

J. Chem. Phys., Vol. 73, No. 6, 15 September 1980

Downloaded 17 Jul 2006 to 128.250.49.72. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2954

FeolP=f0r) +2,20 Fio(r) , 4.7
faow, ©) = F300r) - 2o fRo(7) Ey . 4.8)

As before, the functions f}3(r) and f33(») are the Percus-
Yevick hard sphere correlation functions of a two com-
ponent hard sphere fluid of densities (J ,p;) and p, and
diameters R, and R, at a hard wall, In the MSA these
functions describe the density profile at the surface.
This unsatisfactory feature of the MSA is due to its fail-
ure to properly account for the angle averaged potential
and image effects, which also affect the density profiles,
The electrostatic properties of the interface are deter-
mined solely by f$, and fZ which we shall study in detail.

We can now take the Fourier transform of Eq. (4.4).
Using the bulk electroneutrality condition, we can un-
couple the “electrostatic” members of the correlation

functions. These are
H5o(k) = 5o(R) +p1 C°(R) 5o (R) = po e (R) RE(E) ,  (4.9)
Figa(k) = C30(k) +p1 E31(R) B0 (k) + 02 € (R) (k) ,  (4.10)
where
pIEZ’Jp,zi, (4.11)
pzsgpd, (4.12)
ZE =2 =2F, (4.13)

and &°, ¢F and ¢* are known direct correlation functions
from the bulk problem.® The Fourier transforms of the
functions in Eqs. (4.9) and (4. 10) are defined in Egs.
(13.15)=(13.17). If we make the following definitions,

¢y =¢t°
C1a=Ch
Cy1=—Cg (4.14)
Cpp=c’
]zmszo (f=horc)
f0==71%
Egs. (4.9) and (4. 10) can be written in the standard
form
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2
ol =Caol®)+ 2 paZas®ln(®)  (@=1,2)  (4.15)
which is suitable for the Baxter factorization method.
?axter’s method involves finding the auxiliary functions
d40(R) that satisfy

2

o) =Tgk) + T~ K) = 2 Do Tpa(= 1) () (4.16)
with the appropriate analytic properties.!? The func-
tions gg, are known from the bulk problem, The solutions
to Eq. (4.15) can then be written as

2 -3
Hao('r) =Qwo(y) + BZ; Pg fs ds QaB(S)HBa(r - S) ’ (4 17)

= B

where

1 (° -
Qmo(7)=§; J‘ e an(k)dk

Sas=2(Ry = Ry) . (4.18)

The functions H,,(#) are one~dimensional Fourier inver-
sions of 71,,0(13) and are related to their three-dimensional
counterparts s, (7) by Eq. (I3.52). The finctions @,
are known from the bulk problem.

This completes the formal solution to the problem of
an ion-dipole mixture at a charged surface. However,
in order to derive the results given in Sec. III we re-
quire solutions to the bulk ion-dipole problem to order
KRq.

A. Bulk ion-dipole mixture

For completeness, we shall briefly recapitulate the
results for the bulk ion-dipole mixture, &°

The auxiliary functions @,z have the following form:
Qu(r)=—Ay, >Ry
=(py Ay Hyy — pp Hay Mig Wy = Ry) - Ay,

0<¥<R, (4.19a)
Qa1 () == Ay
=(p1As Hiy +Hpy a)(r = Ryp) — Ay
Sz1 <7< Ry (4.19b)

Qu(r)=0, 7r>Ry
1 24 24
= 5(91421321 + Eé' 1‘4(12)) (- R%,) + [-321(01 -p1An R+ ‘R‘gé (Ryp MiY — M3 :l (r=Ry), S12<71<Ry
(4.19¢)
sz('r) =0, 7r>R,
171 24¢ 2 (0) 24¢ 0<y< 4.19d)
=2 | == a3 —p1AgiHyy | (0 — RE) +|py Hay M +0y Agy Hyy Rip = —335 (Ry @y = 5) |(¥ = R,) Y<R, 4.
2 |oaR; pz Ry
[
where p, and p, are given by Eqs. (4.11) and (4.12) ©
P1 810 b, ATE & ya ’ Hyy =27 f drhg(r) , (4.21)
0

Hy=2n f dr vhy () (4. 20)
3

the moments M} are defined by
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Mg = fR"B (Ras = 7)" Qus(r) dr (4.22)
Sas
and
ay=1-p MY, (4. 23)
ay=1=-p, M , (4.24)
s=Ry—-pp MY . (4.25)

All the constants in Eq. (4.19) (A, Ay, ay, a5, Hyy,
Hy, s, &, M{Q, M, and M{}’) can be found by solving
the following eleven simultaneous algebraic equations:

dnpe® =p, A}y +p, A%y , (4.26a)
4nBep =Ay ap - py Ay MY, (4.26Db)
4nBopu® =af +py 0, Mi32 - q(- §) , (4.26¢)

1-a;=-p1 Ay Ry +2p1 R} [ pp Hpy MY —py Ay Hyyl

(4.26d)
Hy (s +51zaz]=—%Ag1 +p Hy MY, (4.26e)
M) = - Ay Ry~ 2R}(py Ay Hyy +Hyy a5) (4. 261)
Hyyay=—3Aq +p; Hag (Mi3 + 51, MDY, (4.26g)
3RZH. 1
R {al—plAu [(55%) +sa]} » 2w
-3R3H, [,
My = (1—2_5‘5%1 {3ay(£-2)
+01An [TR, +35,(E ~ 2)]}, (4.26i)
1 2
L e
X {Mé?) +A21 [Rz (l;—g') +S1z]} y (4. 26j)
s 1+¢ 30102 REH.
R, (-20F * (1-zEF
x [(2_;5> o, 4, (%Rz+22;£ Sla}] ) (4. 26Kk)

To order (kR,) or equivalently to order p}/? we have the
following solutions:

ay=qi'%, 4.27a)

€ -1)xkR
p1Ay =k [14- 7__17_2_2( 4q) ] s (4.270)
ay=1+kR, , (4.27c)
4nBe YKR
Agy = - ZI?‘I: (1‘ 4q+i;'z) ; (4.27d)
o _ = TBeuvR
Mip —_—qwrj ) (4.27)
-4
Mg - 0 (12 MR @.270)
+ Rz
where
= Ry
Y= Ry <) +S5+4E) ’ (4.28)
q-rEq(zE) H (4. 29)

and £ is the solution of Eq. (3.8).

With these results from the bulk fluid, we can return
to the problem of an ion-dipole mixture at a charged
surface.

B. Surface potential

Using the definition given by Eq. (3.10), the surface
potential ¥, can be written as

1
Yo=22zq¢ (R_ +p1Hyg+py g" Hzo) s (4.30)
o
where
Hy=2n | drrkg(r) 4.31)
0
H20‘=‘217 J‘ d’rhgo(‘r) . (4.32)
0

From the behavior of Eq. (4.16) around %2=0 and from
Eq. (4.17), we deduce that

Qulr)=-Ay,, 7>Ry
=[Py Ay Hig=p2 Hag M3 1(r = Ryg) = Ay
S10<7r< Ry (4.33a)
Qeo(r)==Ag , 7> Ry

= [Hzo(l =Pz M(zg)) +p1 Az Hlo] (r = Ryg) = Agg

S20<7< Rap (4.33b)

with
A=Ay (4.34a)
Agg=Ag (4.34Db)

and the constants Hy, and H,, are the solutions of

~Hyo(1 - py Ay Sy~ py MiY)

+Hao pa(M{3) = S0 M{Y) =34y, , (4.35a)
Hyq Dl(Még) +5104z1)
+Hyo[Rag = pa (M55 = S0 MER")] =34, . (4.35b)

In the planar limit Ry—~®, zy~=, ¢ =zye/1R%, we find
4n0
Py = (7) {elay(ay —2p1 Ay Ry) =0y py Mg (M5 + 3R, Ay)]

—upa(pr Ay Mé?) +Ap 01&{011411 ap +01P2 Az M§g)}-1
(4.36)

which is the general expression for the surface potential,
valid for all ionic concentrations and ion/dipole size
ratios.

Using the solution given by Eq. (4.27) we obtain the
expression for the surface potential y,, correct to
O(kR,), which is given by Eq. (3.11).

- C. Polarization and charge density

In terms of the distribution functions defined in Eq.

(4. 14) the charge density can be expressed as
p°H) =2 b,z ehy,(r) =py ez hyolr) (4.37)
i

while the polarization density becomes [cf. Eq. (3.21)]
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Po)=2 j AW hg(r, ) [k (@) £]

(4.38)

The functions kyo(r) =hSe(r) and hyy(r) =hEy(r) can be ob-
tained by differentiating Eq. (4.17) [cf. Eq. (13.52)].
If we define

= =Pzl 2ghy(r) .

H1(x')'=_20h10(R10+xl) 3 (4.39)

, o * Rz o R
Hy(x')=-Ay <;) -p1An L H(y)dy +p, L Qi2(y) Hylx — y)dy +p, j Quly) Hy(x' — v)ady
12 0

x! R R
Ha(x)=—A21<g)—przl L Hy(y)dy +p, fo " Q2L(9) Halx ~ 9) dy + 0y J’ Q) Hule’ ~y)dy

e

where
ng(”') =Qu("’) +44,,

S;;<r<Ry; }
=0,

>R, (4.45)

At this stage, we take R, =R, =R for simplicity, Care-
ful analysis shows that, to lowest order in xR, Eqs.
(4.43) and (4.44) then become

o. £
Hy(x)=-Ay 5 ~P14u J; Hy(y)dy (4.46)
and
o x
Ha(x)=—A21'e’ —PxA21L Hy(y)dy
R 0 ’
+Pg fo Qz2(y) Hylx = y)dy . (4.47)
The solution of Eq. (4.46) is
_=KO
H‘(x)__ple e, (4.48)

i.e., the Debye-Hiickel result [using Eqs. (4.37) and
(4.39)]. This leads to

O axx R 0
Hz(x)=-Az1; € +py fo Qa(y)Hy(x - y)ay , (4.49)

where the only terms to be retained to this order in
Q2:(y) are

4
Q)= et (P R = s (R =) (=R
Equation (4.49) can be solved numerically by Perram’s
method®® to give Fig. 3, or it can be solved analytically
by Laplace transform methods. Such analytic investi-
gation shows that the inverse decay length of the charge
density from the surface has the form k{1 + a(kR)*] just
as is the case for the MSA bulk primitive model electro-
lyte. Similarly, corrections to the asymptotic forms of
the charge and polarization densities have no terms of
order kR.

(4.50)

V. CONCLUSION

This paper is the first attempt to derive an expres-
sion for the Stern layer capacitance and other surface

S. L. Carnie and D. Y. C. Chan: Structure of electrolytes at charged surfaces

Hy(x) =29 hpg(Roo + %) (4.40)
where

¥=Ryg+x' =Rpg+x (4.41)
so that

x'=x+8, , (4.42)

we can take the planar limit Ry—~=, z,—=, with 6=z4e/
TRE constant to get

(4.43)

(4.44)
Sa1

I

properties of the electrical double layer from a well-
defined model fluid that treats the ions and solvents as
discrete entities throughout the entire double layer,
Only for low ionic concentrations can simple analytic
expressions be found. For higher concentrations, the
complex sets of equations given in Sec, IV need to be
solved numerically. However, as a function of ionic
concentration this model does nof exhibit the character-
istic turning point in the ionic activity coefficients,® and
so is suitable for use only at low concentrations, where
it gives the correct limiting-law behavior.

The other major limitation of our calculation is the
use of the MSA for the dipolar fluid, Simulations!* have
shown this to be not very accurate even for relatively
low dielectric constant polar fluids. More complex clo-
sures'®™ 7 analogous to the Poisson—Boltzmann theory
can be used for this problem, but an analytic solution
will no longer be possible so we feel the results of Sec.

III are still of value.

The present model (hard sphere ion—dipole mixture)
is still too simple to mimic a real electrolyte; short
range interactions (e.g., dispersion forces, image
forces, quadrupolar effects, hydrogen bonding, and
molecular polarizability) have not been included. Such
effects, parametrized in terms of specific ionic adsorp-
tion and dipolar adsorption/orientation at the surface,
can be added to the present model. These refinements
will be the subject of a later publication.

The most important conclusion is that even though the
Stern layer model of double layer capacitance is un-
doubtedly successful, it can be produced in a model sole-
ly from solvent structure rather than from dielectric
saturation or hydrogen-bonding effects. Also, the idea
of a position-dependent local dielectric constant is a
tenuous one and the ability of such theories to model
surface thermodynamic properties does not give validity
to the microscopic picture envisaged in these theories.
The Stern layer model is a useful parametrization of
the surface properties of the double layer, but is actual-
ly an attempt to model a complex double layer structure
by discrete regions of uniform dielectric constant,
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