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The first passage time method is used to calculate the mean association time of  a pair of  secondary- 
minimum flocculated colloidal particles. This approach circumvents the need to solve the Smoluchowski 
diffusion equation, without invoking any additional approximations. It is shown that the pair 
association time is a very sensitive probe of  the interaction between the particles. A comparison with 
measured association times of  secondary-minimum flocculated monodisperse polystyrene spheres 
reveals large discrepancies between experiment and theoretical predictions based on exact hydrodynamics 
and the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential for colloidal interactions. © 1984 
Academic Press, Inc. 

INTRODUCTION 

Under suitably chosen conditions, the in- 
teraction potential between a pair of elec- 
trostatically stabilized colloidal particles can 
develop a significant (~> 1 k T )  secondary min- 
imum, while maintaining a large (~>lkT) 
primary maximum. Although the primary 
maximum will prevent irreversible coagula- 
tion into the primary minimum, the particles 
can undergo reversible flocculation into the 
secondary minimum. Detailed information 
about the flocculation process in colloidal 
dispersions with particle sizes in the ~m 
range can be obtained by direct microscopic 
observation (1). 

After the transient phase following upon 
preparation of the system (e.g., addition of 
electrolyte), the colloidal particles exist in a 
dynamic equilibrium with secondary-mini- 
mum flocculated aggregates continuously 
being formed, rearranged, and dissociated. If 
the dispersion is sufficiently dilute and if the 
electrolyte concentration is not too high, 
nearly all particles will be either unassociated 
or flocculated into pairs. It is then possible 
to determine experimentally the distribution 
of association times, or lifetimes, of pairs of 
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secondary-minimum flocculated particles. 
Cornell et al. thus reported mean lifetimes 
of the order of a few minutes for pairs of 
polystyrene particles of radius 1 /zm (1). 

The pair lifetime is a useful quantity, not 
only for the information it furnishes about 
the rate of redispersion under various con- 
ditions, but also, and perhaps more impor- 
tantly, because it provides us with an ex- 
ceedingly sensitive probe of the interaction 
(mechanical and hydrodynamic) between 
colloidal particles. (In contrast, the association 
rate does not depend nearly as sensitively on 
the pair interaction.) It is therefore important 
to have access to a theory which enables the 
mean lifetime to be calculated for any given 
form of the interaction. Comparison with 
experimental lifetimes then provides a critical 
test of the assumed form of the interaction. 
It is our aim in this paper to present such a 
theory. 

One theoretical approach to the space- 
time evolution of a collection of Brownian 
particles is based on the many-particle Smo- 
luchowski equation (2). At this level of de- 
scription, the Brownian particles diffuse 
through an incompressible viscous medium 
while being mutually coupled via the conser- 
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vative forces, e.g., of  the traditional DLVO 
type (3), as well as via configuration-depen- 
dent hydrodynamic interactions. A computer  
simulation algorithm, referred to as Brownian 
dynamics, has been developed whereby this 
many-particle diffusion equation can be 
solved (4). 

A difficulty associated with the many-par- 
t ide diffusion approach is the current incom- 
plete knowledge concerning many-particle 
hydrodynamics. However, for the case of 
interest here, namely the dynamics of  a sys- 
tem of  two spherical colloidal particles, the 
prospects are brighter. For this case, the exact 
form of  the hydrodynamic interaction is 
known, whereas accurate expressions are 
available for the electrical double-layer and 
van der Waals interactions. Furthermore, the 
two-particle diffusion equation can be (nu- 
merically) solved to any desired accuracy by 
a number of standard techniques. 

The mean lifetime of a pair of colloidal 
particles may be obtained by solving the two- 
particle diffusion equation, with the appro- 
priate boundary conditions, and then inte- 
grating the resulting propagator over time 
and space (cf. Eq. [8]). In this paper, however, 
we shall use the first passage time method, 
which provides a mathematically simple and 
e x a c t  recipe for calculating the mean lifetime. 
The advantage of  this procedure is that it 
circumvents the need to actually solve the 
diffusion equation. 

The first passage time concept has been 
widely used in the dynamic description of a 
variety of  physical processes (5). As applied 
to translational diffusion, as done first by 
Schr~Sdinger (6) and yon Smoluchowski (7), 
the mean first passage time, z, gives the mean 
time taken for a diffusing particle to reach a 
given spatial coordinate for the first time. If, 
as in the present case, this coordinate is a 
suitably defined radial separation, rb, beyond 
which the colloidal particles are no longer 
considered to be associated, then r may be 
interpreted as the mean lifetime of secondary- 
minimum flocculated colloidal particles. 

The first passage time method reduces the 

numerical effort required to obtain the mean 
lifetime to the mere evaluation of a double 
integral involving the separation-dependent 
diffusion coefficient and the DLVO potential. 
As a result, z can be readily calculated for 
any desired set of values of  the system pa- 
rameters. 

RELATIVE DIFFUSION OF TWO 
INTERACTING PARTICLES 

In the Smoluchowski picture, the space- 
time evolution of two Brownian particles in 
the absence of external fields, can be described 
in terms of the relative diffusion of  the 
particles. Let f ( r ,  tlro)dr be the probability of  
having a relative displacement vector r (con- 
necting the centers of  the two particles) in 
the range r to r + dr at time t, given that the 
displacement vector was r0 initially, i.e. 

f ( r ,  01ro) -- ~(r - r0). [11 

The propagator f ( r ,  tit0) satisfies the diffusion 
equation 

0 r ~ f ( ,  tlro) 

-- V. D(r)-[Vf(r, tit0) + f ( r ,  tit0)], [2] 

where D(r) is the relative diffusion tensor. It 
depends on the interparticle separation be- 
cause of the hydrodynamic coupling. 

We assume that the mechanical force be- 
tween the particles derives from a DLVO- 
type potential of mean force 

V(r )  -~ kT4a(r)  =- VR(r) + VA(r), [31 

with a component  VR(r) due to electrical 
double-layer repulsion and a component VA(r) 
due to van der Waals attraction. 

The two colloidal particles are considered 
as being associated whenever they are less 
than a distance rb apart. The value of rb will 
subsequently be chosen so as to coincide 
with the operational definition of a flocculated 
pair (dictated by the optical resolution of  the 
microscope), namely rb -- 2a = 0.5 t~m for a 
particle radius a = 1 ~tm (1). 

In order to determine the evolution of a 
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pair with initial separation ro (<rb), we have 
to solve [2] in the interval ra < r < rb subject 
to the initial condition [1], the "absorbing" 
boundary condition 

f(rb, tit0) = O, [4] 

and the "reflecting," or zero-flux, boundary 
condition 

[Vf(r, tlr0) + f ( r ,  tlr0)V~(r)]r=~. = 0. [5] 

Equation [5] is a statement of the fact that 
the two particles are prevented from coming 
into direct contact (r = 2a) by the very large 
primary potential barrier at r = ra. The 
precise value of ra (2a < ra < r0) is unimpor- 
tant as long as ¢(ra) "> 1. 

The mean lifetime, r(ro), of a pair with 
initial separation ro is given by 

~'(ro) = dttF(tlro), [61 

where F(tlro)dt is the probability that the pair 
dissociates (for the first time) between t and 
t + dr. It is related to the propagator through 

0 
F(tlro) --- - ~ Q(tlr0) 

0f 
-- - -- drf(r, tlro). [71 

Ot 

Combining [6] and [7], performing an inte- 
gration by parts and noting that f(r ,  oolro) 
= 0, we obtain 

r(ro) = dt drf(r, tIr0). [8] 

For two spherical particles of radii al and 
a2 in an unbounded incompressible fluid of 
shear viscosity 7, the exact form of the relative 
diffusion tensor D(r) in the low-Reynolds- 
number regime is (8) 

D(r) = Do[G(r)~ + H(r)(I - ~)], [9] 

where 

Do = ~ + - 

The 

[10] 

radial functions G(r) and H(r) both 

approach unity as r ~ oo, so that D(r ~ oo) 
= D01. 

Combining [2] and [9] and assuming cen- 
tral forces, i.e., that 4, is a function only of 
r = ]r[, we find 

1 Of 1 0 [ r2Ge-*O ] 
Do Ot = r -5 Or O-r (e ' f )  

+ m H 0 (sin 0~00 
r 2 sin 0 0 0  + - -  - -  

n o2f 
r 2 sin 2 00~ 2'  

[11] 

which has solutions of the general form 

f(r ,  t) = Z Z fin(r, t)Ylm(O, ~), [12] 
I m 

where the Ytm(O, ~b) are spherical haromonics. 
When this expression is substituted into [8], 
only the isotropic part (1 = 0, m = 0) will 
survive the angular integrations. For the pur- 
pose of calculating the mean lifetime, r, we 
need therefore consider only the isotropic 
propagator, f (r, t[ro), which satisfies the radial 
diffusion equation 

0 
fftf(r, t{r0) 

_ Do O {r2G(r)e_,tr)0 [e~,r)f(r, tlro)]} 
r 2 dr 

[13] 

In the Appendix, we show how direct 
integration of  [ 13], using the initial condition 
[1], the boundary conditions [4] and [5] as 
well as [8], leads to the following exact 
expression for the mean lifetime 

1 I "rb e~(r) gr 
,(r0)=ffoJ~ drr~G(r) Jr dssZe-~C*), [14] 

which shows the dependence of r on the 
mechanical interaction potential, O(r), and 
on the hydrodynamic interaction, via the 
function G(r). These two functions are dis- 
cussed in detail in the following sections. 
Equation [ 14] also shows the explicit depen- 
dence of r on the initial pair separation, ro, 
and on the separation, rb, at which the pair 
is said to dissociate. 
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The previous development is valid for 
arbitrary radii of  the two colloidal spheres. 
In the following, however, we shall focus on 
two special cases, namely that of two identical 
spheres (a~ = az = a) and that of  a sphere 
and a plane (a~ = a, a2 ~ ~ ) .  The emphasis 
will be placed on the case of identical spheres, 
for which there exists experimental data (1). 

HYDRODYNAMIC INTERACTION 

Identical Spheres 

The hydrodynamic function G(r) for two 
identical spheres of radius a has been obtained 
by Brenner (9) in the form of  an infinite 
series. For computational convenience, we 
represent this exact result by a rational frac- 
tion approximation of  the form 

ClX "~- C2 X2 ~ X 3 
G(r) = [15] 

C 3 "[- C4X "~ e5 x 2  -~ x 3 ' 

where 
h 

x -~ - ,  [16] 
a 

h being the surface-to-surface separation; h 
= r - 2a. The coefficients crc5 are given in 
Table I. The rational fraction approximation 
[I 5] reproduces the exact result with 4 figure 
accuracy for all interparticle separations x 
>i 0.1 and with 3 figure accuracy for 0.01 ~< 
x < 0.1. 

Sphere and Plane 

The exact hydrodynamic function for a 
sphere moving perpendicular to a plane wall 
(9) has also been represented by a rational 
fraction approximation of  the form [ 15], the 
coefficients of  which are given in Table I. 
This approximation is accurate to 3 or 4 

figures for x >~ 0.1 and to 2 figures for 0.01 
~ < x < 0 . 1 .  

ELECTRICAL DOUBLE-LAYER REPULSION 

We shall be concerned with aqueous so- 
lutions of colloidal particles of radius a = 1 
~tm and of 1:1 electrolyte at concentrations 
c >~ 10 -4 mole dm -3. Consequently, we have 
ra > 30, where r -l is the Debye length. 
Furthermore, under these conditions the sec- 
ondary minimum occurs at surface-to-surface 
separations h ~ a. It follows that the inter- 
action between two spheres can be accurately 
constructed from the interaction between 
parallel planes using the Derjaguin approxi- 
mation (10). Accordingly, we write the dou- 
ble-layer repulsion between two spheres of  
radii al and a2 as 

VR(h) = 2~r + ~ dh'ER(h'), [ 17] 

where ER(h) is the interaction free energy per 
unit area between parallel planes. 

Since, typically, xh ~ I0 at the secondary 
minimum, we shall be interested only in the 
regime Kh ~> 1. We may then use the super- 
position, or weak-overlap, approximation (3), 
according to which 

64nkTy 2 
ER(h) = - -  e -~h, [ 181 

K 

where n is the number density of  the z:z 
electrolyte and where ~ -= tanh(zeq/o/4kT), 
if0 being the electrostatic potential on the 
surface of the spheres (assumed to be the 
same on both spheres). Note that, as long as 
the superposition approximation remains 
valid, no assumption has to be made about 
whether the spheres approach under constant 

TABLE I 

Coefficients in Rational Fraction Approximations to the Hydrodynamic Function G(r) 

ci c2 c3 e4 e5 

Sphere-sphere 0.154030 1.29993 0.0782416 1.10529 2.81955 
Sphere-plane 2.04185 5.60414 2.06393 8.59190 6.72180 
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surface charge or under constant surface po- 
tential (3). Combining [17] and [18] and 
performing the integration, we have 

( 1  a2) 1 '-1 [kT"/'2-~h 
VR(h) = 647r + ~ o c r ~ e  ) e , [19] 

where eoer is the static dielectric permittivity 
of  the solvent. 

VAN DER WAALS ATTRACTION 

For polystyrene spheres in water, the sec- 
ondary minimum typically occurs at surface- 
to-surface separations in the range 5-50 nm, 
depending on the surface potential and on 
the electrolyte concentration. At these sepa- 
rations, it is necessary to include retardation 
effects in the van der Waals interaction. Since 
h ~ a, we can again use the Derjaguin 
approximation [ 17] to construct the interac- 
tion between spheres from the interaction 
free energy per unit area, EA(h), between 
parallel planes 

A(h) 
EA(h) = 12~rh2. [20] 

The Hamaker function, A(h), is given by 
the Lifshitz theory (11) as an infinite sum 
over imaginary frequencies and requires 
knowledge about the frequency-dependent 
dielectric permittivity of the colloidal particles 
and of the solvent medium. In the separation 
regime of interest, where gh >> 1, the "zero- 
frequency" term in A(h) is completely negli- 
gible as a result of screening by the electrolyte 
(12). We therefore omit this term. In calcu- 
lating the Hamaker function, A(h), we have 
used standard permittivity data for water and 
polystyrene (13, 14). 

For computational convenience, we have 
represented the Hamaker function by rational 
fraction approximations of the form 

co+ c~y + c2y 2 
A(h) = 

1 + c3y + c4y 2 + csY 3 

X 1 0  -21 J .  [21] 

The definition of the quantity y depends on 
the separation regime as follows 

y -= log(h/nm) + 1.0; 

- 1 . 0  ~< log(h/nm) ~< 1.9 

y - log(h/nm) - 1.9; 

1.9 ~< log(h/nm) ~< 2.7 

y ~ log(h/nm) - 2.7; 

2.7 ~< log(h/nm) ~ 3.2. [22] 

The coefficients Co-C5 for each separation 
regime are given in Table II. 

The Derjaguin approximation [17] is ac- 
curate only for h/a ~< 0.1. Fortunately, for 
the range of system parameters of interest 
here, the magnitude of the van der Waals 
attraction falls below 0. l k T  when h/a "-, O. 1 
so that any error due to the breakdown of 
the Derjaguin approximation at larger sepa- 
rations is unimportant. In our calculations, 
we have set A(h) = 0 for h > 103.2 nm. 

The Derjaguin approximation yields an 
estimate of the van der Waals interaction 
which always exceeds the exact result in 
magnitude (3). It is therefore noteworthy that 
a recently proposed ansatz for the van der 
Waals interaction between spheres (15) pre- 
dicts an attraction whose magnitude is larger 
than that predicted by the Derjaguin approx- 
imation by as much as 50%. We have con- 
sequently refrained from using this ansatz. 

RESULTS AND DISCUSSION 

Comparison with Simulation Data 

The dynamics of secondary-minimum 
flocculated pairs and triplets of colloidal par- 
ticles was recently studied by the computer 
simulation technique of Brownian dynamics 
(16). In this section, we compare the pair 
lifetimes obtained in that study with the 
predictions of the first passage time theory. 

In the simulation study, the double-layer 
repulsion between two spherical particles of 
radius a was taken to be 

VR(h) = 27r~o~a~b02 In(1 + e-'h), [23] 

while the van der Waals attraction was de- 
scribed by an empirical formula due to 
Schenkel and Kitchener (17) 
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TABLE II 

Coefficients in Rational Fraction Approximations to the Hamaker  Function A(h) 

405 

I ~  (h/nm) ~ ct ~ ~ ~ 

-1 .0 -1 .9  6.38790 -3.57341 0.515324 -0 .549089 0.0610292 0.0155967 
1.9-2.7 1.19360 -1 .03183 0 1.41471 1.74380 0 
2.7-3.2 0.114740 -0 .174856 0 2.11158 4.80144 0 

with 

- a A  
VA(h) = 12h(1 + 1.77p)' [24] 

2a-h 
P --- ~,L " [25] 

Like Eq. [20], Eq. [23] is based on the 
Derjaguin approximation. However, [23] also 
assumes that it is permissible to use a linear- 
ized approximation to the interaction between 
parallel planes. This is the case for ZOPo/kT 
< 1 .  

The parameter values used in the simula- 
tion study were as follows: a = 1 /~m, A = 5 
X 10 -21 J, XL = 100 nm, 40 = 25 mV, T 
= 300 K, er = 80, and ~ = 8.65 X 10 -4  kg 
(ms) -1. An accurate representation of  the 
exact hydrodynamic function G(r) was used. 
The initial separation, r0, of the flocculated 
pair corresponded to the position of the 
secondary minimum in the DLVO potential 
and the pair was taken to dissociate at rb/a 
= 2.2. 

In the first three columns of Table III, we 
compare the mean lifetimes, at three concen- 
trations of  1:1 electrolyte, obtained in the 
simulation study (16) with those calculated 
from [14] with the same interaction potential 
[23]-[25] and the same parameter values. If 
carried out correctly, the two computational 
methods should give identical results. This 
appears to be the ease (within the statistical 
uncertainty of the simulation) at the two 
lowest electrolyte concentrations. However, 
at c = 120 mmole dm -3, the simulated mean 
lifetime is too short by an order of magnitude. 
This discrepancy is probably due to the poor 
statistics in the simulation at c = 120 mmole 
dm-3; only two dissociation events were re- 
corded. We note that the mean lifetime can 

be calculated from [14] to four significant 
figures in less than a second (on a Univac 
1100 computer), whereas the Brownian dy- 
namics results in Table III required of  the 
order 1 hr CPU time (on a CDC 7600 
computer). 

In the simulation study (16), not only the 
mean lifetime, r, but also the distribution of  
lifetimes was reported. Let P(tlro; A) be the 
probability that a flocculated pair, with initial 
separation ro, dissociates in a time interval 
A around t. For sufficiently small ~x, 

0 
P(tJro; A) = AF(tlro) = --A ~ Q(tlro), [26] 

where the second equality follows from [7]. 
Many restricted diffusion processes are ac- 
curately described by the exponential ap- 
proximation (18) 

O(tlro) = e -tIt. [27] 

The physical basis of [27] is the assumption 
that the diffusing particles become essentially 
Boltzmann distributed in a time short com- 
pared to r. Combining [26] and [27], we find 

e(tlro; &) = ~ e -'/'. [281 
T 

TABLE III 

Mean Lifetime of Secondary-Minimum Flocculated 
Pairs of  Polystyrene Spheres (a = 1 #m,  if0 = 25 mV) in 
Aqueous 1:1 Electrolyte at 25°C 

Electrolyte r (sec) 
concentration 

(mmole Eqs. [14], Eqs. [141, 
dm -3) Ref. 16 [23]-[25] [19]-[22] 

10 0.258 0.2524 0.3046 
50 1,49 1.381 10.08 

120 20 ± 5 163.6 31950 
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In Fig. 1, we compare [28] with the simulation 
data (16) for the case c = 10 mmole dm -3. 
The agreement is reasonable except at very 
short times, where the exponential approxi- 
mation [27] is bound to fail. (A finite time 

Electrolyte 
is always required for diffusion from r = r0 ~o.~,tra~o~ 

(mmole to r = rb. ) We expect the accuracy of [28] to dm-~ 
improve at high electrolyte concentrations, 
where the secondary minimum is deeper, l0 

The last column of Table III contains 5o 
mean lifetimes calculated from [14] with the 120 
more accurate representation [ 19]-[22] of the 
DLVO potential. The parameter values were 
as given above, except that we used H20 
data for 25°C (Or = 78.54, ~/= 8.904 X 10 -4  

kg(ms) -1. At the two higher electrolyte con- 
centrations, there are striking differences be- 
tween the mean lifetimes calculated from the 
two representations of  the DLVO potential. 

For a surface potential of 25 mV, there is 
little difference between the two expressions 
[19] and [23] for the double-layer repulsion 
in the region of the secondary minimum. 
However, the depth of the secondary mini- 
mum is quite sensitive to the representation 
of the van der Waals attraction. This is 
illustrated in Table IV, in which we compare 10 
the depths and positions of  the secondary 
minimum as predicted by the two represen- 
tations of the DLVO potential. The potential 

0.10 

~--° 0.05 

0 - - -  
0 O.5 1.0 

t Is) 
FIG. 1. Distribution of lifetimes of  flocculated pairs 

with initial separation, ro, corresponding to the secondary 
minimum. A = 0.02 see, c = 10 mmole dm -3, and other 
parameters as given in the text. The data points are from 
a Brownian dynamics simulation (16) and the curve is 
obtained from Eq. [28] with r = 0.2524 sec. 
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TABLE IV 

Positions and Depths of  the Secondary Minimum in 
the DLVO Potential between Polystyrene Spheres (a = 1 
#m, ~bo = 25 mV) in Aqueous 1:1 Electrolyte at 25°C 

Fxls. [23]-[251 Eqs. [19]-[22] 

h~ (nrn) ~ V ~ d k T  ~ (nm) - V ~ / k T  

24 0.87 22 1.30 
8.4 4.68 7.5 7.24 
4.6 10.67 4.1 16.28 

curves for the case c = 50 mmole dm -3 are 
displayed in Fig. 2, from which it is clear 
that the discrepancy lies mainly in the van 
der Waals attraction. (A Hamaker constant 
A = 5 X 10 -21 J was used in the simulation 
study (16). This may be compared with the 
contact value of  the Hamaker function given 
by [21] and [22]: A(0) = 6.39 X 10 -21 J.) 
Since the pair potential appears in the ex- 
ponent in the expression [ 14] for r, relatively 
small discrepancies in the depth of  the see- 
ondary minimum can produce large varia- 

L 0 

¢(h)_5 

-10 // '  

-15 /i 
I l l  I I i I 

5 10 15 2O 25 
h (nm) 

FIG. 2. DLVO pair potential versus surface-to-surface 
separation for polystyrene spheres (a = 1 #m, ~bo = 25 
mV) in aqueous 50 mmole dm -3 1:1 electrolyte at 25°C. 
The primary minimum is not shown. Solid curves are 
calculated from Eqs. [19]-[22], dashed curves from Eqs. 
[23]-[25]. The solid and dashed curves for OR are not 
distinguishable in the figure. 
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tions in the predicted lifetime. It is this 
circumstance which makes the lifetime of 
flocculated pairs an ideal probe of the DLVO 
potential in the region of the secondary min- 
imum. 

Comparison with Experimental Data 

The mean lifetime of two identical second- 
ary-minimum flocculated polystyrene spheres 
(a = 1 #m) in aqueous 1:1 electrolyte at 
25°C is shown in Fig. 3 as a function of 
surface potential and electrolyte concentra- 
tion. These results were obtained from [ 14], 
using the exact hydrodynamic interaction 
[15] and the representation [19]-[22] of the 
DLVO potential. The latter is accurate over 
the entire range of parameter values in Fig. 
3. The spheres start out in the secondary 
minimum and are considered to remain as- 
sociated as long as the surface-to-surface sep- 
aration does not exceed 0.5 #m. This disso- 
ciation criterion is the same as that used in 
the experimental study (1). It is seen from 
Fig. 3 that the effect of neglecting the hydro- 
dynamic coupling between the spheres (i.e., 
setting G(r) = 1), would be to shorten the 
mean lifetime by a factor of 5. The mean 

- Vmi./kT (o&b) 
I 5 10 15 20 25 

i 
~s 

0 

100 20o 
c (mrnot dm -3) 

FIG. 3. Mean lifetime of  a pair of  secondary-minimum 
flocculated polystyrene spheres (a = 1 /~m) in aqueous 
solution at 25°C versus concentration of  1:1 electrolyte. 
The spheres are initially in the secondary minimum and 
remain associated as long as h < 0.5/~m. The calculations 
are based on Eqs. [14], [15] and [19]-[22]. The curves 
refer to (a) ~bo = 25 mV, exact G(r), (b) ~bo = 25 mV, 
G(r) = 1, and (c) ~bo = 50 mV, exact G(r). 

lifetime resulting from the representation 
[23]-[25] of the DLVO potential at if0 = 25 
mV (not shown) is virtually identical to that 
based on [19]-[22] at if0 = 50 mV (curve c 
in Fig. 3). 

In the case of a sphere and a plane (al 
= a, a2 ~ oo), [14] should be replaced by 
(see Appendix) 

¼f,  I " r(ro) = d r - ~  dse -e'). [29] 

Results for this case are shown in Fig. 4. The 
qualitative trends are very similar to those in 
Fig. 3, although the absolute lifetimes are 
longer. The effect of the hydrodynamic cou- 
pling is a factor of 6.3. Again, curve c nearly 
coincides with the result for the potential 
[23]-[251 at N = 25 mV. 

The experimental study (1), involving di- 
rect microscopic observation of spherical (a 
= 1 ~m) polystyrene particles, resulted in 
lifetimes of the order of a few minutes for 
zeta potentials of 50-75 mV and 1:1 electro- 
lyte concentrations of 5 × 10-5-6 × 10 -3 

mole dm -3. As judged from Fig. 3, the theory 
predicts a mean lifetime of less than i sec 
under these conditions. From the upper scale 
in Fig. 3, we can deduce that the experimental 
results imply the existence of a secondary 
minimum which is deeper by about 10kT 
than that predicted by the representation 
[19]-[22] of the DLVO potential. This dif- 
ference cannot be accounted for by any 
reasonable adjustment of system parameters 
to alter the pair interaction. For instance, for 
electrolyte concentrations of <10 -a mole 
dm -3, doubling the particle size only increases 
the association time by about a factor of 2. 
The effect of other changes in system param- 
eters can be readily deduced from the curves 
in Fig. 3. 

The glaring discrepancy between theory 
and experiment warrants a closer scrutiny of 
the results. One difference between the two 
is in the choice of initial separation for a 
flocculated pair. However, since the experi- 
mental r0 exceeds the secondary-minimum 
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FIG. 4. Mean lifetime of  a secondary-minimum asso- 
ciated polystyrene sphere (a = 1 urn) at a planar wall 
(of the same material and with the same surface potential) 
in aqueous solution at 25 °C versus concentration of 1:1 
electrolyte. The sphere is initially in the secondary min- 
imum and remains associated as long as h < 0.5 /zm. 
The calculations are based on Eqs. [29], [15], and [19]- 
[22]. The curves refer to (a) ¢/o = 25 mV, exact G(r), (b) 
if0 = 25 mV, G(r) = 1, and (c) if0 = 50 mY, exact G(r). 

separation, we would expect the experimental 
lifetimes to be shorter, rather than longer, 
than the calculated ones. 

A check on the internal consistency of  the 
experimental data is provided by the reported 
equilibrium size distribution of  flocculated 
aggregates. Thus, at c = 3 mmole dm -3 and 
¢0 = 75 mV, it was found that 91% of  the 
particles were unassociated (1). For the pur- 
pose of the following rough estimate, we may 
assume that the remaining 9% are all floc- 
culated pairs (rather than higher aggregates). 
The number density of  unassociated particles, 
n,,  evolves in time according to 

dnl 
- k+n 2 + k_n2, [301 

dt 

where k_ = 1/r and where the diffusion- 
controlled association rate constant may be 
approximated by k+ = 87raDo. At equilib- 
rium, [30] yields 

k+x2n = 1/2k_(1 - xl), [31] 

where xl is the fraction of  unassociated par- 
ticles and where n is the total particle density. 
The mean lifetime may thus be estimated 
from 

37(1 - xl) 
r 16kTnx~ ' [32] 

where we have also used [10]. With Xl = 0.91 
and n = 1014 m -3 we obtain r ~ 1 min, 
which is consistent with the values of  r 
determined by direct observation. 

We are consequently led to the somewhat 
disconcerting conclusion that, even for such 
a well-characterized model system as mono- 
disperse polystyrene spheres of  radius 1 #m 
and zeta potential 50-75 mV in ~- 10 -4 mole 
dm -3 aqueous 1:1 electrolyte, the magnitude 
of  the colloidal interaction potential in the 
region of the secondary minimum, as inferred 
from measurements of  the doublet association 
time, is of  the order of  10kT larger than that 
predicted by the best DLVO potential. 

APPENDIX: THE MEAN FIRST PASSAGE TIME 

An expression for the mean first passage 
time can be derived from the Smoluchowski 
diffusion equation in several ways, the sim- 
plest being the direct integration method due 
to Deutch (19). For convenience, we here 
reproduce that derivation in the notation of  
the main text. 

The radial diffusion equation [13], gener- 
alized to a d-dimensional space, reads 

0 r 0 
~t f (  , tlro) = Do rl-d Or 

X {rd-la(r)e -4,(r) ~r [e~(~)f(r' t[ro)]}. [A1] 

Multiplying [All by r d-l, integrating from ra 
to r and using the boundary condition [5], 
we get 

r 0 u 
f [  duu a-1 ~ t f (  , tlro) 

= D°ra-lG(r)e-*(r) ff---r [e~rf(r' tlr0)]. [A2]  

Rearranging and integrating from r to rb, 
using the other boundary condition [4], we 
find 

Journal of Colloid and Interface Science, Vol. 102, No. 2, December 1984 



DISSOCIATION KINETICS OF FLOCCULATED PARTICLES 409 

1 e -¢'(r) fro 
f (r ,  tlr0) = -- Do 

s l-de*(S) f s  0 
)'( d3 ~ )  Jra duud-1 ~ f ( u ,  tlro). [A31 

The  d -d imens iona l  radia l  vers ion o f  [8] is 

r(ro) = dt drra-lf(r, tlro) [A4] 

and  o f  the  ini t ia l  cond i t i on  [ 1 ] 

f (r ,  0Jr0) = rl-d6(r -- ro). [A5] 

C o m b i n a t i o n  o f  Eqs. [A3] - [A5]  yields 

r(ro) = -~o drra-l e-*(° 

f r  rb S 1-d e 4~(s) 
× as  G(s) H ( s - r o ) ,  [A6] 

where  H(x) is the  uni t  step funct ion.  In ter -  
changing the order  o f  in tegrat ion,  we ob ta in  
the  des i red  resul t  

= d r - -  
rl-deC~(r) f~i 

G(r) dssd-l e-~% 

[A7] 

Equat ions  [14] and  [29] o f  the  m a i n  text  are  

ob ta ined  by  set t ing d = 3 a n d  d = 1, respec- 

tively. 
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