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In a colloidal system in which the amount of  added electrolyte is sufficiently low (e.g., nonaqueous 
dispersions or aqueous dispersions that have been treated by ion-exchange resins or micellar systems 
with no added electrolyte) conventional double-layer theory cannot be used to describe the electrostatic 
interaction between the particles. A theoretical treatment of such systems which takes into account 
the contribution of the counterions derived from the colloidal particles in screening the coulombic 
repulsion, is proposed. This leads to an effective colloid-colloid pair potential which varies with the 
volume fraction of  the colloidal particles present in the system. A striking consequence of the theory 
is that under certain conditions, correlations in the spatial distribution of  particles can persist over 
four orders of magnitude of the volume fraction. Moreover, these correlations, as measured by the 
height of the first peak of  the structure factor, may not be a monotonically increasing function of  the 
particle charge. These theoretical predictions are compared with neutron and light-scattering studies 
on the structure of  colloidal systems. © 1985 Academic Press, Inc. 

1. INTRODUCTION 

In the conventional description of a col- 
loidal system (1), the colloidal particles are 
treated as a one-component system with a 
given pair potential (of mean force). This 
pair potential is assumed to be independent 
of particle number concentration. For in- 
stance, the electrostatic interaction between 
each pair of particles is taken to be only a 
function of the particle charge and the ionic 
composition of the electrolyte reservoir which 
is in osmotic equilibrium with the system. 
The ionic strength of this reservoir determines 
the magnitude of the Debye screening length. 
In many situations, the nature of  this reservoir 
is not immediately apparent due either to 
the high-volume fraction of colloidal particles 
in the dispersion or low added electrolyte 
concentrations. An example is that of  a dilute 
dispersion of charged polystyrene particles at 
low ionic strengths where excess electrolytes 
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have been removed by ion-exchange resins 
(2). Other examples may be found in non- 
aqueous dispersions or micellar systems in 
which the only charged species are the col- 
loidal particles and their counterions (3). For 
such cases, every part of the solvent is under 
the electrical influence of  the colloidal parti- 
cles and it is not obvious that a concentration- 
independent pair potential can be used to 
characterize the electrostatic interaction be- 
tween the particles. 

In an earlier note (4), we considered a 
strongly interacting colloidal dispersion as a 
highly asymmetric electrolyte in which the 
ions and colloidal particles are treated on an 
equal footing. That is, like the small ions, 
the colloidal particles are treated as an ionic 
species with a very large "ionic" size and a 
very high valence. By starting with the Orn- 
stein-Zernike equations for the various cor- 
relation functions, and then replacing the 
ion-ion and ion-colloid direct correlation 
functions by their asymptotic forms, we ob- 
tained an approximate analytic expression 
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for the effective pair potential which charac- 
terizes the electrostatic interaction between 
the colloidal particles. This effective pair 
potential turned out to depend on the colloi- 
dal particle concentration. Unfortunately, the 
physical content of this result is not very 
obvious from its original derivation. In this 
paper, we begin with the McMillan-Mayer 
(5) picture of the colloidal dispersion where 
we formally regard the particles as the "sol- 
ute" and the ions as the "solvent" species. 
Our earlier result can be obtained by using 
approximations that are similar to those used 
in deriving the Debye-Hiickel theory of elec- 
trolytes. Although the resulting effective pair 
potential between colloidal particles looks 
exactly like the simple Debye-Hiickel pair 
potential it is by no means identical. The 
screening parameter K of the Debye-Hiickel 
theory is independent of the particle-volume 
fraction, being determined by the electrolyte 
reservoir with which the system is in osmotic 
equilibrium. The screening parameter K of 
our result is a function of the colloid particle- 
volume fraction, and hence so is the effective 
pair potential. 

From our analysis, it is evident that the 
form of the simple effective pair potential we 
obtained earlier (4) is only valid when the 
colloidal charge and size are not too large. 
In this paper, we propose an approximation 
that yields the effective pair potential in the 
regime of large colloidal charges and sizes 
found in existing experimental systems. We 
also give predictions of the structure of col- 
loidal systems that interact via such a density- 
dependent effective pair potential. The struc- 
ture of such systems is markedly different 
from systems which interact via density-in- 
dependent pair potentials. For example, under 
experimentally realizable conditions, our the- 
ory predicts that a system of colloidal particles 
can retain a liquid-like structure, with signif- 
icant correlations between the positions of 
nearest neighbors, over four orders of mag- 
nitude in the particle volume fraction. By 
contrast, a system with a density-independent 
pair potential at a volume fraction which 

exhibits a liquid-like structure would certainly 
solidify within an order-of-magnitude increase 
in the volume fraction. Furthermore, because 
of the nature of the volume fraction-depen- 
dent pair potential between the particles, a 
decrease in the particle charge can result in 
an increase in the structure of the colloidal 
systems. Such observations, which are sup- 
ported by available experimental data, are of 
course contrary to the predictions of the 
conventional DLVO (1) picture of volume 
fraction-independent pair potentials. 

This paper is organized as follows. In 
Section 2, we specify our model of the col- 
loidal system and recapitulate the method by 
which the simple effective pair potential can 
be obtained by an asymptotic analysis of the 
Ornstein-Zernike equations. In Section 3, 
we give an alternative derivation of the same 
result using the McMillan-Mayer picture. 
This calculation establishes the fact that the 
simple effective pair potential is only valid 
in the regime of small colloidal sizes and 
charges. It gives a better physical insight into 
how the effective pair potential arises and 
suggests the later approximate extensions to 
the nonlinear regime, which is of more rele- 
vance to real colloidal systems. It also pro- 
vides a ready illustration of how the effective 
one- and two-body colloid potentials combine 
to yield the Debye-Hfickel limiting law for 
the thermodynamic behavior of the whole 
colloidal system. In Section 4, we propose 
an approximate method--the Jellium Ap- 
proximation-to determine the effective pair 
potential for large colloidal sizes and charges. 
Results and predictions based upon this ef- 
fective pair potential, together with compar- 
isons with available experimental data, will 
be given in Section 5. 

2. THE MODEL AND THE SIMPLE EFFECTIVE 
PAIR POTENTIAL 

We model the ions and particles in a 
colloidal system as a highly asymmetric elec- 
trolyte comprised of ions of number density 
ni, valence zi (i = 0, 1, 2 . . . .  ) obeying the 
electroneutrality condition ~i  nizi = 0. The 
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subscript i = 0 refers to the colloidal particles 
and i = 1,-2 . . . .  refer to the small ions - -  
counterions and added electrolyte. In this 
model the interactions between all charged 
species are taken to have the form 

Uij(r) = ~ ,  r < dij 

z i  z j e  2 
= - - ,  r > d  U [2.1] 

Er 

where d U = (di + dj)/2 and di is the ionic 
diameter. The solvent is simply characterized 
as a dielectric continuum of dielectric con- 
stant E. 

Previous studies of  highly asymmetric 
electrolytes have been carried out in the 
hypernetted chain approximation for charge 
asymmetries of  up to 20 to 1 (6, 7). Com- 
parisons between Monte Carlo simulations, 
integral equation approximations, and the 
cell model have recently been made at a 
colloidal charge of  12 with univalent and 
divalent counterions (8). 

The structure of  the asymmetric electrolyte 
can be described by the pair distribution 
functions go(r)  = 1 + ho(r).  The total corre- 
lation functions hij(r) obey the Ornstein- 
Zernike equations 

h o ( k  ) = eo.(k ) + ~ n l~ . ( k ) ho ( k )  
l 

i , j ,  l = 0, 1, 2, • • -, [2.2] 

where the Fourier transforms are defined by 
/t(k) = f dr e x p ( - i k ,  r)h(r). From [2.2], we 
can write down a formal equation for the 
colloid-colloid correlation functions (com- 
ponent 0) 

hoo(k) = ~ ( k )  + n o ~ ( k ) h o o ( k )  [2.31 
with 

? ~  = ?oo + fiT" [I - 6 . ] -1 .  rio [2.4] 

where the column matrix Co has elements 

(~ ) i  = nJ/2?~o(k), i = 1 , 2 , . . .  [2.5] 

and the matrix ~* is given by 

(e*)ij  = (ninj) l /2co(k) ,  i , j  = 1, 2, • • • [2.6] 

Equation [2.3] suggests that one can formally 

regard the asymmetric electrolyte system as 
an effective one-component system of colloi- 
dal particles (component 0) with an effective 
direct correlation function ?~0 ~ given by 
[2.4] (9). 

The large r form of the direct correlation 
functions is given by (I0) (/~ = 1 / k B T )  

co(r)--- ,  - f lu i j ( r ) ,  r ~ oo. [2.7] 

We now approximate the ion-ion and ion-  
colloid direct correlation functions by their 
asymptotic forms at a// separations, that is, 

@(r) - -flzizje-------~2, 0 < r < ~ [2.8] 
el" 

Cio( r )  "~ C o i ( r )  - _ _  
- f l i z o z e  2 

Er 
, 0 < r < m  [ 2 . 9 ]  

and put 

Coo(r) =-- COo(r) - - -  
~z~e  2 

Er 
, 0 < r < ~ .  [ 2 . 1 0 1  

We find from [2.4] that 

e~(k)  = ~o(k)  
( 47rflz2 e2/E) 

k 2 + K 2 
[2.111 

or upon taking the inverse Fourier transform 

[3z2e 2 
c~g(r) = COo(r) - - -  e -"~, 

E/" 

0 < r < ~ [2.12] 

with 
K = [ (4r f le2 /E)  ~ niz~]  1/2. [2 .13]  

i=1 

From [2.7] and [2.12] we can identify an 
effective colloid-colloid pair potential 

ueff(r ) (zoe)= e -"r 
- [2.141 

E r 

Note that Uefr(r) has the form of a screened 
Coulomb potential. However, only the small 
ions contribute to the screening parameter K. 
That is, the summation in [2.13] is taken 
over all small ions in the system--counterions 
and added electrolyte. However, because of 
the electroneutrality condition 

Journal of  Colloid and Interface Science, Vol. 105, No. 1, May 1985 



ELECTROSTATIC INTERACTION IN COLLOIDAL SYSTEMS 219 

nozo + ~ nizi = 0 [2.15] 
i=l 

K is a function of the colloid number density, 
no. When the amount  of added salt is low, K 
can be much smaller than KD, the Debye 
parameter for the total asymmetric electrolyte 
system 

r~ ~ K 2 + (4~r3e2/Onoz~. [2.16] 

At high concentrations of added electrolyte 
or at low colloid concentrations (no ~ 0) in 
the presence of added salt, K ---* KD and the 
screening is determined solely by the added 
electrolyte concentration as expected from 
the classical theory. 

The utility of the effective pair potential, 
ue~(r) in predicting the colloid-colloid struc- 
ture factor has been considered in an earlier 
paper (4). Next we give an alternative deri- 
vation of ue~(r) that is based upon the 
McMillan-Mayer theory of solutions. Such 
a derivation reveals more of the physical 
content subsumed in the effective pair poten- 
tial. 

3. AN ALTERNATIVE DERIVATION OF uefr(r) 

Consider for simplicity an idealized colloi- 
dal system which consists only of colloidal 
particles and counterions--excess electrolyte 
being removed by ion-exchange resins and 
effects due to the dissociation of water being 
neglected. The inclusion of added salt only 
complicates the notation and does not affect 
the physical arguments in the discussion. Let 
there be No colloids of valence z0 and NI 
counterions of valence Zl confined in a vol- 
ume V. This system is a zt:Zo electrolyte. 
Electroneutrality requires that 

zlNx+ zoN0 = 0. [3.1] 

The Hamiltonian for this system can be 
written as 

1 No 1 NI 

H =  - ~  i=l P2 + i=IZ P2 + U ( { R } ,  { r}) ,  

[3.2] 

where Pi, Ri (Pi, ri) are the momenta and 

position coordinates of the colloids (ions). 
We have made the tacit assumption that all 
species have spherical symmetry and that 
there are no internal degrees of freedom. In 
a classical system, the Helmholtz free energy, 
F, can be written as 

F = F id + F int, [3.3] 

where F id, the Helmholtz free energy of (No 
+ N1) ideal particles in a volume V, is 
obtained by integrating the partition function 
over the momentum coordinates. The inter- 
action term U in the Hamiltonian gives rise 
to the interaction part, F int, of the free energy, 

exp(-f lF int) = vNo+N1 d{R}d(r) 

× exp(-3U((R},  (r})) [3.41 

= V N°l f d{R}exp(-3W({R)),  [3.5] 

where 
exp(-3W((R})) 

1 
f d{r}exp(-3U({R}, {r})). [3.6] vN t 

The quantity W({R}) is the No-body colloid 
potential of mean force and is obtained by 
fixing No colloids at positions {R} = {RI, 
R2 . . . . .  RNo) and integrating over all config- 
urations of the counterions (cf. [3.6]). Thus 
from [3.4] we see that the system of colloidal 
particles may be formally regarded as a 
one-component system with a temperature- 
and density-dependent effective Hamiltonian 
W({R}). In general, W({R}) will be a sum 
of one-, two-, three-, . . . ,  etc. body interac- 
tions; but under certain conditions, only a 
sum of one- and two-body terms will suffice 
to represent W({R}). 

For interaction potentials of the type given 
by [2.1 ] the interaction part of the Hamilton- 
ian, U can be written as 

U = uSR+ U Es, [3.7] 

where U sR denotes short-ranged (in this case, 
hard sphere) interactions and U Es electrostatic 
interactions. U Es can be written in the form 
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1 
/ .  

J b(r)}(r)dr - Es, [3.81 U ES .= 

where the total charge density operator h(r) 
is defined by 

~;(r) = zle ~, ~(r - ri) 
i 

ions 

+ zoe ~ 6(r - Ri) [3,9] 
i 

colloids 

---- b~(r) + bo(r) [3.101 

with separate contributions from the coun- 
terions, hi(r) and the colloid particles, ho(r) 
defined by [3.10]. The potential operator 
} ( r )  is given by 

~(r) = f h(f)dr' 

z i g  

ions 

[3.111 

- - +  zoe 
Z d r -  Ri[" [3.121 
i 

colloids 

The quantity Es is the electrostatic self-energy 
of both species. 

We now proceed to obtain an approximate 
expression for the N0-body colloid potential 
of mean force W({R}), From [3.61 to [3.8] 
it follows that 

O[3W({R})] = ( U ( { R } ,  { r } ) )  [3.131 
,93 

= ( v  sR) - ~s  

1 
+ ~ f (a(r)~(r))dr, [3.141 

where 

(A) --- 
f d{r}A({r})exp(-3U({R}, {r})) 

f d{r}exp(-BU({R}, {r})) 

[3.151 

denotes an average over all configurations of 
the counterions using the Boltzmann factor 
exp(-BU({R}, {r})). From the definition of 
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~(r) [3.11], the last term in [3.14] can be 
written as 

f (~(rhb(r))dr = f dr(~(r))@(r)) 

/ ,  i- [(t3(r)~(¢)) Q;(r))(h(10)] + j dr J dr' ~lr - r'l 

[3.16] 

The quantity (~(r)) is the average charge 
density at position r, given the No colloids 
are held fixed at RI, R2 . . . .  , RNo and the 
average is taken over all configurations of 
the counterions; @(r))  is the corresponding 
average electrostatic potential and is related 
to (~(r)) by Poisson's equation. From the 
definition of ~(r) we see that the contribution 
from the colloidal particles, ~0(r), will be 
unaffected by the averaging process over the 
counterions, hence 

(~(r)~(r')) - (a(r))(~(r')) 

= ( ~ l ( r ) ~ l ( r ' ) )  - ( ~ l ( r ) ) ( ~ l ( r ' ) )  [3.171 

= z~e2nl(r)[8(r - r') + h(r, r')]nl(r') [3.18] 

The right-hand side of [3.171 is the charge 
correlation among the counterions given the 
colloidal particles are at a fixed configuration 
{ R }  = { R I ,  R2, - ' - } .  In [3.18], nl(r) is the 
number density of counterions--it  is a func- 
tion of position because the colloids are held 
at a fixed configuration {R} and [3.18] defines 
the correlation function h(r, r'). Combining 
[3.14], [3.161, and [3.18] we have the exact 
result 

O [ ~ W ( { R } ]  

' f f  = ~ (~(r))(t~(r))dr + ~ z2e 2 dr dr' 

nl(r)[6(r - r') + h(r, r']nl(r') 
X 

~lr - r'] 

- Es + (uSR). [3.19] 

So far we have only made formal manipu- 
lations and all results are exact. Our objective 
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is to determine the two integrals in [3.19] by 
using certain approximations. 

Consider the first integral. As mentioned 
earlier, the average charge density, (O(r)) and 
the average electrostatic potential @(r)),  are 
related by Poisson's equation 

V2(~,(r) ) = _ 4___~ (~(r)) [3.20] 
E 

with 

(h(r)) = zlenl(r) + zoe Z ~(r - Ri) 
i 

colloids 

=- zaenl(r) + zoeno(r). [3.21] 

To close [3.20] we assume the Boltzmann 
distribution for the ion number density 

nl(r) = n lexp[ -3z le ( (~ ( r ) )  - ~)], [3.22] 

where ~1 --- N I / V  is the mean density of  
counterions and the constant ~} is defined to 
be the potential where nl(r) = t i l .  In writing 
[3.22] we have, as in the derivation of the 
Debye-Hfickel limiting law, omitted short- 
ranged, noncoulombic interactions between 
the ions and colloidal particles. Setting 

~(r) =- @(r))  - ~ [3.231 

and retaining only linear terms in Be~(r), 
[3.20] simplifies to 

V2~(r) - K2~(r) - 

4 7r zoe 

where (cf. [2.13]) 

47rzle/71 

6 ( r -  Ri), [3.24] 
i 

colloids 

K 2 =- 47r3e2nlz2/~. [3.251 

Since [3.24] is linear, we approximate the 
potential outside the colloidal particles as 

Zmfle~(r) = 1 + ~ q , ( l r -Ri ] ) ,  [3.26] 
i 

colloids 

where 
f l e 2 z l  Zo e - r r  

• (r) - - -  - -  [3.271 
E F 

is the dimensionless potential around each 
colloidal particle. The solution given by [3.26] 

and [3.27] is valid only in the limit rd01 ~ 1, 
where d0a is the distance of  closest approach 
between the centers of an ion and a colloidal 
particle, otherwise we shall have to include 
polarization effects due to having to solve 
the Laplace equation for @ )  ( V 2 ( ~ )  = 0 )  in 
the interior of  the particles. 

To linear order, the average charge density 
becomes 

(~(r)) = -zletq I ~ ~(Ir - R/I) 
i 

+ zoe ~ ~(r - Ri). [3.28] 
i 

Thus combining [3.23], [3.26], and [3.28] we 
find 

1 (z0e) 2 e -KRij 

f (~(r))@(r))dr  = 2---7- ~ R 0 
i÷j 

K(zoe) 2 Nor(zoe) 2 
- -  Z e - ' R °  - -  + E  cs, [3.29] 

4~ 2E i,j 

where Rij = ]Ri - Rs] and E~ is the electro- 
static self-energy of the colloidal particles. In 
obtaining [3.29] we have noted that because 
of electroneutrality viz. f (/3(r))dr = 0, con- 
stant terms in @(r))  do not contribute to 
the integral in [3.29]. 

We turn now to the second integral in 
[3.19]. Poisson's equation for the potential 
~b(r, r') at r given an ion (charge zle) is held 
at r', has the form 

V2q~(r, r') - 47rzoe no(r) 

4rrz le  4 r z l e  
- - -  nl(r)g(r, r') - - -  ~(r - r'). 

E 

[3.30] 

The ~(r, r') is sometimes referred to as the 
fluctuation potential. If we use the linearized 
Boltzmann approximation 

g(r, r') --- 1 + h(r, 1 a) 

= exp[-zlfle4)(r, r')] 

1 - z13e4)(r, ~) [3.31] 

with the simplifying assumptions 

Journal of Colloid and Interface Science, Vol. 105, No. 1, May 1985 



222 BERESFORD-SMITH, CHAN, AND MITCHELL 

no(r) ~ No/V = no 

hi(r) ~ NI/V = n l  

we find 

V%(r, r') 

= r2¢(r, r') -- _ _  

with the solution 

~b(r, r') - 

and hence 

h(r, r') - 

[3.321 

4~-z~ e 
6 ( r  - r ' )  [3.331 

z l e  e -dr - r ' l  

, Ir - e l  
[3.341 

/3z21e 2 e-KI,-el 

e I r -  r'l" [3.35] 

Combining [3,32] and [3.35] we find for the 
second integral in [3.19] 

12 z2e2 f dr 

dr' n~(r)[6(r - r') + h(r, r')]nl(r') × 
3 , I r  - r'l 

= E i Kz~e2 [3.36] s - N 1  2----~ ' 

where E~ is the electrostatic self-energy of 
the counterions. 

We now assemble the results in [3.19], 
[3.29], and [3.36] to find 

g z 2 e  2 
0 [ / 3 W ( { R } ) ]  = ( U  sR)  --  N1 2e 

0/3  

K(zoe) 2 (zoe) 2 e-.Ro 
- N ° - ~ - e  +--~e ~ RO 

i÷j 

K(zoe) 2 
4----~ ~ e-~R°" [3.371 

i,j 

Recognizing the temperature dependence in 
r we integrate this result from 13 = 0 to/3 to 
find 

1 
W({R}) = W sR + NoWl + ~ ~,.. W2(Rij), 

t,j 
i÷j 

[3.381 

where W sR results from integrating the con- 
tribution from short-ranged interactions 
(uSR). In addition to this, we see that within 
our approximations, the N0-body colloid- 
colloid potential of mean force, W({R}), can 
be written as a sum of one-body, WI, and 
two-body, W2(r), terms. There are no explicit 
three- or higher body interactions within our 
approximations. The (constant) effective one- 
body potential for the colloidal particles has 
the form 

_ _ _  r Z o z l e  2 1 Zo Wl r(z°e)2 + - -  + -- kT  [3.39] 
2e 3E 2 zl 

and the effective pair potential between the 
colloidal particles is given by 

( z o e ) 2  e - K r  
W 2 ( r )  - - -  - -  [3.4O] 

r 

Point particles, linear approximation 

which is identical to the effective pair poten- 
tial given by [2.14]. Again we note that W2(r) 
is a function of the number density of col- 
loidal particles through the parameter ~ de- 
fined in [3.25]. 

Having obtained an approximate expres- 
sion for the effective pair potential, one can 
determine certain properties of the colloidal 
system by treating it as a one-component 
fluid with this pair potential. In closing this 
section, we shall illustrate how the one- and 
two-body potentials may be used to obtain 
some familiar results. From [3.5] and [3.38] 
we can write the interaction part of the free 
energy as 

F int = F SR + NoW~ + F 2 ,  [3.41] 

where F sR is the free energy due to the short- 
ranged part of the potential U sR when all the 
particles are uncharged. The term F2 is the 
contribution from the effective pair potential 
and can be obtained via the coupling constant 
integration process 

l 1 _ 

F 2 :  fo ~ {2 Nono f dr[XW2(r)]g(r,X)}, 

[3.421 
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where g(rlX) is the pair correlation of  a one- 
component system that interacts via a pair 
potential [X W2(r)]. If we now calculate g(r]X) 
-- 1 + h(rl~,) by summing only simple chains 
with (-X3W2) bonds (10), that is, we use 

h(klT,) - ~(klX) 
1 - ti0?(kl),) [3.43] 

with 

c(rlX) = -X3We(r ) ,  0 < r <  oo [3.44] 

we find 

g(r[X) 1 X3(z°e)2 e-~x)~ 
= - - ,  [3.45] 

E r 

where 

4~r3e 2 
K2D(),) = - -  (~ilZ~ + ),ti0z02). [3.46] 

6 

Note that for Jk = 1, the correlation function 
given by [3.45] is the same as that given by 
the Debye-Htickel theory with KD(X = 1) 
being the Debye screening parameter for the 
zl:zo electrolyte. Using [3.45] in [3.42] we 
find 

KDe 2 
F2 = -NOW1 - ~ (N~z 2 + NoZ~), [3.47] 

which when combined with [3.39] and [3.41] 
yields the Debye-Hfickel limiting law for the 
interaction free energy, F int. 

An observation regarding the above ex- 
ample is that if one wishes to obtain the 
thermodynamic properties of  the colloidal 
system by treating it as an effective one- 
component fluid, it is necessary to have 
compatible expressions for the effective one- 
and two-body potentials as there are mutually 
cancelling contributions to the total free en- 
ergy from the two potentials. For, while the 
effective pair potential between colloidal par- 
ticles is purely repulsive (cf. [3.40]), the excess 
free energy of the colloidal system due to 
electrostatic interactions is negative. 

In connection with the calculation outlined 
in this section, we should point out that 
Sogami (11) had made a similar calculation 
to determine the Helmholtz free energy of  a 

colloidal system in which all the colloidal 
particles are held fixed at a given configura- 
tion. Using the same set of approximations 
as we have, he found that the Helmholtz free 
energy could be written as a sum of  one- and 
two-body terms. The form of his two-body 
potential is identical to that given by [3.40], 
that is the effective interaction is purely re- 
pulsive. However, his expression for the one- 
body term is incorrect. In particular, the 
second and third terms in [3.39] have been 
omitted. The cause of  this omission can be 
traced to his definition of the total electro- 
static energy--he has omitted to include the 
correlation terms (cf. [3.19]). As a conse- 
quence Sogami's result cannot reproduce the 
Debye-Htickel limiting law for the excess 
free energy of  the colloidal system. 

Sogami also gave an expression for the 
Gibbs free energy of  the colloidal system in 
which all the colloidal particles have been 
held at fixed positions. From this Gibbs free 
energy he concluded that the effective pair 
potential in the Gibbs ensemble has a mini- 
mum- - th a t  is, it is repulsive at small inter- 
particle separations but is attractive at large 
separations. We believe that this result may 
be an artifact of  his definition of the Gibbs 
free energy. The reason is that the pressure 
of  the system (which is only due to the small 
ions since the particles are held fixed) is not 
isotropic. Indeed, in evaluating the pressure 
as the negative derivative of the Helmholtz 
free energy, one must specify precisely how 
the volume of  the system is being changed 
relative to the positions of  the fixed colloidal 
particles. For the present problem, we feel 
that the Gibbs free energy is not a useful 
quantity. 

4. EXTENSION TO LARGE COLLOIDAL 
SIZE AND CHARGE 

From the derivations given in Sections 2 
and 3 we can see that the effective pair 
potential given by [2.14] and [3.40] is strictly 
a linearized result because of  the linearity 
assumptions embodied in [2.9] and [3.24]. 
Consequently, it is only valid provided (3zoe2/ 
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ca) is not too large. (Here a is the distance 
of closest approach between the colloidal 
particle and a counterion,) However, we have 
found that [2.14] remains accurate up to 
([3zoe2/m) ~ 3 (4). Also from the discussion 
following the derivation of [3.26] and [3.27], 
we can see that [3.40] is only valid in the 
limit ra ~ 1, that is it is a leading order 
result in the colloidal size. In this section, we 
shall derive expressions for U err which will 
go beyond the above limitations. 

Consider as in the previous section a zl :z0 
electrolyte. The expression for the effective 
colloid-colloid direct correlation function is 
(cf. [2.21-[2.6]) 

?~0~(k) = ?0o(k) + nl?ol(k)?lo(k) [4.1] 
1 - n l ~ l l ( k )  " 

In order to obtain an expression for cl0 in 
[4.1] we examine the ion-colloid Ornstein- 
Zernike equation 

hlo( r )  = c lo(r )  + n l  [ "  e l l ( I t  - -  sf)hlo(s)ds 
d 

t '  
+ no J Clo(Ir - sl)hoo(s)ds. [4.2] 

Motivated by the approximation [3.32] 
used to derive the linearized version of  the 
effective pair potential [3.40], we propose the 
following approximation for calculating the 
direct correlation function, Col, between an 
ion and a colloidal particle. Assume that all 
the small ions (species 1) remain mobile but 
that the charges on the remaining (No - 1) 
colloidal particles (those other than the one 
being considered) are replaced by a uniform 
continuum of charge--a jel l ium--having the 
same average charge per unit volume. This 
approximation ensures overall electroneu- 
trality but otherwise neglects the contribution 
of other colloidal particles to the direct cor- 
relation function between an ion and a given 
colloidal particle. This Jellium Approxima- 
tion is equivalent to assuming that, for the 
purpose of calculating the ion-colloid direct 
correlation function, the colloid-colloid dis- 
tribution function may be considered as uni- 
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form, that is goo(r) = 1 for all r > 0. Thus 
[4.2] is replaced by 

hoo(r) = 0 [4.3] 
Jellium Approximation 

hl0(r) = clo(r) + nl .l" Cll([r - s[)hlo(S)ds. 

[4.4] 

It should be reemphasized that [4.4] is 
used only  for determining Clo(r), which is 
subsequently used, in conjunction with [4.1 ], 
for the calculation of an effective pair poten- 
tial for the one-component colloidal system. 

We shall first investigate the form of U err 
taking into account the colloidal size effect 
within the linear approximation. 

a. S i z e  Ef fect  in the  L i n e a r  A p p r o x i m a t i o n  

To solve [4.4] for clo(r) we supplement the 
exact condition 

hLo(r) = - 1 ,  r < a [4.5] 

which is a consequence of the hard-sphere 
interaction between an ion and a colloidal 
particle, with the approximate closures 

Cll(r) = - fle2z-----~21 , 0 < r < ~ [4.61 
cr  

f l eZ z lZ o  
Clo(r) = - -  , r > a. [4.7] 

CF 

Equation [4.6] states that the ion-ion inter- 
action is treated in the linearized point ion 
limit and that for r > a, clo(r) is still assumed 
to have its asymptotic form. The solution to 
[4.4]-[4.7] is 

l~e2z l zo  e ra e-nr 
: )(1 + d a ) - - ,  hlo(r) c (1 + Ka r 

r > a [4.8] 

1 1 
C,o(r) = - 1  - ~ (~a) 2 + ~ (Kr) 2 

fle2ZlZor (1 + ~b) 

E (1 + Ka) '  
r < a [4.9] 

with q~ being the colloid volume fraction 
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471" 
0 = -~- noa 3 [4.10] 

and 
K 2 = 4r3e2n l z2 /E .  [4.11] 

Combining [2.10], [4.1], and [4.9] we find 

3eZz~ e 2~a 
c~g(r) = C~o(r) 

E (1 + Ka) 2 

e Kr 
× (1 + 4) 2 [4.12a] 

r 

= C~o(r) - 3ueff(r).  [4.12b] 

Thus we can identify the effective colloid- 
colloid pair potential 

ue f f ( r )  = ( z o e )  2 e 2~a e ~r 
(1 + ~a) 2 (1 + 4) 2 r 

Linear ized Je l l ium Approx imat ion ,  finite part icles  size 

[4.13] 

We observe that apart from the factor (1 
+ 4) 2, U~er(r) is superf ic ial ly  identical to the 
familiar expression for the double-layer in- 
teraction between two colloidal particles in 
osmotic equilibrium with an electrolyte res- 
ervoir characterized by the screening param- 
eter K, calculated according to the linearized 
Debye-Hiickel theory in the superposition 
or weak overlap approximation (1). Equation 
[4.13] is an extension of  [2.14] to include 
particle-size effects. It can be seen that given 
all other parameters being equal, an increase 
in particle size will increase the double-layer 
interaction. In the limit a --~ ~ ,  [4.13] obeys 
the Derjaguin approximation as one would 
expect. Since K is determined by the counter- 
ion concentration (see [4.4]), it will be a 
function of  the concentration of  colloidal 
particles. From [4.13] we can then see that 
the variation of ueff(r) with particle concen- 
tration is similar to the variation of  the 
classical double-layer pair potential with res- 
ervoir salt concentration. 

It is straightforward to repeat the above 
derivation in the presence of added salt. The 
final form of  the effective pair potential is 
still given by [4.13] but the screening param- 
eter will now be given by 

Ke - 47r3eZnlz~ + 4rc3e2 ~ niz2i 

E E i=2 

2 2 [4.14] = Kcounterions q- Kadded salt, 

where the summation on the right-hand side 
is to be taken over all species of  added 
electrolyte. 

We now move on to derive an expression 
for the effective pair potential for high col- 
loidal charges. 

b. L a r g e  Col lo idal  C h a r g e - - N o n l i n e a r  
Ef fec ts  

When the colloidal charge is high, nonlin- 
ear effects, which have up until now been 
neglected, must be taken into account. We 
shall consider this problem for a system of 
colloidal particles with counterions together 
with a known amount  of  added salt. The 
generalization of  the ion-colloid Ornstein- 
Zernike equation in the Jellium Approxi- 
mation for the colloidal particles (hoo(r) = O) 
is given by (cf. [4.41) 

hio(r) = Cio(r) + ~ nj f 
J 

cij(lr - sl)hjo(s)ds. 

[4.15] 

To obtain the nonlinear form of  U ee, we 
solve [4.15] together with 

hio(r) = - 1  r < a 

~ e 2 z i z j  
co(r ) = - - ,  

el" 

i =  1,2, . . .  [4.16] 

0 < r < o o  

i , j =  1,2, - - -  [4.17] 

Cio(r) = 
~eZzizo 

Er 
- -  + hio(r) - ln(1 + hio(r)), 

r > a ,  i =  1,2, . . -  [4.18] 

Equation [4.16] is exact, [4.17] should be 
reasonable for univalent ions, and [4.18] is 
the hypernetted chain closure. The assump- 
tions embodied in [4.16]-[4.18] are identical 
to those needed to derive the nonlinear Pois- 
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son-Boltzmann equation for ionic distribu- 
tions (12). Using the substitution 

hio(r) = e -~;yCr) - 1 [4.19] 

Eqs. [4.15]-[4.18] are equivalent to the dif- 
ferential equation 

d2y(r)  + 2 dy(r) _ 47rile 2 

dr 2 r dr 

q- ~ nizie-Ziy(r)),  

i=1 

with boundary conditions 

y(r )  --~ O, 

dy  flzoe2(1 + 49) 

dr  ~a 2 ' 

- -  ( n o Z o  

r > a  [4.201 

r--* ~ [4 .21]  

r = a. [4.22] 

This differential equation has to be solved 
numerically. 

The effective pair potential U e~r is defined 
in the same way as in [4.12] but [2.4] has to 
be used to evaluate the effective colloid- 
colloid direct correlation function c~g(r). 
Again this has to be carded out numerically. 

However, it is possible to extract the 
asymptotic form of Uefr(r) for r ~ oo. We 
shall do this for a three component  asym- 
metric electrolyte made up of  colloidal par- 
ticles (component 0), counterions (component 
1), and coions (component 2), so that 

nozo + n l z l  + n2z2 = 0. [4.23] 

For this case, [2.4] for ?g0~(k) becomes 

~ = ~oo + 
(n1721(1 - n2C22 ) -t- n 2 c 2 2 ( 1  - n l C l l )  + 2 n l n 2 c o l c 0 2 c l 2 )  

((1 -- n lCl 1)( 1 -- n2c22) -- nln2c212) 
[4.241 

Using [2.10], [4.17] together with the defini- 
tion 

Col(r) =- c~i(r) 
f i e  2z  i Zo 

~r  

0 < r < ~ ,  i = 1, 2, [4.25] 

where c~i(r) is short-ranged, we find 

c~0ff(k) = C~o(k) + ?/l[C~l(k)] 2 

+ n2[c~)2(k)] 2 
4rc3e 2 If(k)] 2 

E k 2 -~ K 2 ' 
[4.261 

where 

K2 -- 41rile 2 
- - - ( n l z  2 + n2z~) [4.27] 

and 

f ( k )  = Zo + n l z l ( ~ l ( k )  + n z z z ~ z ( k ) .  [4.28] 

The asymptotic form of Ue¢(r) is determined 
by the pole at k = ir in the last term of  the 
rhs of [4.26]. Thus by an inverse Fourier 
transform, we find 

ueff(r) e 2 e-~r 
= - -  [ f ( i r ) ]  2 - - .  [4.29] 

r 
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Thus the effective pair potential retains the 
form of a screened Coulomb function with a 
coefficient that depends on the colloidal par- 
ticle size and number density. 

In practice, a fair amount  of numerical 
effort is needed to determine the coefficient 
f ( & ) .  In the next section, we give a less 
rigorous but perhaps more intuitive derivation 
of the same result which involves considerably 
less computation. 

c. T h e  Superpos i t ion  A p p r o x i m a t i o n  

Consider the mean electrostatic potential 
~b(r) about a given colloidal particle. Poisson's 
equation for the reduced potential y(r )  

= 3 o k ( r )  is 

VZy(r) = 47rfl e2 
6 

- -  [nozogoo(r) 

+ nlz lglo(r)  + n2zzg2o(r)]. 

If we invoke the Jellium Approximation 
(goo(r) = 1) for the colloid-colloid distribution 
function together with the Boltzmann ap- 
proximation (gi0(r) = e x p ( - z i y ( r ) ) ,  i = 1, 2) 
for the ion-colloid distribution functions, 
Poisson's equation for y ( r )  becomes 
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47rile 2 
V 2 y  - -  - -  nozo, r < a 

E 

47rile 2 
- - -  [nozo + n~z le  -zly + n2z2e-Z2Y], 

E 

r > a [4.30] 

and we have the boundary conditions 

y ( r )  --+ O, r---+ oo 

4 1 f l e a  
y ' ( a  +) - y ' ( a - )  = [4.31] 

E 

where a is the colloid surface charge density 

zoe 
a = 47ra 2 . [4.32] 

The solution for r < a is 

y ( r )  4,'__8e 2 noZo (a 2 _ r2 ) + y ( a )  [4.33] 
6 

and the boundary condition [4.31] becomes 

47rile 
y ' (a  +) = a(1 + ~b). [4.34] 

Notice that [4.30]-[4.34] are identical to 
[4.20]-[4.22]. The factor (1 + ~b) in the 
boundary condition comes from the nonzero 
distribution of charge inside the fixed colloidal 
particle as a result of  the Jellium Approxi- 
mation. 

For large r, the solution to [4.30] and 
[4.31] has the form 

f ie  2 _ e -~r 
y ( r ) - - + - -  y - - ,  r ~ oo [4.35] 

r 

with K given by [4.27]. The constant 37 can 
be determined numerically by solving [4.30] 
and matching the boundary condition at r 
= a (Eq. [4.34]). The effective pair potential 
between two colloidal particles can be ob- 
tained using the following argument. We 
bring together t w o  particles while the remain- 
ing (No - 2) colloidal particles are treated in 
the Jellium Approximation. The interaction 
is taken to arise from the overlap of  the 
mean electrostatic potential profile or equiv- 
alently the ionic atmosphere around each 
panicle. In the superposition approximation,  

the interaction potential is given by the usual 
formula 

ueff(r) e237 2 e- , r  
- [4.36] 

E r 

Nonlinear Jellium Approximation, finite particle size 

To establish the equivalence between [4.36] 
and [4.29] we note that from the solutions 
C~o(r) to [4.15]-[4.18], the Fourier transform 
of  the potential y ( r )  can be written in terms 
of ~o(k) as 

[z 0 q- ~, l'li£icSo(k)] 
4~r3e 2 i=1 

y ( k )  = - -  
(k 2 + K 2) 

Zol~e z 
+ /~(k), [4.37] 

E 

where/~(k) is the Fourier transform of  

1 1 
p ( r )  . . . .  , r < a 

a r 

= 0, r > a. [4.38] 

Assuming as before that the pole that con- 
tributes to the asymptotic form ofy( r )  is that 
at k = &, we establish the required result, 
namely, 

37 = f ( & ) .  [4.39] 

We can see that the effective pair potential 
derived from the Jellium model using either 
the Ornstein-Zernike equations or a super- 
position argument lead to identical results. 
However, the superposition approach is much 
easier to implement  in practice. Indeed the 
effective pair potentials for the linearized 
cases, [3.40] and [4.13], follow immediately 
from solving the linearized form of  [4.30]. 

5. RESULTS AND DISCUSSIONS 

Having obtained an effective colloid-col- 
loid pair potential, [4.36], the mult icompo- 
nent colloidal system can now be treated as 
an effective one-component  fluid consisting 
of  colloidal panicles. Certain properties of  
the system can be determined from the effec- 
tive one-component  fluid but we reiterate 
that the calculation of the thermodynamics  
of '  the mult icomponent  system requires a 
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knowledge of the effective one-body potentials 
arising from ion-ion and ion-colloid inter- 
actions, as demonstrated for the linear case 
in Section 3. However, the colloid-colloid 
pair distribution function goo(r) = 1 + hoo(r) 
or equivalently the structure factor 

4~r fo °~ S(k) = 1 + ~ no sin krh(r)rdr 

= 1 + no]7oo(k) [5.1] 

can be obtained using the effective one- 
component fluid and methods of liquid-state 
physics. The particle-particle structure factor 
of strongly interacting colloidal systems has 
been measured by both light and neutron 
scattering. In this section we compare some 
of these measurements with predictions based 
on the Jellium Approximation. Due to the 
difference in the wavelength of the radiation, 
light (X ~ 5000/~) and neutron (X ~ 10 A,) 
scattering can be combined to examine the 
structure of a colloidal system over four 
orders of magnitude in the volume fraction. 

The experimental systems we have chosen 
to examine in detail are aqueous dispersions 
of charged polystyrene spheres (2, 13, 14). 
These dispersions are first prepared at various 
known particle-volume fractions and are then 
treated with ion-exchange resin to remove 
excess electrolytes. Ideally such systems would 
then only contain charged colloidal particles 
and their counterions. In practice, there will 
be small amounts of residual electrolyte pres- 
ent. The added electrolyte concentration of 
the system is then controlled by adding 
known amounts of salt. Provided the amount 
of added salt is significant, the small quantity 
of residual electrolyte present in the ion- 
exchanged system may be neglected. With 
this procedure, the total ionic composition 
of a given colloidal system is known. In 

. . . .  ~ ionic composition of a colloidal 
~h has been dialyzed against an 
'eservoir of given concentration is 
without a further determination 
concentration within the colloidal 
s distinction is important since 
ers needed for the theory are the 

particle size, charge, and volume fraction as 
well as the molarity of added salt in the 
colloidal system, which in general is not the 
same as the ionic strength of the equilibrium 
electrolyte reservoir. This difference is a con- 
sequence of the Donnan equilibrium which 
results in the familiar coion exclusion effect. 

The theory we have presented predicts, 
without any adjustable parameters, an effec- 
tive colloid-colloid pair potential of the form 
Ar- le  -~r. The parameters A and ~ depend 
only on certain measurable properties of the 
multicomponent colloidal system, such as 
the colloid particle size, charge, and concen- 
tration and the amount of added electrolyte. 
Having obtained an expression for the effec- 
tive pair potential we can determine the 
structure factor by using one of the many 
approximate methods of liquid-state physics. 
Our model of the colloidal system as an 
asymmetric electrolyte has an analytic solu- 
tion in the Mean Spherical Approximation 
but, as we noted in a previous paper (4), this 
gives nonsensical results. The Hypernetted 
Chain Approximation gives sensible results 
but requires a time-consuming iterative pro- 
cedure for its solution. For an effective pair 
potential of the form "-~r-te -`r, the Rescaled 
Mean Spherical Approximation (RSMSA) 
(15) is a rapid, convenient, and reasonably 
accurate method for calculating the structure 
factor S(k). All structure factors in this paper 
are calculated using the RSMSA. The 
RSMSA is not a predictive theory but an 
ingenius algorithm for calculating the struc- 
ture factor between particles when the parti- 
cle-particle interaction potential is of the 
screened Coulomb form. By comparing with 
Monte Carlo simulations of the same poten- 
tial (15), it has been found that the RSMSA 
(as with the hypernetted chain approxima- 
tion) underestimates the fluid structure. That 
is, the height of the first peak of the structure 
factor can be too small by as much as 20% 
when S(kr, ax) ~ 2, /q~ax being the position of 
the first peak. This point must be kept in 
mind when comparing theory with experi- 
ments. 

In the experimental system considered here 
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(13, 14) the polystyrene particles have a 
mean radius of a = 160 A and a charge of  
z0 = 840 (surface charge density 4.2 #C 
cm-2), which is obtained by conductometric 
titration. 

In Fig. 1 we can see the variation of  the 
effective colloid-colloid pair potential U err 
(cf. [4.36), with particle charge. The colloidal 
system is at volume fraction 4~ = 10 -3 and 
contains 5 × 10 -7 M 1:1 added electrolyte. 
The small amount  of added salt is meant to 
represent a system treated by ion-exchange 
resins. We note that upon decreasing the 
particle charge Zo from 840 to 300, the effec- 
tive pair potential increases in range. The 
reason for this behavior is that at high charges, 
Zo, the constant 37 in U eft is insensitive to the 
value of Zo. Therefore the dominant  effect of 
decreasing the particle charge is to decrease 
the magnitude of  K and this results in an 
increase in the range of U err (cf. [4.23], [4.27], 
and [4.36]). On further decreasing Zo from 
300 to 100, the magnitude of  U e~, through 
its dependence on 37, is seen to decrease with 
particle charge (cf. [4.13]). At the same time, 
the range of  the pair potential still increases 
because r decreases with particle charge. 

The variation of  the effective pair potential 
with volume fraction is illustrated in Fig. 2. 
We note that an increase in the particle 
number density is accompanied by an in- 
crease in the counterion concentration which 
then results in an increase in the screening 
between the particles. As a consequence the 
range of the effective pair potential becomes 

20 

0 
15 

~o\ \\ 

10 20 30 ~0 
r / o  

F[c. 1. The effective pair potential, uefr(r), at various 
particle charges: panicles radius a = 160 A, volume 
fraction 4, = 10 -3, 5 X 10 -7 M 1:1 added electrolyte, 
temperature 298°K, dielectric constant e = 78. 

i , ~ 1  , i , J , 

= 1.' ~°-1 ~ 

0 ' ' ' ' ' 
10 20 30 40 50 

r/o 

FIG. 2. The effective pair potential, uefr(r), at various 
particle-volume fractions: panicle charge, zo = 300, other 
details as in Fig. 1. 

shorter. This phenomenon is similar to the 
intuitively more familiar situation in which 
excess electrolyte is added to the system at 
constant-volume fraction, see Fig. 3. 

We have seen so far that the effective pair 
potential is dependent on the particle number 
density, the particle charge and the amount  
of added salt. If  we rewrite [4.36] as 

ue~(r) = Uoae-~ / r  [5.2] 

the constant U0 will depend on the following 
independent dimensionless parameters: q~-- 
the volume fraction of  colloidal particles; 
( e 2 z o / e k T a ) - - t h e  reduced particle charge; and 
(rsalta), where 

2 4~r~e2 
~salt - ~ n i z  2 [5.3] 

C added salt 

is the Debye parameter for the a d d e d  salt,  

and a is the particle radius. The dependence 
of Uo on these three parameters is summa- 
rized in Fig. 4. This figure permits a quick 
estimate of the volume fraction-dependent 

20 

,x10-3M ~ k . _ ~ ,  
~0 5.0 1~ 15.0 

r/s 

FIG. 3. The effective pair potential, Ueer(r), at various 
amounts  of  added h l electrolyte: panicle charge z0 
= 300, volume fraction ~b = 1%, other data as in Fig. I. 
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FIG. 4. The variation of the coefficient, U0, of the FIG. 5. The colloid structure factor S(k) of polystyrene 
effective pair potential with volume fraction, particle ~partictes that have been treated with ion-exchange 
charge, and added electrolyte concentration. (Se e Eqs. 
[5.2] and [5.3].) K, = K~ta. 

pair potential without having to carry out 
the numerical calculations described in Sec- 
tion 4. 

In Fig. 5 we compare the colloid particle 
structure factor S(k) obtained by small-angle 
neutron scattering (SANS) (14) with our 
theoretical predictions. The experimental 
system has been described briefly at the be- 
ginning of this section (see original paper for 
more details). For the theory we use the 
effective pair potential given in Section 4, 
[4.36], which is based on the nonlinear Jel- 
lium Approximation. As discussed earlier the 
structure factors were then obtained from 
this effective pair potential using the RSMSA. 
The input parameters are: particle radius 
a = 160 A, and particle charge Zo = 300. 
The reason for using the value for the particle 
charge will be discussed below. Apart f rom 
the assumptions in the Jellium Approxima- 
tion, the theory contains no other adjustable 
parameters. The agreement between theory 20 
and experiment is only fair. The theory tends 
to underestimate the height of  the first peak. 

o 

This discrepancy can be accounted for by c~ 1.0 
the fact that the RSMSA tends to underesti- 
mate the height of  the peak of S(k) - -by  
~20% when S(k) ~ 2. Beyond the first peak, 
there are considerable differences between 
theory and experiment. 

It should be said that the ability to match 
the structure factor does not constitute a 

resins (IER) at volume fractions of 4 and 13%. 
]~oints~experimental small-angle neutron scattering (14). 
Curves--theory based on the effective pair potential 
given by Eq. [4.36] and a particle charge z0 = 300. Other 
data as in Fig. 1, see text for details. 

strong test of  a given theory. Indeed, a hard- 
Sphere model, with an adjustable hard-sphere 
diameter that varies with volume fraction 
can also provide a good fit to the measured 
S(k). The  important  observation here is that 
the use of  the pair potentials obtained by 
conventional double-layer theory, which takes 
no account of  the role of  the counterions in 
screening the electrostatic interaction, or that 
obtained by the cell theory (16) will result in 
considerable disagreement with the experi- 
mental structure factor (17). Indeed both 
theories c a n n o t  be applied to an ion-ex- 
changed system which contain no added 
electrolyte. 

i ' ct =160A 

13% ^ Zo=300 - 
\ o IER 

I \  ,"~'/° i \ /  ,\ 

I 
I 
I 
I 
I 

O! I ,  I 

0 0-5 1 . 0  1-5×103 

FIG. 6. The colloid pair correlation g(r) corresponding 
to the theoretical results in Fig. 5. 
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The colloid-colloid pair correlation func- 
tions corresponding to the cases shown in 
Fig. 5 are given in Fig. 6. For such systems, 
the distance between nearest neighbors can 
be much larger than the physical size of  the 
particles because of  the strong electrostatic 
repulsion. For a continuous potential of  the 
form given by [4.36] one expects the function 
goo(r) to approach zero smoothly at small 
values of  r (17). The cusps at goo(r) = 0 
observed in Fig. 6 are artifacts of  the approx- 
imations of  the RSMSA. 

As a summary of all available experimental 
results we have plotted in Fig. 7 the height 
of  the first peak of  the structure factor, 
S(kma~) as a function of  particle-volume frac- 
tion for various amounts  of  added salt. The 
magnitude of S(k,~ax) can be regarded as a 
measure of  the degree of  interparticle struc- 
ture in the system. The theoretical curves are 
calculated using the effective pair potential 
given by [4.36] with a particle charge z0 
= 840, which corresponds to the titratable 
charge. There is only qualitative agreement 
between theory and experiment. However, 
we do observe that for an ion-exchange sys- 
tem at a volume fraction of ¢ = 5 × 10 -4, 

there is still considerable structure between 
the particles even though the volume fraction 

2.5 i i i i i 

~t~ a =160A 
+ Zo= 8/.0 

20  

CO 15 ,,LS 
0 - 3 N ) ~ .  5x10-7N 

1-0' ,~1 N I I 
10-1 10-2 10-3 10-4 10-5 

tp 

FIG. 7. The height of the first peak of the colloid 
structure factor, S(k~x), of a polystyrene-latex dispersion 
as a function of volume fraction at various amounts of 
added salt. Points--experimental results from neutron 
(14) and light (13) scattering (the latter indicated by LS): 
A, ion-exchange resins; +, 10 -4 M; 0, 10 -3 M; and m, 5 
X 10 -3 M. Curves--theory based on the effective pair 
potential of Eq. [4.36] with z0 = 840 and RSMSA. Other 
data as in Fig. 1, see text for details. 
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FIG. 8. Variations of the first peak of the colloid 
structure factor S(/c~.~) with particle charge for particle 
radius a = 160 and 230 /~. The calculations are based 
on the effective pair potential given by Eq. [4.36]. 

has been lowered by about two orders of  
magnitude. Due to the large interparticle 
spacing at this low-volume fraction, the mea- 
surement was taken by light (13) rather than 
neutron scattering. This feature is predicted, 
qualitatively at least, by our theory. The 
explanation of this observation can be found 
in Fig. 2 in which a reduction in volume 
fraction results in a decrease in the counterion 
concentration so that the range of  the elec- 
trostatic interaction then increases, thereby 
maintaining the interparticle structure in spite 
of  the increase in the interparticle spacing. 
The small vertical lines in Fig. 7 indicate the 
volume fractions at which the contribution 
to the screening parameter, K, from the coun- 
terions is equal to that from the added salt, 
cf. [4.14]. 

Before we discuss the discrepancies between 
theory and experiment shown in Fig. 7, let 
us first examine the behavior of  S(kma~) as a 
function of  particle charge and particle size 
(Figs. 8 and 9). From the result in Fig. 1 we 
have already seen that a reduction of  the 
particle charge from 840 can actually result 
in an increase in the effective interparticle 
repulsion. This observation is again reflected 
in the behavior of  S(km~x) with particle charge, 
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I ' I = I ' I 

2.0 | ' no=l'6xlO J // ] 
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lOO 200. 300 
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FIG. 9. Variations of the first peak of the colloid 
structure factor S(kmax) with particle size at various 
colloid particle number densities, no (cm-3). The calcu- 
lations are based on the effective pair potential given by 
Eq. [4.36]. 

Zo (Fig. 8). As the charge is reduced f rom a 
high value, the interparticle structure initially 
increases. There must,  however, be a maxi-  
m u m  (at z0 ~ 300) since at zero charge, the 
interparticle correlation must  be negligible at 
such low-volume fractions. 

The results in Fig. 10 are identical to those 
in Fig. 7 except we have used a particle 
charge o f  Zo = 300 (with a corresponding 
reduct ion in counter ion concentra t ion to 
maintain  electroneutrality) instead o f  840. 

I i I I I 

2.5 o=lr0A 

2,0 ~ Z°=300 

I .~ 1.5 - 

1.0 I I 
10-1 10-2 10-3 10 -/. , 10-5 

tp 

FIG. 10. As with Fig. 7 except a particle charge Zo 
= 300 was used to calculate the theoretical curves. 

The resultant improvement  in the agreement  
between theory and experiment  is evident on 
compar ing Figs. 7 and 10 (see also Fig. 5). 
The use o f  a lower particle charge m a y  be 
explained in somewhat  vague terms such as 
"counter ion  binding." However,  it m a y  not  
be easy to justify this in terms of  the chemistry 
o f  the strongly acidic surface sulfonate groups. 
We shall not  a t tempt  to do so here. Before 
we adjusted the particle charge our  theory 
contained no adjustable parameters  as all 
input parameters can be determined experi- 
mentally. The use o f  a lower charge represents 
the introduct ion o f  a single parameter  which 
does not  vary with particle size, charge, vol- 
ume  fraction, or  electrolyte concentrat ion.  
Its use may  be mitigated against the fact that  
it can improve agreement  between theory 
and experiment over a range o f  electrolyte 
concentrat ions and over a very wide range 
o f  volume fractions. The discrepancy in 
S(kmax) for volume fractions ~b ~ 0.1 can be 
largely explained by the slight errors in the 
use of  the RSMSA to calculate the structure 
factors. 

In Fig. 11 we show the variation o f  the 
position o f  the first peak o f  the structure 
factor, kmax, as a funct ion o f  volume fraction 
for various amoun t s  o f  added salt. The par- 
ticle charge was taken to be z0 = 300. In  
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FIG. 11. Location of the first peak, kma~ of the colloid 
structure factor as a function of particle-volume fraction 
q~ for various amounts of added NaCI. Experimental 
points are from neutron scattering (14) (see Fig. 7), 
theoretical curves are based on Eq. [4.36]. The ion- 
exchanged system is modeled with 5 X 10 -7 M of added 
electrolyte. 
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general, there is good agreement between 
theory and experiment except for the salt 
concentration of  5 X 10 -3 M. At this highest 
electrolyte concentration, the peak of  the 
structure factor is very small S(kma.) >~ 1 (cf. 
Fig. 10) and is also very broad. As a result, 
it may be difficult to determine the experi- 
mental peak position to the same accuracy 
as for those at lower salt concentrations. 

Thus far it may be argued that the exper- 
imental support for the existence of our 
volume fraction-dependent potential may be 
somewhat tenuous in that there is only one 
set of light-scattering studies (13) (see Figs. 7 
or 10). However, there is an earlier light- 
scattering study on the structure of a similar 
polystyrene-latex system which seems to sup- 
port our prediction of colloidal structuring 
over a large-volume fraction range (2). The 
system in question consists of  polystyrene 
spheres, a = 230 A radius, particle charge z0 
= 500 (1.2 /.tf/cm 2 as determined by con- 
ductometric titration), treated by ion-ex- 
change resins. The structure factors were 
determined both by static and dynamic light- 
scattering methods. Although there was some 
scatter in the peak height, S(km,x), it can be 
seen in Fig. 12 that there is better than 
qualitative agreement between theory and 
experiment. In this case it is not possible to 
improve the agreement between theory and 
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FIG. 12. The height of  the first peak in the colloid 
structure factor, S(km~) of  a polystyrene-latex dispersion 
as a function of volume fraction. The system has been 
treated by ion-exchange resins. Points--experimental 
results from light scattering (2). Curves--theory based 
on Eq. [4.36]. 
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FIG. 13. An illustration of the volume fraction depen- 
dence of S(kmax) for density-dependent and -independent 
potentials. Solid curves--density-dependent potential, Eq. 
[4.36]. Broken curves--density-independent potentials 
chosen to coincide with Eq. [4.36] at ~b = 10-' ,  10 -2, 
10 -3 , and 10 -4 . 

experiment by adjusting the particle charge. 
The titratable charge z0 = 500 is already very 
close to the maximum of  the S(kmax) vs z0 
curve shown in Fig. 8. 

From a theoretical viewpoint, the difference 
between the predictions of a density-depen- 
dent and density-independent pair potential 
can be quite marked. In Fig. 13 we have 
reproduced the behavior of  S(kmax) as a func- 
tion of volume fraction, ~b for an ion-ex- 
changed system which is characterized by a 
volume fraction-dependent pair potential. 
Superimposed on this curve are the variations 
of S(km,,) with ~ for various volume fraction- 
independent potentials. These volume frac- 
tion-independent potentials are chosen to be 
the same as the volume fraction-dependent 
pair potential at various fixed volume frac- 
tions. The general observation is that with 
volume fraction-independent pair potentials, 
the particle structure only persists over about 
1 decade of volume fraction. However, with 
the volume fraction-dependent potential, in- 
terparticle correlations can remain significant 
over four orders of  magnitude in the volume 
fraction. 

In summary, we have demonstrated theo- 
retically that the effective double-layer pair 
interaction between highly charged particles 
in a low-salt environment can be quite dif- 
ferent from that predicted by conventional 
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double-layer theory. The reason is that one 
must take into account the role of the coun- 
terions associated with the colloidal particles 
in screening the electrostatic interaction. One 
interesting result of  the theory is that the 
effective pair interaction between colloidal 
particles in such situations will only increase 
with the particle charge when the latter is 
small. At sufficiently high charges, the asso- 
ciated increase in the counterion concentra- 
tion can actually screen to reduce the elec- 
trostatic repulsion between the particles. An- 
other consequence of screening due to the 
counterion is that the pair interaction be- 
comes dependent on the volume fraction of 
particles in the system, with the result that 
interparticle correlations can persist over 4 
decades of variation in the volume fraction. 
While available experimental support for this 
prediction is reasonably convincing, there 
remains a strong case for a detailed investi- 
gation of  a single well-characterized system 
over a wide range of conditions. 
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