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Ion Diffusion near Charged Surfaces 
Exact Analytic Solutions 

Derek Y. C. Chan 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

The problem of single-ion diffusion in the electric double layer near a planar 
surface has been studied within the Smoluchowski-Gouy-Chapman descrip- 
tion. For the case of a symmetric electrolyte against a charged planar surface 
exact analytic solutions have been obtained. Explicit results for the cases 
of absorbing and reflecting boundary conditions at the charged surface are 
given. Solutions for other boundary conditions can be readily derived from 
the general solution. 

1. Introduction 

Much effort had been expended in obtaining a theoretical understanding of the equi- 
librium distribution of ions in the electrolyte in the vicinity of charged surfaces. As a 
consequence the utility and limitations of existing theories are sufficiently well known. 
For instance, with the ‘primitive’ model electrolyte (ions in a continuum solvent) machine 
simulations of such models have provided bench-mark results which can be tested 
against established and often-used theories.’ As a consequence, it is possible in some 
cases to attribute any disagreement between theory and experiment to the theoretical 
model rather than to the approximate theoretical treatment of such models. However, 
it is only more recently that there has been a more systematic theoretical effort to examine 
the dynamical properties of ions in a non-uniform electroylyte. 

A general model for describing the classical, as opposed to the quantum-mechanical, 
properties of an electrolyte at a charged interface would be to treat the ions as well as 
the solvent as distinct species with prescribed interaction potentials between the various 
species. We call this the ‘civilized’ model electrolyte. However, it will be very difficult 
to make much progress by analysing such a model because of its inherent complexities. 
In any case, many properties of interest, such as the equilibrium ionic density, are not 
very sensitive to the fine details embodied in the civilized 

The next level of abstraction is to account for the properties of the solvent by using 
a set of macroscopic parameters. For instance, the dielectric constant, E ,  is used to 
account for the effects of the solvent on the coulombic interactions between the ions, 
and the diffusion constant, 0, to account for the coupling between the relative motion 
between ions and the solvent molecules. The electrolyte is thus modelled as a collection 
of ions immersed in a dielectric and viscous continuum of prescribed properties; this 
constitutes the primitive model electrolyte. The formalism which furnishes the connec- 
tions between the civilized and the primitive model electrolyte is well 

In treating the dynamical properties of a primitive model electrolyte near charged 
surfaces, one can begin with the many-body Fokker-Planck equation in an external 
field. This starting point requires that: (1) the relaxation of ionic and solvent momenta 
and of solvent configuration is fast compared to the time-scale for relevant changes in 
the ionic configuration, (2) the interaction potentials between the various ionic species 
are slowing varying over the ionic momentum correlation length [ D( m/kT)]’/’, and 
(3)  the solvent-mediated dynamic coupling between the ions and with the surface may 
be neglected. As has been demonstrated in an earlier paper, we can then project out 
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2272 Ion Difusion near Charged Surfaces 

all but one of the particle coordinates to obtain a one-particle diffusion equation involving 
an effective external field that is time-dependent." The time-dependence arises because 
of the possibility of correlation of ionic positions at different times. However, if we 
further assume that as the tagged ion moves, the remaining ions in the system can adjust 
their configurations instantly, then such time correlations can be ignored, and the result 
is a one-particle diffusion equation in which the ion moves in the one-particle equilibrium 
potential of mean force due to the presence of charged interface. This was called the 
'instantaneous relaxation approximation." 

If in the spirit of the Poisson-Boltzmann theory for treating the equilibrium properties 
of an electrical double layer, the exact one-particle equilibrium potential of mean force 
is approximated by the product of the ionic charge ( v i e ) ,  and the mean electrostatic 
potential +( r ) ,  one obtains the Smoluchowski-Poisson-Boltzmann approximation for 
describing the diffusion of a single tagged ion near charged surfaces. The resulting 
diffusion equation for the one-particle propagator f(r, t ) ,  i e .  the probability density of 
finding the particle at r at time t, given an initial position r, at t = 0, is of the form 

where D is the single-ion diffusion constant in the solvent and p =  l/kT. In the 
instantaneous relaxation approximation w (  r )  is the exact one-particle equilibrium poten- 
tial of mean force. In the Smoluchowski-Poisson-Boltzmann approximation w( r )  is 
approximated by z,e+( r ) ,  where the mean electrostatic potential +( r )  satisfies the 
Poisson-Boltzmann equation: 

v'+( r )  = (4rre/ F )  C nivi exp [ -Pvie+( r ) ] .  
1 

Here E is the dielectric constant of the solvent and ni is the number per unit volume of 
ions of species i in the bulk electrolyte. 

The system of a set of counter-ions, but no co-ions, in between two identically and 
uniformly charged surfaces has been studied by stochastic dynamic simulation methods.1z 
This simulation is equivalent to the solution of the many-body Fokker-Planck equation 
that describes the space-time evolution of the ionic system. Analytic solutions for the 
one-particle propagator in the Smoluchowski- Poisson-Boltzmann approximation have 
also been found. l3  For univalent ions, the Smoluchowski-Poisson-Boltzmann treatment 
appears to provide a sufficiently accurate description of the ion dynamics in the direction 
normal to the charged surfaces, subject to the limitation imposed by the Poisson- 
Boltzmann approximation of the potential of mean force. With the instantaneous 
relaxation approximation, i.e. when the Smoluchowski treatment of the diffusion process 
is coupled with the exact equilibrium potential of mean force, the results for the 
one-particle propagator are essentially identical to those obtained with stochastic 
dynamic simulations." 

In this paper we consider the problem of single-ion self-diffusion in a symmetric 
electrolyte near a single planar charged surface. This is a system commonly encountered 
in colloid and surface science and has applications in which one is required to know 
the diffusion processes of co-ions and counter-ions within the electrical double layer. 

We consider the case in which the diffusing ion is a member of one of the species 
forming the symmetric electrolyte, which may be a counter-ion or co-ion. As discussed 
above, the diffusion process can be described by a one-particle Smoluchowski diffusion 
equation in an external field. The external field under which the diffusing ion moves is 
in fact generated by other ions and the charged surface as a result of mutual coulombic 
interactions as well as thermal motion of the ions. We shall use the Smoluchowski- 
Poisson-Boltzmann approximation, in which this external potential is approximated by 
the product of the charge of the diffusing ion and the mean equilibrium electrostatic 
potential in the diffuse layer, i.e. we use the same potential of mean force as in the 
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D. Y.  C. Chan 2273 

Gouy-Chapman theory for the equilibrium properties of the double layer. I 4 - l 6  To avoid 
confusion with earlier work we shall call this the Smoluchowski-Gouy-Chapman 
approximation. 

Owing to the simplications afforded by the Gouy-Chapman treatment of a symmetric 
electrolyte, the cases of a diffusing co-ion or counter-ion proceed along almost identical 
lines. The general problem of diffusion in a semi-infinite domain will be set up in the 
next section, and a general solution to the diffusion equation will be given in section 3. 
The specific solutions for the diffusion of co-ion and counter-ions with absorbing and 
reflecting boundary conditions are given in sections 4 and 5 .  Detailed numerical results 
are presented in section 6. Those readers who are not interested in the detailed derivations 
can proceed on to the results sections of sections 4 and 5 as well as to section 6 without 
loss of continuity. 

2. General Formulation 

Consider the generic problem of the diffusion of a single tagged particle in the semi- 
infinite half space z > 0. The particle is subject to an external potential w ( z )  which is 
only a function of the normal coordinate z. The Smoluchowski equation for the 
one-particle propagator f( r, t ) ,  reads 

df(r, t ) / d t  = DV{[V+p dw(z)/dz]f(r, t ) } .  

We define the Fourier transform of the propagator with respect to the coordinates 
p = ( x , y )  by 

F( k, z, t )  = d2p exp (ik p)f( r, t ) .  (2.2) I 
In anticipation of the electrolyte problem which has the Debye length ( 1 / ~ )  as a natural 
length scale, we introduce the dimensionless quantities 

[G K Z  (2.3) 

T = K 2 D t  (2.4) 

as well as the non-dimensional propagator p( q, 6, T )  

The Smoluchowski equation for p(q, 5, T )  is then 

d 2 p / d 1 2 +  (du/d()(dp/d5)+ (d2u/d t2  - q2)p = d q / d ~ .  (2.8) 

The particle is taken to be at the initial position (po, zo) at t = 0. In view of the 
cylindrical symmetry in the x- and y-directions we can, without loss of generality, choose 
the origin of our coordinate system so that po = (0,O). As a result, the initial condition 
for p( q, [, T )  becomes 

d q 7  5 7  = 0) = m- 5"). (2.9) 
Using the Laplace transform 

(2.10) 
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2274 Ion Digusion near Charged Surfaces 

the partial differential equation (2.8) can be converted into an ordinary differential 
equation for @( q, 6, s): 

6’’ + u ’@ ’ - ( s + q - 24’’) 6 = - s ( 6 - to) (2.1 1) 

where the prime denotes a derivative with respect to 6. Eqn (2.1 1) can be cast into the 
normal form with the substitution 

@(q,  6,s) = 4% 5, s )  exp [-u(5)/21 (2.12) 

to give a generic differential equation for u(q ,  6, s)  which must be solved for the diffusion 
problem 

u” - [ s + q2 + ( u ’ ) 2 /  4 - u ”/ 21 u = - exp [ u ( to)/ 21 6 ( 6 - to). (2.13) 

The derivation of this equation only involved the assumption that the external potential 
w ( z )  is a function of the normal coordinate z, but independent of x and y .  

We also need to specify boundary conditions before the solution to eqn (2.13) can 
be completely determined. As z -P 00 or 6 -+ 00 we expect u( q, 5, s) and all its derivatives 
to vanish. At ( = z = O  we shall consider two types of boundary conditions for the 
propagator: 

(i) the absorbing boundary condition requires 

f( r, t ) lZ=O = 0 at z = 0 (2.14a) 

which translates to the condition 

utq,  6, s)It=o= 0 (2.14b) 

(ii) the reflecting boundary condition, which requires the flux to vanish: 

J , ( z=O)= [aflaz+P(dw/dz)f],=,=O (2.15a) 

implies 

(2.15 b )  

We observe that a time-independent solution of eqn (2.1) which satisfies the reflecting 

(2.16) 

boundary condition (2.15a) is 

f(r, t >  = g(p> exp [-Pw(z>l.  
However, the requirement that f( r, t )  is normalized, namely 

(2.17) 

mean that if the potential of mean force w ( z )  -P 0, as z -+ 00, then a solution of the 
form of eqn (2.16) is unacceptable, as it cannot meet the normalization condition over 
z in eqn (2.17). 

We now consider the case of diffusion under a Gouy-Chapman potential of mean 
force. 

3. The Smoluchowski-Gouy-Chapman Model 

According to the Gouy-Chapman t h e ~ r y ’ ~ - ’ ~  the mean electrostatic potential +( z )  in a 
symmetric v : v electrolyte occupying the half space z > 0 adjacent to a planar charged 
surface at z=O bearing a uniform surface charge is given by the Poisson-Boltzmann 
equation: 

d2t,b(z)/dz2 = ( S m v e / E )  sinh [Pve$(z)]. (3.1) 
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D. Y. C. Chan 2275 

The Debye screening parameter K is given by 

K~ = 8n-npu2e2/ E .  

Y ( 5 )  = P.e+(z) 

Introducing the dimensionless potential 

(3.2) 

(3.3) 

where 5 = KZ, the Poisson-Boltzmann equation becomes 

Y”( 4 )  = sinh Y (  5). (3.4) 

In the Gouy-Chapman model the one-particle potential of mean force experienced 
by an ion of valence ( q u )  is 

w (  z )  = que+( z ) .  (3.5) 
Since we confine ourselves to the case in which the tagged ion belongs one of the species 
of the v :  v symmetric electrolyte, we know that q = kl .  As a result the non-dimensional 
potential of mean force u ( 5 )  = p w ( z )  = Pqve$(z)  also obeys the differential equation 

~ “ ( 4 )  = sinh ~ ( 4 ) .  (3.6) 

( 3 . 7 4  

The boundary conditions on u(  5) are u(  5) --+ 0, as 5 --* CY) and 

u ( 0 )  = - 1 Yo/ = - 1  p ve+ ( 0 )  I, for counter-ions 

= 1 Yo( = Ipue@(O)l, for co-ions. (3.7b) 

Using the boundary conditions, the first integral of eqn (3.6) is 

u’( 5) = -2 sinh [ u (  5)/2] (3.8) 
and the explicit form of u ( 4 )  is 

y = tanh [ u(0)/4]. (3.10) 

Using eqn (3.6) and (3.8) in eqn (2.13), the differential equation for the function 
v / (  q, 6, s) becomes 

v”(q,  5, s) -[P2-{1 -exp [-45)1)/2lv(q, 5, = -exp [u(50)/2lW-50) (3.11) 
where 

p 2 = s + q 2 E s + k 2 / K 2 .  (3.12) 

The two independent solutions of the homogeneous equation [right-hand side of eqn 
(3.11) equals zero] are 

MI, 5; 4 = exp (P5”P - EG91 (3.13) 

%(q ,  6, s) = exp ( -P5”P + W ) I  (3.14) 

where 

E ( 5 )  = exp C-u(S>I. (3.15) 

That eqn (3.13) and (3.14) are indeed solutions of the homogeneous equation can be 
verified by direct substitution and using eqn (3.8) to simplify the results. 

The particular integral of eqn (3.11) is 

 UP,(^, 6, S )  = -v<(q,  (mi”, s)v>(q,  S m a x ,  s ) / [  WE(50)l (3.16) 
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2276 

where 

Ion Difusion near Charged Surfaces 

(3.17a) 
(3.17b) 

and W is the Wronskian 
W E  U < U ;  - Z I ~ U >  = -2p(4p2- 1). (3.18) 

The general solution of eqn (3.1 1) which vanishes in the limit 5-  a is 

v(q,  6, S )  =exp (-pI~-~oI)[2p-E(5min>I[2p+E(tmax)I/[2p(4p2-1)E(~0)I 
+ A  exp (-POPP + E ( 0 l  (3.19) 

where A is a constant to be determined by applying the boundary condition at 5=0.  
The cases of absorbing and reflecting boundaries will be considered in detail in the next 
two sections. 

4. Absorbing Boundary Condition 

With the absorbing boundary condition at 8 = 0, we have v(q,  5 = 0, s) = 0, so that the 
constant A in eqn (3.19) is 

The solution to eqn (3.11) becomes 

with 

A = -exp (-P50){PP - E(0)"P + ~ ( 5 0 ) 1 } / { 2 ~ ( 4 ~ ~  - 1)E(50)[2p+ E(0)I). (4.1) 

d q ,  5,s) = G(5, P)/[2P(4P2 - l)E(SO)l (4.2) 

G(5, P ) = ~ X P  ( - ~ l ~ - ~ ~ l ) [ ~ ~ - ~ ( ~ ~ i ~ ) I [ ~ ~ + ~ ( ~ m ~ x ) l  

-exp [ - P ~ 5 + 5 o ~ l ~ ~ p - ~ ~ ~ ~ 1 ~ ~ ~ + ~ ~ ~ 0 ~ 1 ~ ~ ~ + ~ ~ 5 ~ 1 / ~ ~ ~ +  E(0)I (4-3) 
tmin=min(t, t o ) ,  S'max=max(t, 601, E ( C ) = ~ X P [ - ~ ( ~ ) / ~ I  and p 2 " s + q 2 -  

Using eqn (2.12), namely = v exp( -u/2), the non-dimensional propagator 
q ( q ,  5, T) can now be found by an inverse Laplace transform 

9 ( q , t , 4  = (2.rri)-"E(5)/E(50)1 J- ds exp (SdG(5, P)/[2P(4P2 - 111 (4-4) 

where the path of the integration (I) lies to the right of all singularities of the integrand 
on the complex s-plane and runs from -im to + i a  (see fig. 1). The points p = *2 are 
not poles of the integrand in eqn (4.4), since the term G(6, p )  also vanishes at p = *2. 
The only singularity of the integrand is a branch cut along the negative real s axis, 
extending between the branch point s = -q2 ( q  real) and s = -a. 

Using the Cauchy integral theorem, the contour ( I )  in eqn (4.4) may be translated 
to go around the branch cut along contours (11) and (111) as indicated in fig. 1, so that 
eqn (4.4) for the non-dimensional propagator becomes, after some algebra 

q ( q ,  5 , T )  = ( ~ W [ E ( S ) / E ( ~ ~ ) I  
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111 -q2  
A 

I 

I1 

, c+im 

I 

c-ioo 

Fig. 1. Contours for the inverse Laplace transform in the complex s-plane and the location of 
the branch cut. 

Using eqn (2.2) and (2.7) the inverse Fourier transform over the variable k = Kq can 
now be carried out to recover the propagator in terms of r and t 

f(r, t )  = ( 2 ~ ) ~ ~  d2k exp (-ik p ) F ( k ,  z, t )  

= ( 2 ~ ) ~ ~  d2k exp (-ik* p)K(p(q, 5, T) 

= (477-Dt)-* exp ( -p2/4Dt)~(p(0,  5, T). 

I 
I 

(4.9) 

Eqn (4.7) and (4.9) constitute the final expression for the ion diffusion propagator with 
an absorbing boundary condition at the charged surface. The remaining integral over 
5 in eqn (4.7) cannot be evaluated in closed form, but has to be carried out numerically. 
We pursue this point in more detail in section 6. The two cases of a diffusing co-ion 
or counter-ion rests on the choice of the Boltzmann factor E ( 6 )  = exp [ - u ( 5 ) ]  according 
to the specifications given in eqn (3.6)-(3.10). 

We also introduced the xy-averaged propagator f( z, t ) :  
r 

(4.10) 

Since diffusion in the x- and y-directions is not subjected to an external field, the 
xy-averaged propagator f ( z ,  t )  is very simply related to the full propagator f( r, t ) :  

f(r, t )  = ( 4 7 ~ ~ ~ '  exp ( - p 2 / 4 ~ t ) f ( z ,  t )  

= (47rDt)-' exp (-p2/4Dt)~rp(0, 6, T). (4.1 1 )  
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2278 Ion Diflusion near Charged Surfaces 

From eqn (4.6) we see that the large time limit, t - m ,  behaviour of the non- 
dimensional propagator cp ( q , &  T )  is governed by the analytic properties of the factor 
a+,([, 5 ) / [ a ( 4 6 +  l)] around 5 == 0. With a little algebra, it can be shown that as l---* 0 

@*(5, l ) / [d(4L,  + 0 1  a+ Q(’JZ) (4.12) 

so that in the limit T - a, for some fixed value of 5, we have the asymptotic result 

cp(o,t, T) ==: ( 4 ~ . r r ) - ~ [ ~ ( 5 ) / ~ ( ~ , ) i a ( 5 ) 7 - ~ / *  (4.13) 

with 

4 5 )  = 4 ( 5 +  5O)E(50)E(5)/E(O)+8{1 -[J5(50)/E(O)lH1 -[E(t) /E(O)Il  

- tE(O[I4- 50E(50>1- 60E(t0)[4- @(5)l. (4.14) 

Thus we see that the large time limiting form of the xy-averaged propagator f(z,  t )  
varies as t-’” and the full propagator f( r, t )  varies as t -5 /2 .  This asymptotic limit can 
also be obtained from a direct analysis of eqn (4.4) in the limit r 4 m. 

In the free diffusion limit, u ( [ )  = 0, i.e. E (  5) = 1, the xy-averaged propagator f(z, t )  
reduces to 

(4.15) f ( z ,  t )  =[2(.rrDt)’/”]-’(exp [-(z-z0)*/4Dt] -exp [-(z+z0)*/4Dt]} 

and the full propagator becomes 

f(r, t )  = [2(?rDt)’/’]-’{exp [-(z-z0)*/4Dt] -exp [-(~-z , )~/4Dt]}.  (4.16) 

5. Reflecting Boundary Condition 

When we impose a reflecting boundary condition at the charged surface, we can apply 
the zero-flux condition (2.15) to determine the unknown coefficient A in the general 
solution of the one-particle diffusion equation (3.19) in a Gouy-Chapman double layer. 
Combining eqn (2.156) and (3.19) we find 

x [2P + E(5)1/[2P + E(O) - U’(0)I. (5.3) 
Using eqn (2.12), namely 6 = v exp (-u/2),  the non-dimensional propagator 

q ( q ,  5, T) can now be found by an inverse Laplace transform 

d q ,  5, 7 )  = (27 . r i ) -“E( t>/mo) l  1 d s  exp ( s d H ( 5 ,  P)/[2P(4P2 - 0 1  (5.4) 

where the path of the integration (I)  lies to the right of all singularities of the integrand 
on the complex s-plane and runs from -im to +im (see fig. 1). Again the points p = *2 
are not poles of the integrand in eqn (5.4), since the term H ( 5 , p )  also vanishes at 
p = *2. The only singularity of the integrand is a branch cut along the negative real s 
axis, extending between the branch point s = -9” ( q  real) and s = -m. 
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Using the 
to go around 
eqn (5.4) for 

Cauchy integral theorem, the contour (I) in eqn (5.4) may be translated 
the branch cut along contours (11) and (111) as indicated in fig. 1, so that 
the non-dimensional propagator becomes, after some algebra, 

and is related to the xy-averaged propagator 

f ( z ,  1 )  = I d2pf( r ,  t ) .  (5.10) 

by 
f ( r ,  t )  = ( 4 r ~ t l - l  exp ( - p 2 / 4 ~ t ) 7 (  z, t )  

= ( 4 v ~ t ) - '  exp ( - p 2 / 4 ~ t ) ~ ( p ( 0 ,  6, T). (5.11) 

The large time limit, t - a, behaviour of the non-dimensional propagator q ( q ,  6, 7) 
is governed by the analytic properties of the factor QR( 6, J ) / [ a ( 4 <  + l ) ]  around 6 =r 0. 
It can be shown that as 5 + 0 

@d5, J)/[v%45+ 1 > 1 = J - ' / 2 + ~ ( J 1 / 2 )  (5.12) 

so that in the limit T - 00, for some fixed value of 6, we have the asymptotic result 

0, 6, 7) = [ (74 ' /21-1  exp [ -45)1  

=: [ ( T K ~ D ~ ) ' ' * I - ~  exp [-V~ve+(z)].  (5.13) 

This asymptotic limit can also be obtained from a direct analysis of eqn (5.4) in the 
limit T-+ a. We see from eqn (5.10), (5.11) and (5.13) that the large-time limiting form 
of the xy-averaged propagator f( z, t )  varies as tC1'* and the full propagatorf( r, t )  varies 
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2280 Ion Difusion near Charged Surfaces 

as t-3/2. The time decay is, as expected, slower than the absorbing case, for which 
f ( z ,  t )  and f(r, t) vanishes as t - - 3 / 2  and tCSi2, respectively. Moreover, we can see from 
eqn (5.13) that the spatial distribution of the propagator is simply the equilibrium 
Boltzmann distribution; however, the magnitude of this distribution decays as t - ’ /*  as 
the probability density ‘leaks away into the bulk’. 

In the free-diff usion limit, u (6) = 0, i.e. E (6) = 1 , the xy-averaged propagator f( z, t )  
reduces to 

(5.15) f (  z, t )  = [ 2( nDt)  1/2]--1{ exp [ - (z  - zo)*/4Dt] + exp [ -( z + ~ , ) ~ / 4 D t ] }  

f(r, t )  = [2(~Dt)’/’]-’{exp [-(z - ~ , ) ~ / 4 D t ] + e x p  [-(z+z0)*/4Dt]}. 

and the full propagator becomes 

(5.16) 

6. Numerical Results 

We present results of numerical evaluations of the propagator for a selection of para- 
meters. The propagators are calculated by performing the integral in eqn (4.7) for the 
absorbing case or the integral in eqn (5.7) for the reflecting case. Our results will be 
given in terms of the non-dimensional xy-averaged propagator defined by 

d 6 7  1) = d q  = 0, 6 9 7 )  (6.1) 
where the function q ( q ,  6, T) is given by eqn (4.7) and (4.8) for the absorbing case or 
eqn (5.7) and (5.8) for the reflecting case. Here [= K Z  is the dimensionless distance 
from the surface and T- K2Dt is the dimensionless time. The function ~ ( 6 ,  T) is related 
to the full propagator f ( r ,  t )  as well as the xy-averaged propagator f (  z, t )  = 5 d2pf( r, t )  
by eqn (4.11) or (5.11). Explicitly, q(6, T) is given by 

a2 

~ ( 6 ,  7) = (4.ir)-’IE(O/E(tdl \ d J  exp ( -5~)@(5,5) / [ J~(41+ 0 1  (6.2) 

where the function a(& 5 )  is @A([, 5 )  for the absorbing case [eqn (4.8)] or QR(6, l )  for 
the reflecting case [eqn (5.8)]. The quantity E ( 6 )  is the Boltzmann factor of the diffusing 
ion involving the mean electrostatic potential given by the Gouy-Chapman theory. It 
is defined by eqn (3.6)-(3.10) for co-ion and counter-ions. 

To evaluate eqn (6.2) numerically, we first remove the a dependence in the integrand 
by changing to the new variable 

x = (CT) 1 / 2  

so that eqn (6.2) becomes 

d 6 ,  7) = ( ~ / 2 7 d [ E ( 4 ) / E ( S o ) l  jom d X  exp (-X2)@(6, X 2 / M 4 X 2 +  4. (6.4) 

It is now in the form that we can use a Gauss-Hermite quadrature to evaluate the 
integral.I7 A ten-point rule in the range of the integral (0, a) will afford a very rapid 
evaluation of this integral for various combinations of 5; to and r. Provided the parameter 
values are not too extreme, this method readily gives seven digits’ accuracy or better. 
A Fortran program to calculate ~ ( 6 ,  T )  is available on request. 

Some sample plots of the non-dimensional xy-averaged propagator cp(  5, T) are given 
in fig. 2-6. Free-diffusion results are shown in fig. 2 for both absorbing and reflecting 
boundaries. 

The propagators for counter-ion diffusion with reflecting and absorbing boundary 
conditions are given in fig. 3 and 4. From the results in fig. 3, we see that the propagators 
for counter-ion diffusion with reflecting boundary conditions rapidly attains a monotonic 
profile which is reminiscent of the equilibrium profile for counter-ions. As the magnitude 
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0.4 I 1 

0 1 2 3 4 
5 

0.2 - 

0.1 - 

0 1 2 3 4 
5 

Fig. 2. Non-dimensional xy-averaged free diffusion propagators, P O ( & ,  T) as a function of position 
5 = K Z  for ( a )  absorbing and ( b )  :efieciirig boundary conditions. Various values of the dimension- 

less time 7 = K 2 D t  are indicated. The ? indicates the initial position at &, = 1. 

of the surface potential Yo increases, the faster the propagator attains the monotonic 
profile, with a larger value c p ( [ = O ,  T) at the surface. As expected, this profile will 
eventually become smeared out over the diffusion spatial domain O <  ,$< 00 as time 
progresses. 

The results for counter-ions with an absorbing boundary, fig. 4, indicate that the 
dominant mechanism for the decay of the propagator amplitude is through absorption 
at the surface. Decay by diffusion out to ‘infinity’ is a slower process. We can see this 
phenomenon in the variations of the results as the magnitude of the surface poieniial 
increases. At higher surface potentials the counter-ions are pulled towards the surface 
more rapidly, which facilitates the loss through absorption at the surface. Consequently, 
the propagator amplitude at the same space-time coordinate near the surface decreases 
as the magnitude of the surface potential increases. 

The propagators for co-ion diffusion with reflecting and absorbing boundary condi- 
tions are given in fig. 5 and 6. For the reflecting boundary (fig. 5 )  the decay of the 
propagator amplitude is only via diffusion towards infinity. The lower surface values 
of cp(  6 = 0, T) at higher surface potentials are consequences of the larger electrostatic 
repulsion experienced by the co-ions near the surface. However, because the decay of 
the propagator amplitude by diffusion towards infinity is a relatively slow process, the 
co-ions establish a quasi-equilibrium state in which the magnitudes of the propagator 
maxima at equal times are higher for higher ( i e .  more repulsive) surface potentials. 

The results for co-ions with absorbing boundaries (fig. 6), tell a similar story. The 
decay in the propagator amplitude is now mainly via absorption at the surface. Thus 
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as the surface potential increases, the co-ions are repelled more strongly from the surface. 
As a consequence, the propagator maxima at equal times are again higher for higher 
surface potentials. 

This calculation has contributed some exact analytical results for the ion diffusion 
problem in the Smoluchowski-Gouy-Chapman model. The favourable comparison 
between stochastic simulations and the Smoluchowski-Poisson-Boltzmann treatment 
of the model consisting of only univalent counter-ions between planar charged surfaces' 
would suggest that the present treatment is likely to be fairly good, at least for univalent 
electrolytes. 

I thank Bertil Halle for arousing my interest in this subject, and also Barry Hughes and 
Lee White for providing constant stimulations. This work receives partial support from 
a Melbourne University Special Research Grant. 
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