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Mean First Passage Times of Ions between Charged Surfaces 

Derek Y. C. Chan* and Donald A. McQuarriet 
Department of Mathematics, University of Melbourne, Parkville, Victoria, Australia 3052 

Analytic expressions for the mean first passage times of ions diffusing in the electric double layer between two 
planar charged surfaces have been derived. The theory is based on the Smoluchowski-Poisson-Boltzmann 
model in which the diffusing ion is assumed to move in the potential field given by the non-linear Poisson- 
Boltzmann equation. Numerical results for the mean first passage times of co-ions and counter-ions calculated 
under the non-linear Poisson-Boltzmann model are given for a range of surface separations, surface potentials 
and ionic concentrations. Two simple analytic methods for calculating the mean first passage times are also 
presented. 

1. Introduction 
In understanding diffusion-controlled chemical kinetics and 
the transport of ionic species in the vicinity of charged sur- 
faces, it is necessary to obtain a quantitative measure of the 
diffusion times of ions in the electric double layer generated 
by charged surfaces. Very early work in this area has 
employed linear approximations and numerical solutions 1,2 

or neglected the many-body screening effects of the electro- 
lyte a l t ~ g e t h e r . ~ ? ~  Any realistic model that aspires to describe 
ionic transport phenomena should include effects due to the 
non-uniform distribution of ionic concentrations near 
charged surfaces. 

The description of the dynamical properties of non- 
uniform primitive model electrolytes can begin with the 
many-body Fokker-Planck equation in an external field. 
This starting point requires that (1) the relaxation of ionic 
and solvent momenta and of solvent configurations is fast 
compared to the timescale for relevant changes in the ionic 
configurations; (2) the interaction potentials between the 
various ionic species are slowing varying over the ionic 
momentum correlation length [D(m/k, T ) ]  where D is the 
diffusion constant and rn the ion mass; and (3) the solvent- 
mediated dynamic coupling between the ions and with the 
surface may be neglected. With these not too restrictive 
assumptions, it is possible to integrate out all but one of the 
particle coordinates to obtain a one-particle equation involv- 
ing an effective external field that is time-de~endent.~ This 
time dependence arises from the possibility of correlation of 
ionic positions at different times due, for example, to Coulom- 
bic interactions. However, if we further assume that as the 
tagged ion moves, the remaining ions in the system can 
adjust their configurations without any time lag then such 
time correlations can be ignored and the result is a one- 
particle diffusion equation in which the tagged ion moves in 
the one-particle equilibrium potential of mean force arising 
from the presence of the charged interfaces. This neglect of 
time-dependent correlation effects has been referred to as the 
instantaneous relaxation appr~ximat ion .~  The resulting diffu- 
sion equation for the one-particle propagator P(r, t I r,), the 
probability density of finding the particle at position r at time 
t ,  given an initial position ro at t = 0, is of the form 

M(r,  t I ro)/at = DV - ( [V + Vpw(r)]P(r, t I r ,)} (1.1) 
where D is the single-ion diffusion constant in the solvent and 
/3 = l/k, T .  In the instantaneous relaxation approximation 

t Permanent address : Department of Chemistry, University of 
California, Davis, CA 95616, USA. 

w(r) is the exact one-particle equilibrium potential of mean 
force. 

The Gouy6-Chapman7 or Poisson-Boltzmann model has 
proved to be extremely functional in describing the equi- 
librium properties of the electric double layer. It can also 
serve as a useful basis in providing a working model for the 
transport properties of ionic species in the double layer. In 
this context, the exact one-particle potential of mean force is 
approximated by the product of the ionic charge (vie) and the 
mean electrostatic potential +(r), where +(r) satisfies the 
Poisson-Boltzmann equation : 

~ ' $ ( r )  = (4ne/&,) C n, vi exp[-pvi e$(r)] (1.2) 
1 

with E being the relative permittivity of the solvent and n, the 
number per unit volume of ions of species i in the bulk elec- 
trolyte. Eqn (1.1) and (1.2) define the Smoluchowski-Poisson- 
Boltzmann approximation for describing the diffusion of a 
single tagged ion near charged surfaces. 

In this paper, we study the diffusion of a single tagged ion 
belonging to a symmetric (v : v) electrolyte bounded by two 
identically charged surfaces. In particular, we derive analytic 
results for the mean first passage times of ions to arrive at the 
mid-plane (the plane of symmetry) and/or at the charged 
surface. More recent studies of the ion-diffusion problem 
have focussed on electrolytes without co-ions confined 
between two charged surfaces' as well as electrolyte systems 
in a semi-infinite d ~ m a i n . ~ . ' ~  In the next section, we derive 
general expressions for the various absorption models of 
interest. General relations between the various mean first 
passage times and explicit results are given in Sections 3 and 
4, and numerical results are given in Section 5.  In Section 6, 
we propose two simple approximate methods based on the 
superposition principle for evaluating the mean first passage 
times. One method is quite accurate (with error less than 1% 
for the most interesting cases) but involves more numerical 
calculations, while a second method is almost analytic and 
very simple but incurs a higher error of ca. 10% for the inter- 
esting cases considered. 

2. General Formulation 
Consider the general solution of the non-linear Poisson- 
Boltzmann for a symmetric (v : v) electrolyte located between 
two identically charged surfaces bearing a uniform surface 
charge. The surfaces are located at a distance (2b) apart as 
shown in Fig. 1. Without loss of generality, we assume the 
surface charge is positive. 
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- b  0 b 

Fig. 1 The potential profile between two identically charged sur- 
faces 

The non-dimensional electrostatic potential at position x 
between the surfaces 

fix) = v e v w  (2.1) 

obeys the Poisson-Boltzmann equation (rc2 = 87$nv2e2/&, is 
the Debye screening parameter) 

y”(x) = rc2 sinh(y) (2.2) 

The solution of which can be written in the form 

where cd(u I m) is a Jacobi elliptic function’ ’ with 

u = (Kx/’)eXP(Ym/2) (2.4) 

The mid-plane potential y, = y(0) and the surface potential 
y, = y(b) are related by the equation 

(2.5) ~ b / 2  = K(a)  - F(4\a) 

The functions K(a)  and F(4\a) are, respectively, the complete 
and incomplete elliptic integrals of the first kind, with a being 
the modular angle and 4 the amplitude” defined by 

sin a = exp(-y,) = k = Jm 

sin 4 = ~XP[-(Y, - ~m)/21 

(2.6) 

(2.7) 

Here k is the modulus and m the parameter associated with 
the elliptic integrals. Definitions for these elliptic integrals are 
given in the Appendix. If we specify the distance b and the 
reduced surface potential y, and we can solve eqn (2.5) for the 
mid-plane potential y, . Eqn (2.5) has only one solution in the 
range 0 < y, < y,. For systems with a negative surface 
charge, all the above equations will hold for the magnitude of 
the potentials. 

Now that we have explicit expressions for the one-particle 
potential given by eqn (2.3) we can solve eqn (1.1) and (1.2) 
for the propagator P(x,  t lx , ) ,  which now only depends on 
one spatial variable. The solution of the Smoluchowski- 
Poisson-Boltzmann equation can be reduced to the Lame 
equation whose solution is known.12 However, mean first 
passage times can be obtained directly from the one-particle 
potential without first obtaining explicit forms for the propa- 
gator P(x, tlxo). This result is well known and has appeared 
in a number of different forms. We follow the derivation and 
notation of ref. (8). For a particle confined within the diffu- 
sion domain x1 < x < x2, the probability that the particle, 
located initially at xo, has not yet been absorbed at time t is 
obtained by integrating over the diffusion domain, i.e. 

Clearly Q(t = OIx,) = 1 and, unless both boundaries at x1 
and x2 are reflecting, Q(t = co I xo) = 0. If F(t I xo) dt is the 
probability that the particle is absorbed during the time 
interval t to t + dt then 

The mean first passage time or average time for a particle, 
initially at xo , to be absorbed is then given by 

ZP,(xo) = dttF(t I ~ 0 )  = dtQ(t I ~ 0 )  (2.10) r r 
where the first subscript p indicates the type of boundary at 
x1 and the second subscript q indicates the type of boundary 
at x 2 .  These subscripts are assigned the value R for reflecting 
boundaries and A for absorbing boundaries. 

Eqn (2.10) for the first passage times can be evaluated by 
repeated integration of the diffusion equation together with 
the appropriate boundary  condition^.'^ The result is8 [see 
eqn (36) of ref. (8)] 

7 , (4  = 

1 + K l f ( X l ) J l ( X I ,  x) + K2f(x2)Jl(x, x2) 

where, for n = 1 or 2, 

Jn(x‘, x”) = Lx Df (5) [l’;d<f(<)y (2.12) 

while J ,  and 1, (without arguments) are the above integrals 
with x’ = x1 and x” = x2. The constants IC’ and K~ are 
absorption coefficients at the boundaries x1 and x2:  

0, perfectly reflecting 
co, perfectly absorbing 

i = 1, 2 (2.14) 

Other positive values of ici, which correspond to partially 
reflecting surfaces, will not be considered here. The function 
f ( x )  is the normalized equilibrium probability of finding a 
co-ion or a counter-ion at position x. Since the surface is 
taken to be positive, co-ions are positive and so the normal- 
ized probability of finding a co-ion at x is 

(2.15) 

similarly the normalized probability of finding a counter-ion 
at x is 

f-W = rx2 expCy(x)’ counter-ions (2.16) 
Jxl ~ X P C Y ( ~ ) I  dx 

The explicit form for the function y(x) is given by eqn (2.3). 
Although we have assumed that the surface is positively 
charged and hence the co-ions are positive and counter-ions 
are negative, it is clear from symmetry considerations that 
any result we derive for co- or counter-ion will be indepen- 
dent of the actual sign of the surface or ionic charge for the 
symmetric electrolyte considered here. 

To give a specific example, we write down from eqn (2.11) 
the expression for the mean first passage time for diffusion in 
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the domain (xl, x2) = (0, b) subjected to a reflecting boundary 
at x = 0 = 0, p = R) and an absorbing boundary at x = b 
(.2 + m, q = A) 

That is, for a diffusing particle starting at x, it will, on 
average, reach the charged surface at x = b after a time 
period of TRA(x). We simply replace f ( x )  by f + ( x )  or f - ( x )  
depending whether we require the mean first passage time for 
a co-ion or a counter-ion. 

In many cases, the initial position of the diffusing ion is not 
known but the accessible quantity is the mean first passage 
time that has been averaged over all possible initial positions 
of the ion. This averaging procedure is based on the normal- 
ized equilibrium probability distribution f ( x ) ,  of finding an 
ion at position x. This position-averaged mean first passage 
time is defined by 

?w = "d..-(.)/(.) (2.18) 

The subscripts p and q are assigned the value R for reflecting 
boundaries or A for absorbing boundaries. The diffusion 
domain is x1 < x < x2 and a different normalized equilibrium 
distribution function f ( x )  will be needed in eqn (2.18) for 
co-ions and counter-ions. 

3. Relations between Mean First Passage Times 
We derive a number of general relations between the various 
mean first passage times which will simplify their actual 
evaluation as well as provide a check on the consistency of 
numerical results. 

Consider diffusion in the domain 0 < x < b. Various mean 
first passage times can be written down from eqn (2.11) 
depending on the choice of boundary conditions at x = 0 
which corresponds to the mid-plane between the two surfaces 
and at x = b where the charged surface is located. There are 
three cases : 

(i) Reflecting at x = x1 = 0. Absorbing at x = x2 = b. 

(ii) Absorbing at x = x1 = 0. Reflecting at x = x2 = b. 

(iii) Absorbing at x = x1 = 0. Absorbing at x = x2 = b. 

The third equality of eqn (3.4) follows from the fact that f ( x )  
[eqn (2.15) or (2.16)] is a normalized probability so that 

(3.5) 

In the last line of eqn (3.4) we have defined [see also eqn 
( 2 . W  

Eqn (3.4) is the required relation between zAR(x) and TRA(x). 

We see that once TRA(x) is known, the calculation of zAR(x) 

then involves the evaluation of one more integral, namely 

We can also derive simple identities involving different first 
passage times for particles located initially at the boundaries : 
zAR(b) and zRA(0). From eqn (3.1) we have the obvious results 

zdx). 

zRA(b) = 0 (3.7) 

and 

Also from eqn (3.4) and (3.7) we can write 

d[ interchanging orders 
(3.9) 

We can now write down the explicit form of zAR(b) for 
co-ions and zRA(0) for counter-ions by using eqn (2.3), (2.4), 
(2.15), (2.16), (3.8) and (3.9): 

DzTiion(b) = d[ cd2(1cC I rn) 

- - Dzp;nter-ion (0) (3.10) 
l 

where dc(u I rn) = l/cd(u I rn) is also a Jacobi elliptic function 
and Ic is the constant 

A similar result can be obtained between zAR(b) for counter- 
ions and zRA(0) for co-ions 

(b) = d[ dc2(1ct: I rn) 

(3.12) 
l Dzcorter-ion 

= Dzriion(0) 

Eqn (3.10) and (3.12) are the results we require between zAR(b) 

and zRA(O). These identities are useful in checking the consis- 
tency of numerical results. 

The mean first passage zAA(x) corresponding to absorbing 
boundaries at x = 0 and x = b, can be written in terms of 
zRA(x) and zD(x). By combining eqn (2.12), (2.13), (3.1) and 
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(3.3H3.6) we find 

From the definitions of zD(x) and zRA(x) we can check from 
eqn (3.13) that zAA(x) does indeed vanish at x = 0 and at 
x = b as expected, and once zD(x) and zRA(x) are known, 
zAA(x) can readily be found. 

We observe that the results in eqn (3.4) and (3.13) are quite 
general, while eqn (3.10) and (3.12) apply only to ion diffusion 
in a symmetric electrolyte in the Smoluchowski-Poisson- 
Boltzmann model or to the case of free diffusion. 

Turning now to diffusion in the domain -b < x < b, 
owing to the symmetry of the problem, the only mean first 
passage of interest is the case in which absorbing boundary 
conditions prevail at both surfaces at x = +b. We denote 
this first passage time by TAA(x 1 -b, b) where the diffusion 
domain is indicated explicitly. From symmetry we know that 
zAA(x I -b, b) is an even function of x. By identifying the 
general diffusion domain limits as x1 = -b  and x2 = b we 
can now write down the expression for TAA(x I -b, b) in terms 
of the normalized equilibrium probability f ( x  I -b, b) of 
finding a particle at x: 

(iv) Absorbing at x = x1 = -b. Absorbing at x = x2 = b. 

where the integrals Jn(x’, x”) are given by eqn (2.12) withf(x) 
replaced byf(x I - b, b). Sincef(x I - b, b) is also an even func- 
tion of x, we can rewrite all the integral definitions of Jn(x’ ,  
x”) to range over the interval (0, b) to give 

d5 = 2J1(-b, b) 1 Df(5I -b, b) 
Jo( - b, b) = 2 (3.15) 

= + ~ o ( - b ,  X) + zRA(x) (3.17) 

where zRA(x) is the mean first passage time for diffusion in the 
domain 0 < x < b, given by eqn (3.1). Eqn (3.17) holds 
because for x in the range (0, b) the normalized probability 
f(x), apart from a factor of 2 in the normalization constant, 
has the same x-dependence as the normalized probability 
f ( x  I -b, b). For negative values of x in the interval ( -b ,  0), 
eqn (3.17) will still hold provided we replace x by 1x1. Thus 
by combining eqn (3.14H3.17) we have the result 

TAA(x I - b, b) = zRA(x) (3.18) 

In summary, the key results in eqn (3.4), (3.13) and (3.18) 
relate all three other mean first passage times to TRA(x) and 
the function T ~ ( x ) .  

4. Expressions for Z~* (X)  and z&) 
We now derive expressions for the mean first passage time 
TRA(x) in terms of elliptic functions and integrals. As we have 
seen in section 3, all other first passage times can be written 

in terms of TRA(x) and the function T ~ ( x ) .  For notational con- 
venience we introduce the following dimensionless variables : 

P = K b  (4.1) 

5 = KX (4.2) 
and work in terms of non-dimensional mean first passage 
times : 

z* = Dz/b2  (4.3) 
In the free-diffusion limit [fix) = 01, the equilibrium prob- 

ability density is 

f ( x )  = l/b for diffusion in the domain 0 < x < b 

= 1/2(b) for diffusion in the domain -b < x < b 

(4.4) 
Corresponding to this limit, the various mean first passage 
times are 

I 
zjrA(x) = [ (x /b )  - ( ~ / b ) ~ ] / 2  free diffusion (4.5) 

zg(x) = x / b  

z Z A ( x  1 -b, b) = [ 1 - (~ /b )~ ] /2  

zZR(x) = [2(x/b) - (x/b)2]/2 

It is easy to verify that these results satisfy all the relations 
between the various mean first passage times derived in the 
previous section. 

Using the above notation together with eqn (2.3), (2.4), 
(2.15), (2.16) and (3.1) we have 

(4.6) 

where we have suppressed the dependence on the modulus rn 
in the Jacobi elliptic functions. 

(i) zRA(x) for Co-ions 
Consider the expression for T ~ ~ ( x )  for co-ions given by eqn 
(4.6). The inner integral can be evaluated using eqn (A6) 

P2zgA(x) = 4m du dC2 u dt cd2 t co-ions 6 “ l  
6’ 

1 
= 4 { p u u  dc2 u - duE(u) dc2 u 

(4.8) + m I’d. sn u dc u 

The first integral in eqn (4.8) can be simplified using integra- 
tion by parts and the results in the Appendix 

duu dc2 u = [u(u - E(u) + sn u dc u)] :  s,“ 
- i’du{u - E(u) + sn u dc u )  

= [u(u - E(u) + sn u dc u )  - u2/2]! 

+ $’dut(u) - I’d. sn u dc u (4.9) 
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The second integral in eqn (4.8) can also be simplified using 
integration by parts together with the formulae in the Appen- 
dix 

lBduE(u) dc2 u = [E(u){u - E(u) + sn u dc u}]! 

- I'd. dn2 u{u - E(u) + sn u dc u> 

= [E(u){u - E(u) + sn u dc u }  

- uE(u) + +E2(u) - (m/2) sn2 u]! 

+ i'duE(u) - (1 - m) du sn u dc u 

(4.10) 
Combining eqn (4.8)-(4.10), we find that all the remaining 
unevaluated integrals cancel and we are left with the final 
result for zgA(x) for co-ions 

iB 

B2zgA(X) = 4[3[E2(u) + U2] - uE(u) 

+ [u - E(u)]sn u dc u + (m/2)sn2 u]f co-ions 
(4.1 1) 

(ii) tRA(x) for Counter-ions 
The evaluation of the integrals for zRA(x) for counter-ions 
given by eqn (4.7) follows a similar route. The inner integral 
can be evaluated using eqn (A7) 

B2zgA(x) = 4m du cd2 u dt dc2 t counter-ions 

B 
iB l 

1 
B 

= 4m{i duu cd2 u - 1 duE(u) cd2 u 

(4.12) 

The first integral in eqn (4.12) can be simplified using integra- 
tion by parts and the results in the Appendix 

1 
duu cd2 u = - [u{u - E(u) + sn u cd u}]! I" m 

+ S,bdu sn u cd u 

- dpdu{u - E(u) + m sn u cd u> 

1 
m 

= - [u{u - E(u) + sn u cd u }  - u2/2]! 

+ - duE(u) - du sn u cd u. (4.13) 

The second integral in eqn (4.12) can also be simplified using 
integration by parts together with the formulae in the Appen- 
dix 

F u E ( u )  cd2 u = - [E(u){u - E(u) + m sn u cdu}]," 

m 's," s," 

1 
m 

- r d u  dn2 u{u - E(u) + m sn u cd u> 

1 
m 

= - [E(u){u - E(u) + sn u cd u}  

- uE(u) + +E2(u) - 3 sn2 u]! 

+ A r d u  E(u) (4.14) 

Combining eqn (4.12)-(4.14), we find that all the remaining 
unevaluated integrals cancel and we are left with the final 
result for zgA(x) for counter-ions 

B2rZgA(x) = 4[4[E2(u) + 24'3 - uE(u) 

+ m[u - E(u)] sn u cd u + (m/2) sn2 u]! 

counter-ions (4.15) 

(iii) zD(x) for Co-ions and Counter-ions 
We now evaluate the integral for the function zD(x) as defined 
by eqn (3.6). Using the non-dimensional notation introduced 
above together with eqn (2.3), (2.4), (2.15), (2.16) and (3.6) we 
have for the co-ion zD(x) 

/3'z;(x) = 4m [du cd2 u [dt dc2 t 

= 4{/? - E(P) + m sn cd /I> 

x { r  - E(5) + sn 5 dc r> 
and similarly for the counter-ion zD(x) 

rs rc 

co-ions 

(4.16) 

P'z&(x) = 4m Jordu dc2 u J 'dt cd2 t counter-ions 
0 

= 4{P - E(B) + sn /? dc 8) 
x { r  - E(r) + m sn 5 cd r> (4.17) 

The results in eqn (4.11) and (4.15) for TRA(x) and in eqn 
(4.16) and (4.17) for zD(x) together with the general relations 
given by eqn (3.4), (3.13) and (3.18) will allow us to compute 
all the mean first passage times. The various elliptic functions 
and integrals required are readily available in standard 
library routines or numerical methods texts. l4 

5. Results and Discussion 
We now present numerical results that illustrate the effects of 
varying the surface potential and the separation on the 
various mean first passage times. To provide a reasonable 
coverage of the range of variations, we shall consider a low- 
potential case (y, = 1, corresponding to ca. 25 mV for a 1 : 1 
electrolyte at room temperature) and a high-potential case 
(y, = 4, ca. 100 mV). The surface separation will vary from 
icb = 0.5 to icb = 30, which corresponds to a surface separa- 
tion of 1 Debye length ( 1 / ~ )  to 60 Debye lengths (60/ic). We 
shall consider the four mean first passage times introduced in 
section 3 as well as the position-averaged mean first passage 
times. We examine how these differ from their free-diffusion 
counterparts as we vary the surface potential and the surface 
separation. 

(i) tRA(x): Reflecting at x = 0; Absorbing at x = b 
In Fig. 2 and 3, we show the scaled mean first passage times 
[hRA(x)/b2] against the starting position (x/b) at reduced 
surface potentials ys  = 1 and 4. In this case absorption takes 
place at the charged surface at x = b. Since co-ions are repel- 
led from the charged surface and counter-ions are attracted 
to the surface, we expect the mean first passage times of 
co-ions to be higher and that of counter-ions to be lower 
than those in the free-diffusion limit. At a given surface 
separation deviations from the free-diffusion limit will 
become larger as the surface potential increases. 
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Fig. 2 The scaled mean first passage time tgA(x) = [&&)/bZ] as a 
function of initial position for: A, co-ions and B, counter-ions at 
surface potential y, = 1 and various surface separations: A(a) 
2 ~ b  = 6, (b)  20, (c) 1. B(b) 2 ~ b  = 1, (c) 20, (d) 6. The free-diffusion 
result [A(d) and B(a)] is a function of only (x/b)  

Quantitative effects of the surface charge also depend on 
the surface separation. When the separation is large com- 
pared to the Debye length, the diffusing ion is insensitive to 
electrostatic interactions with the surface until it comes 
within the influence of the surface, within a Debye length or 
so. Thus at large separations, the mean first passage time 
7RA(x) will be similar to the free-diffusion result unless the 
starting position x is near the surface, i.e. x z b. This is 
evident when comparing the curves for (21cb) = 20 with the 
free-dimusion curves in Fig. 2 and 3. 

The effects of electrostatic interactions between the ion and 
the surface do not increase monotonically as the surface 
separation decreases. The reason for this can be seen from 
eqn (1.1). Deviations from free diffusion are controlled by the 
gradient of the interaction potential between the ion and the 
surface. When the surface separation is sufficiently small, 
variations in the electrostatic potential profile across the elec- 
trolyte between the surfaces is negligible because the potential 
profile between the surfaces is essentially a constant function. 
Consequently, at small separations, the mean first passage 
time rRA(x) will again be similar to the free-diffusion result. 
This effect is evident in the results in Fig. 2 and 3. Maximum 
deviation from the free-diffusion result occurs at some inter- 
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Fig. 3 The scaled mean first passage time T ~ ~ ( x )  = [ D T ~ ~ ( x ) / ~ ’ ]  as a 
function of initial position for: A, co-ions and B, counter-ions at 
surface potential y ,  = 4 and various surface separations: A(a) 
2 ~ b  = 6, (b) 20, (c) 1. B(b) 20, (c) 1, (d) 6. The free-diffusion result [A(d) 
and B(a)] is a function of only (x /b )  

mediate surface separation, which is observed from our 
numerical calculations to occur when the surfaces are ca. 6 
Debye lengths apart, (21cb) z 6. 

In view of the general result given by eqn (3.18), the above 
results are the same as those for the mean first passage time 
zAA(x I - b, b) for diffusion with absorbing boundary condi- 
tions at x = f b ,  in the domain -b < x < b. 

(ii) tAR(x): Absorbing at x = x1 = 0; Reflecting 
a t x = x 2 = b  

In Fig. 4 and 5,  we show the scaled mean first passage times 
[DTAR(X)/bZ] against the starting position (x /b )  at reduced 
surface potentials y ,  = 1 and 4. 

In this case absorption takes place at the mid-plane at 
x = 0. Since co-ions are repelled from the charged surface 
towards the absorption plane and counter-ions are attracted 
towards the surface away the absorption plane, we expect the 
mean first passage times of the co-ions to be lower and that 
of the counter-ions to be higher than those in the free- 
diffusion limit, opposite to the case of zRA(x). At a given 
surface separation deviations from the free-diffusion limit 
become larger as the surface potential increases. 
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Fig. 4 The scaled mean first passage time 7&(X) = [ D ~ ~ ~ ( x ) / b ' ]  as a 
function of initial position for: A, co-ions and B counter-ions at 
surface potential y ,  = 1 and various surface separations: A(b) 
2rcb = 1, (c)  20, (d) 6. B(a) 6, (b) 20, (c)  1. The free-diffusion result [A(a) 
and B(d)] is a function of only (x/b) 

For exactly the same reasons as described in the case for 
tRA(x) ,  deviation from the free-diffusion result is a maximum 
at some intermediate separation, observed to occur at around 
(2rcb) z 6. 

(is) TAA(x): Absorbing at x = x1 = 0; Absorbing 
a t x = x f = b  
In Fig. 6 and 7, we show the scaled mean first passage times 
[DzAA(x/b2]  against the starting position (x /b )  at reduced 
surface potentials y, = 1 and 4. 

In this case, absorption takes place at the mid-plane 
(x = 0) as well as at the surface (x = b). Electrostatic inter- 
actions between the diffusing ion and the charged surface 
affect the probability of absorption at the charged surface 
(x = b) relative to absorption at the mid-plane (x = 0). The 
co-ions, which are repelled from the charged surface, will 
therefore have larger mean first passage times than the free- 
diffusion case because the repulsive interaction with the 
surface lowers the relative probability of absorption at that 
surface. On the other hand, counter-ions, which are attracted 
to the charged surface, will have smaller mean first passage 
times because of the increased relative probability of absorp- 
tion at the charged surface. Maximum deviations from the 
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Fig. 5 The scaled mean first passage time 72R(X) = [k,,R(x)/b2] as a 
function of initial position for: A, co-ions and B, counter-ions at 
surface potential y ,  = 4 and various surface separations: A(b) 
2rcb = 20, (c) 1, (d) 6. B(a) 6, (b) 20, (c) 1.  The free-diffusion result [A(a) 
and B(d)] is a function of only (xlb) 

free-diffusion results occur at 2(k-b) x 6 for counter-ions, but 
range between (2k-b) = 6 to 10 for co-ions, depending on the 
value of the surface potential (see later). 

(iv) Variation of z(x) with Surface Separation 
In Fig. 8 and 9 we show the variation of zRA(O), zAR(b) and 
zAA(b/2) for co-ions and counter-ions as a function of the half- 
surface separation ( ~ b )  for different surface potentials. The 
particular x values chosen here are where the maximum 
values of z(x) [or nearly so for rAA(X)] are located. From eqn 
(3.10) and (3.12) we recall that 

(0) pi ion(b)  = zcgnter-ion 

(b) = zFy""(0) (5.1) ,pg~ter- ion 

These special values of the mean first passage times will 
approach the following free-diffusion values in the limits 
rcb-+Oork-b+m 

zz,(b/2) = 1/8 
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Fig. 6 The scaled mean first passage time ziA(x) = [DzaA(x)/bz] as 
a function of initial position for: A, co-ions and B, counter-ions at 
surface potential y ,  = 1 and various surface separations: A(a) 
2rcb = 6, (b) 20, (c) 1. B(b) 1, (c) 6, (d) 20. The free-dimusion result 
[A(d) and B(a)] is a function of only (xlb) 

The results in Fig. 8 and 9 illustrate the earlier observation 
that maximum deviations from the free-diffusion limit for 
both co-ions and counter-ions occur when the surfaces are 
about ( 6 / ~ )  apart, that is, (rcb) x 3, with the exception of 
z:A(b/2), which peaks between (rcb) x 6-10. 

(v) Position-averaged i 
Unfortunately, the position-averaged mean first passage 
times defined in eqn (2.18) cannot be evaluated in terms of 
known functions, so the integrals over initial positions 
involved in their definitions have to be computed numeri- 
cally. The results are given in Fig. 1&12. With the exception 
of ?AA for co-ions, all position-averaged mean first passage 
times show maximum deviation from the free-diffusion result 
at ( ~ b )  z 3. Maximum deviations of ?A, for co-ions occur at 
even larger separations. 

The above observations have two important consequences. 
Electrostatic interactions between the diffusing ion and the 
charged surface can significantly affect the mean first passage 
time and other diffusion kinetics even when the surface 
separation is much larger than the extent of the double-layer 
thickness as measured by the Debye length (l/rc). In fact, 

0.3 

0.2 

h 

3 
*> 

0.1 

0.0 
0 -0  0.2 0 .4  0 . 6  0.8 1.0 

xlb 

0.10 
h 

5 
$3 

0.05 

0.00 
0.0 0.2 0 .4  0.6 0.8 1 .o 

xlb 

Fig. 7 The scaled mean first passage time &(X) = [DzAA(x)/b2] as 
a function of initial position for: A, co-ions and B, counter-ions at 
surface potential y ,  = 4 and various surface separations: A(a) 
2rcb = 6, (b) 20, (c) 1. B(b) 1, (c) 20, (d) 6. The free-diffusion result [A(d) 
and B(a)] is a function of only (xlb) 

maximum deviations from the free-diffusion result occur 
when the double layers from each surface do not overlap in 
any significant way. This gives rise to the possibility of con- 
structing approximate methods of calculating diffusion 
kinetics based on some superposition principle. 

6. Two Analytic Approximations 
In this section, we propose two simple methods of calculating 
the mean first passage times based on the superposition prin- 
ciple. The main advantage of these methods is that they cir- 
cumvent the need to deal with elliptic integrals and elliptic 
functions. Motivated by the observations of the previous 
section, we propose the use of two approximate expressions 
for the reduced electrostatic potential y(x) between the 
charged surface. 

(i) The Superposition Approximation 
We approximate the reduced potential profile in -b < x < b 
by the sum of two contributions which are the potential pro- 
files due each surface treated as a single surface in isolation, 
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Fig. 8 The scaled mean first passage time z;*(O) = [ D ~ ~ ~ ( o ) / b ' ]  as a 
function of half separation (icb) for: A, co-ions and B, counter-ions at 
various surface potentials: A(a) y, = 4, (b) 2, (c) 1. B(a) y ,  = 1, (b) 2, (c)  
4. These results are related to z&(b) by eqn (5.1) 

located adjacent to a semi-infinite half-space of electrolyte :' 

y(x) = 2 ln{coth[(a + j? - ()/2]) 

+ 2 ln{coth[(a + j? + 5)/2]} 

5: = K X ,  j?= icb (6.2) 

a = - ln(tanh[y$4]) (6.3) 

(6.1) 
The parameters j? and < are given by 

and a is related to the reduced surface potential y, by 

With this approximate form for y(x), the expressions for the 
mean first passage times given by eqn (2.18) and (3.1H3.3) in 
terms of iterated integrals have to be evaluated numerically. 

This superposition approximation for y(x) gives the correct 
limit of the mean first passage times as icb + 0. Although eqn 
(6.1) gives incorrect function values for y(x), it does provide a 
reasonable approximation for the gradient of the effective 
potential that controls diffusion; the incorrect function values 
in y(x) simply cancel out in the normalization of the equi- 
librium distribution functionf(x). When icb % 1, eqn (6.1) will 
obviously give the correct behaviour. Using the superposition 
approximation the maximum error occurs in the value of 
~~~'""(0). At icb x 1, this error is ca. 1% and falls rapidly to 
less than 1% when icb reaches 2. In practical terms, in the 
regime where deviations from the free-diffusion limit are 
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Fig. 9 The scaled mean first passage time T:,,(b/2) = [kR,(b/2) /b2]  
as a function of half separation (icb) for: A, co-ions and B, counter- 
ions at various surface potentials: A(a) y ,  = 4, (b) 2, (c) 1. B(a) y,  = 1, 
(b)  2, (4 4 

largest, the superposition approximation can give results of 
acceptable accuracy. 

(ii) The One-surface Approximation 
If the diffusion domain is 0 < x < b, and icb is not too small, 
the first term on the right-hand side of eqn (6.1) is the domin- 
ant term. The one-surface approximation simply retains this 
leading term by setting 

fix) = 2 ln(coth[(a + p - 5)/2]} (6.4) 
The advantage of this approximation is that the iterated inte- 
grals in eqn (3.1H3.3) can be evaluated analytically, however, 
the position-averaged mean first passage time 7, defined by 
eqn (2.18), needs to be evaluated numerically. 

Explicit expressions for the mean first passage times for 
co-ions are: 

P 2 c 4 ( x )  = C{C - 2 tanhC(a + 8)/21) 

x ( C  + 2 coth[(a + p - (3/2]} - C2/2]i=! 

(6.5) 
j?2r&&) = [ (p  + 2 tanhCa/2] - t:) 

x {t: + 2 coth[(a + p - (3/2]} + C2/2]:15 

(6.6) 
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Fig. 10 The position-averaged mean first passage time izA as a 
function of half separation ( ~ b )  for: A, co-ions and B, counter-ions at 
various surface potentials: A(a) y, = 4, (b) 2, (c) 1. B(a) y ,  = 1, (b) 2, 

Fig. 11 The position-averaged mean first passage time T Z R  as a 
function of half separation ( K b )  for: A, co-ions and B, counter-ions at 
various surface potentials: A(a) y ,  = 1, (b)  2, (c) 4. B(a) y ,  = 4, (b) 2, 

(4 4 (4 1 

pz;S(x) = (j? + 2 tanh[a/2] - 2 tanh[(a + 8)/2]} Appendix : Elliptic Functions and Integrals 
This Appendix summarizes the identities and results relating 
to elliptic functions and elliptic integrals that are needed in 
Section 4. We use the standard notation for the Jacobi elliptic 

x ( 5  + 2 coth[(a + p - [)/2] - 2 coth[(a + p)/2]}. 

(6.7) 
The expression for &(x) can be obtained from these results 
using eqn (3.13). The parameters a, p and 5 are given by eqn 
(6.2) and (6.3). 

The mean first passage times for counter-ions can be 
obtained from the above results for co-ions by interchanging 
the hyperbolic functions 

tanh[. . .] f-* coth[. . .] 
wherever they appear in eqn (6.5H6.7). 

At K b  = 3, where maximum deviations from the free- 
diffusion result occur, the one-surface approximation is in 
error by ca. 10%. The analytic simplicity of this approx- 
imation may in certain circumstances outweigh its inaccur- 
acies. Furthermore, if expressions for the propagators are 
required, an earlier study of the diffusion kinetics near a 
single surfaceg can be extended using the one-surface approx- 
imation to give approximate analytic expressions for the 
propagators. 

functions and their ratios." In the following, all the moduli 
rn of the different elliptic functions and integrals are the same 
and will not be written out explicitly. The value of the modulus 
is related to the mid-plane potential of the Poisson- 
Boltzmann solution by eqn (2.6). 

The incomplete elliptic integral of the first kind is defined 
by: 

and the complete elliptic integral of the first kind is 

The modular angle a and the amplitude 4 are given by eqn 
(2.6) and (2.7). These are connected to the Jacobi elliptic func- 
tions by 

The calculations and results presented in this paper pro- 
vided the first quantitative estimate of mean first passage times 
based on the full non-linear Smoluchowski-Poisson- dn u = J(l - rn sin' 4) 
Boltzmann model. While more sophisticated and rigorous 
treatments of the diffusion problem are possible, the present 
model should be adequate for describing diffusion in 1 : 1 

sn u = sin 4, cn u = cos 4, 

which leads to the following identity which is needed in 
Section 

(A3) electrolytes. dn2 u = (1 - rn) + rn cd2 u 
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or equivalently 
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Fig. 12 The position-averaged mean first passage time .Sz, as a 
function of half separation (icb) for: A, co-ions and B, counter-ions at 
various surface potentials: A(a) y ,  = 4, (b )  2, (c) 1. B(a) y ,  = 1, (b )  2, 
(4 4 

The incomplete elliptic integral of the second kind in its 
different common notation is given by: 

E(u) = E(u 1 m) = E(+\a) 

The following integrals are required in the evaluation of 
% d X )  

1 
m 

pt cd2 t = - {u  - E(u) + m sn u cd u}  (A6) 

(A71 pt dc2 t = u - E(u) + sn u dc u 

References 

6 
7 
8 
9 

10 
11 

12 

13 
14 

15 

P. J. W. Debye, Trans. Electrochem., 1942,82,265. 
G. G. Hammes and R. A. Alberty, J. Phys. Chem., 1959,63,274. 
P. H. Richter and M. Eigen, Biophys. Chem., 1974,2,255. 
F. W. Wiegel, Phys. Rep., 1983,95, 283. 
T. Akesson, B. Jonsson, B. Halle and D. Y. C. Chan, Mol. Phys., 
1986,57,1105. 
G. Gouy, J. Phys. Radium (Paris), 1910,9,457. 
D. L. Chapman, Philos. Mag., 1913, 25,475. 
D. Y. C. Chan and B. Halle, Biophys. J., 1984,46,387. 
D. Y. C Chan, J. Chem. SOC., Faraday Trans. 2,1987,83,2271. 
D. Y. C. Chan and B. D. Hughes, J. Stat. Phys., 1988,52,383. 
M. Abramowitz and I. A. Stegun, Handbook of Mathematical 
Functions (Natl. Bur. Stand. Washington DC, 1964). 
E. T. Whittaker, and G. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, Cambridge, 1969). 
J. M. Deutch, J. Chem. Phys., 1980,73,4700. 
W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetter- 
ling, Numerical Recipies (Cambridge University Press, Cam- 
bridge, 1988). 
E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability 
of Lypohobic Colloids (Elsevier, Amsterdam, 1948). 

Paper 0/02088F; Received 1 l t h  May ,  1990 

D
ow

nl
oa

de
d 

by
 N

at
io

na
l U

ni
ve

rs
ity

 o
f S

in
ga

po
re

 o
n 

16
 A

pr
il 

20
11

Pu
bl

ish
ed

 o
n 

01
 Ja

nu
ar

y 
19

90
 o

n 
ht

tp
://

pu
bs

.rs
c.

or
g 

| d
oi

:1
0.

10
39

/F
T9

90
86

03
58

5
View Online

http://dx.doi.org/10.1039/ft9908603585

