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Image Effects and Ion Diffusion Times in Lamella Systems 
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Analytical and numerical results are given for the effects of ionic image interactions for ion diffusion in an 
electrolyte confined between dielectric boundaries in a lamella geometry. The calculation is based on the Smol- 
uchowski model for single-ion diffusion in a mean field and the linear DebyeHuckel treatment of image inter- 
actions between the diffusing ions and the dielectric boundaries. Results for the mean first passage times are 
given for a range of surface separations and electrolyte concentrations. 

In the Smoluchowski model for single-ion diffusion in a mean 
field the central quantity is the propagator P(r, / y o ) ,  which is 
the probability density of finding an ion at position r at time 
t ,  given that the ion was at ro at time t = 0. The propagator 
satisfies the diffusion equation’ 

(1) 

where D is the single-ion diffusion constant in the solvent, 
f i  = l/kT, and w(r)  is the one-particle equilibrium potential of 
mean force. Recent studies of the ion diffusion problem have 
focussed on diffusion between charged surfaces governed by 
the Gouy-Chapman potential of mean force,2 diffusion in 
electrolytes with only counter ions confined between charged 
 surface^,^ as well as electrolyte systems confined in a semi- 
infinite 

In this paper, we consider the diffusion of a single ion 
belonging to a symmetric (u : u) electrolyte bounded by two 
uncharged planar surfaces in the lamella geometry. We 
assume that the relative permittivity of each planar surface is 
different from that of the solvent, and so ion diffusion is influ- 
enced by the ionic image interactions with the dielectric 
boundaries. In particular, we derive the first passage times for 
ions arriving at the dielectric surfaces. Calculations of mean 
first passage times involve evaluations of integrals of the 
potential of mean force ~ n i y , ~ . ~  explicit solutions of eqn. (1) 
are not required. In the next section we derive the result for 
the potential of mean force w(z) on an ion due to image inter- 
actions with two dielectric boundaries based on the linear 
Debye-Huckel treatment. General expressions for the mean 
first passage time, to linear order in w(z), for arrival of diffus- 
ing ions at the dielectric boundaries, and explicit analytic and 
numerical results are given below. 

w r ,  I r,)/at = DV([V + BVw(r)IP(r, I y o ) }  

Potential of Mean Force due to Image Interactions 
The geometry we use for the ion diffusion problem is shown 
in Fig. 1. The symmetric (u : u)  electrolyte with n ions of each 
species per unit volume is characterized by the Debye screen- 
ing parameter K ( K ~  = 8nflrnu2e2/~), where E is the relative 
permittivity of the solvent and e is the protonic charge. The 
unchanged dielectric boundaries with relative permittivity E, , 
are located at a distance 2(a + b) apart, where a is the ionic 
radius, which measures the distance of closest approach 
between ionic centres and the dielectric boundary. Therefore, 
the ion diffusion domain is restricted to the region 

Image interactions between an ion (charge q may be posi- 
tive or negative) located at ro and the dielectric boundaries 
can be obtained from a suitable Green’s function. In the 

-b < z < b. 

linear Debye-Huckel theory, the Green’s function can be 
found by solving 

V2G(r,  ro) = 0; lzl  ’ (a  + b) 

= rc2G(r, yo )  - (4nq/~)6(r  - ro);  I z I < (a + b) 

(2) 
subject to the usual continuity conditions of G(r, ro) and 
d G ( r ,  ro)/& at the boundaries z = f c  = +(a + b). Eqn. (2) 
may be solved by taking the Fourier transform with respect 
to the coordinates parallel to the boundary 

d2p exp( -ik p)G(p, z, zo) (3) 

to give 

k2G = 0; 
d2 G 
dz2 
-- l z l  t c 

( 4 4  

d2 G A 4nq 
( k 2  + x2)G = - - 6(z - zo)exp( -ik po); 1 z I < c -- 

dz2 

(4b) 
Without loss of generality, we may choose po = 0, so that a 
particular integral of eqn. (4b) is 

with p = J ( k 2  + rc2).  

a - -  

I 

0 b 
Fig. 1 Geometry of the ion diffusion domain 
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If we solve eqn. (4) and match both e(k, z, zo) and 
EdQk, z, z,)/dz at z = f c ,  then we obtain 

271qA 
E P 9  

G(k,  z, zo) = - {A exp[-p(z - zo + 4c)l 

+ exp[ -p(2c - z - z0)] 

+ A exp[ -p(4c + z + zo)] 

+ expC -p(z + z0 + k)]} 

where 

P E  - kE, A = -  
PE + ke, (7) 

and 

9 = 1 - A2 exp( -4pc) (8) 

with c = a + b. 
If we let z + zo in e ( k ,  z,  zo), then we obtain 

limG(k, z, zo) = &k, zo) 
2-zo  

+ {a constant term, independent of zo) 

with 

(9) 

The terms that are independent of zo are self-energy terms, 
which give rise to no forces on the ions and hence do not 
contribute to the diffusion process. In the linear theory 
(keeping only terms proportional to q2), the potential of 
mean force w(z) due to image interactions is given by 

= - 4 1  - Jd2k4(k, z )  
2 (2.y 

dp A2"+'(exp{ -2p[(2n + 1)c - z]} 

+ exp{ -2p[(2n + 1)c + z]}) (10) 

E ,  so that to a good 
approximation we may replace A + 1 in eqn. (10). The 
expression for w(z) then simplifies to 

For an aqueous system, we have E 

exp{ -2~[(2n + 1)c - z]} 
(2n + 1)c - z w(z) = ; i0 ( 

exp{ -2~[(2n + 1)c + z]} 
(2n + 1)c + z 

+ 
This expression for w(z) is similar to that derived by Bell and 
Levine7 and Levine.' 

Mean First Passage Times 
Mean first passage times of diffusing species in an external 
field w(z) can be calculated from the normalized equilibrium 

probability f(z) defined by 

exPC - Pw(z)l f(z) = b j - p x  exPC-Pw(x)l 

In the theory that is linear in w(z), this reduces to 

where terms proportional to ( B w ) ~  or higher have been 
omitted. Similarly, we have 

dxw(x)] (14) 

The mean first passage time for a diffusing ion located ini- 
tially at z to reach either dielectric boundary is given by3 

(15) 
J, 

JO 
T(Z) = J1( - b, Z) - - J o (  - b, Z )  

where 

and 

- i! [ b(z + b) + (b2 - z2)/2 - 28 
- D  

4b2 
D 

J o  3 Jo(-b, b) M- 

2b2 
D J ,  J1( -b, b) = - (19) 

To arrive at eqn. (16) we have interchanged orders of integra- 
tion in several terms. Therefore, to linear order in w(z) we 
have 

DT(z)/b2 = +[l - ( ~ / b ) ~ ]  + T(z)  (20) 

where T(z)  represents the dimensionless excess mean first 
passage time due to image interactions while the first term in 
eqn. (20) is the dimensionless free diffusion result. The explicit 
form for T(z) to linear order in the potential of mean force 
w(z) is 

P l z l  T(z) = 2 bZ jldxxw(x) + 7 b l"dxw(x) - 

(21) 

where we have used the fact that w(x) is an even function of x. 
We also calculate the position-averaged mean first time for 

a diffusing ion located to reach either dielectric boundary. 
The average is over all initial positions of the diffusing ion 
weighted with the equilibrium distribution of initial positions. 
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Formally, this position-averaged mean first passage time in 
reduced units is defined by 

where to linear order in the potential of mean force w(z) 

where once again we have utilized the parity of w(x) and have 
interchanged orders of integration in several terms. 

The results given in eqn. (21) for the excess mean first 
passage time T(z) and in eqn. (23) for the position-averaged 
mean first passage time (T(z)) are correct to linear order in 
the potential for mean force w(z). To obtain expressions for 
the first passage times under image interactions between the 
diffusing ion and the dielectric boundaries, we combine eqn. 
(11) for the potential of mean force for image interactions 
with eqn. (21) and (23). The final expressions for the mean 
first passage times are: 

T(z) = - 2c 1 (2n + l)[S,(b) - S,(Z)] 2; { .yo 

[cosh(Kz) - C O S ~ ( K ~ ) ]  

and 

( T ( z ) )  = - C - [l - 3(2n + 1)2 (~ /b )2]Df l (b )  2; " Y O  [: 
x exp{ -24211 + 1)c - b ] }  

- ( 1  - 274(2n + 1)c - b ] )  

x exp{ - 2 ~ [ ( 2 n  + 1)c + b}  

where 

and 

(28) 

is the exponential integral. 

Results 
We now give numerical results for the effects of image inter- 
actions on the mean first passage times of arrival at either of 
the dielectric boundaries. The ionic cutoff parameter or ionic 
radius a is taken to be 2 8, throughout and ionic concentra- 
tions are specified in terms of the Debye screening parameter 

1435 

K appropriate to a 1 : 1 aqueous electrolyte at 298 K. In Fig. 
2 we show the behaviour of the dimensionless excess mean 
first passage time T(z) [eqn. (24)] for various values of the 
separation b between the dielectric boundaries at low and 

0.0 0 .2  0.4 0.6 0.8 1 .o 1.2  

Zlb 

0.06 

T(z)  

0.04 

0.02 

0.00 
0.0 0.2 0.4 0.6 0.8 1 .o 1.2  

Fig. 2 Dimensionless excess mean first passage time T(z) as a func- 
tion of the initial position z of the diffusing ion; KU = 0.02 (a), 0.2 (b ) ;  
b/A = 10 (-), 25 (. . . . . . .), 50 (-.-.-.), - 100 (- - - -) 

Zlb 

high electrolyte concentrations. In Fig. 3 we show the varia- 
tion of T(z) with concentration for different relative initial 
positions of the diffusing ion with b = 25 8,. The mean first 

0.00 I I 

.1 1 1 0  
Kb 

Fig. 3 Dimensionless excess mean first passage time T(z)  at different 
relative positions in the electrolyte; b = 25 A; z/b = 0.00 (-), 
0.75 (* . . . . . .) 

D
ow

nl
oa

de
d 

by
 N

at
io

na
l U

ni
ve

rs
ity

 o
f 

Si
ng

ap
or

e 
on

 1
6 

A
pr

il 
20

11
Pu

bl
is

he
d 

on
 0

1 
Ja

nu
ar

y 
19

92
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/F
T

99
28

80
14

33
View Online

http://dx.doi.org/10.1039/ft9928801433


1436 

0.10 

--.--. ---- .-.- - .-_. - .-. . -- -- -- -- -- -- -- -- -- -- -_ -_ _- _- --. 
0.00 1 . 1  1 . 1 .  

0 20 40 60 8 0  100 
b/A 

Position-averaged dimensionless mean first passage time; Fig. 4 
Ka = 0.1 (-), 0.2 (. . . . . . .), 0.5 (-.-.--), 1.0 (- - - -) 

passage time averaged over initial positions ( T ( z ) )  [eqn. 
(25)] is shown in Fig. 4 for different electrolyte concentra- 
tions. 

Compared with the effects of electrostatic interactions 
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between ions and a charged dielectric surface12 the effects of 
image interactions are relatively small in the linear regime 
and the results presented herein can be added as a pertur- 
bation correction. Whether these effects are small in the non- 
linear regime is not clear and is the subject of further 
investigation. 
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