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Abstract 

We have constructed a discrete element computational code which solves the equations of motion that describe 
particle-particle interactions. As a first example we have applied the code to a two dimensional triangular pile 
of discrete particles. We take this to be a two dimensional analogue of a conical pile of particulate material. 
With this simple model, we try to understand-with partial success-the experimental results of Smid and Novosad 
(Z. Chem. E. Symp., 63 (1981) D3/V/l) which show a counter-intuitive dip in the normal stress underneath the 
highest section of the pile. We also obtain two separate analytic models, one based on recurrence relations and 
the other on a continuum approximation, to describe the force distribution inside a two dimensional pile of 
particulate material. 

Introduction 

The knowledge of the stress distribution in granular 
materials is important in our understanding of the 
mechanical and transport properties of such systems. 
For instance, granulated materials, such as sugar, fer- 
tilizer, and sand are stored in heaps, so if the stress 
distribution in such configurations is known, then ad- 
justments can be made to minimize the usually dele- 
terious effects of settlement, caking, and comminution. 
Experimental results that examine the normal and shear 
stresses at the base of a conical heap of particulate 
material have been obtained by Smid and Novosad [l]. 
These experiments demonstrated the counter intuitive 
result that the normal stress at the base of the pile 
has a local minimum under the highest point of the 
conical pile. Curiously, this depression in the normal 
stress appears to grow with the size of the pile. The 
smallest piles have a normal stress minimum with a 
magnitude 20% less than the maximum normal stress, 
while their largest conical piles gives a stress minimum 
of magnitude 30% less than the maximum normal stress. 
Experimental results for the magnitude of the shear 
stress also showed a minimum under the highest point, 
which is understandable, since the horizontal forces 
experienced by a particle resident on the centre line 
of a conical pile should sum to zero by symmetry. 

In this paper we attempt to replicate Smid and 
Novosad’s results by creating a two dimensional ana- 
logue of a conical pile of particulate material, which 
we shall call a sandpile. We study the force structure 
via simple analytic models and via computer simulation, 

where we model the particle-particle interaction in 
such piles. Other authors [2-51 have embarked upon 
similar studies, but they have used a method of force 
analysis which becomes indeterminate when there exists 
more than two supporting contacts between particles. 
As part of our analysis, we have used an n-body code 
that does not place a limitation on the number of 
particle-particle contacts. The resulting simulation re- 
sults, and our simple analytic models, allow us to build 
an intuitive picture of the force distribution in a two 
dimensional sandpile. 

Experimental 

Our simulation studies of particle-particle interac- 
tions in a two dimensional pile are based on a standard 
n-body interaction program [6, 91. This code solves 
Newton’s equations of motion, in an implicit manner, 
via the Newton-Raphson method. To speed conver- 
gence, the Simultaneous Over Relaxation method is 
used [6, 71, where the relaxation parameter is given a 
value between 0.5 and 0.9. In this paper, we assume 
that all the particles are identical circular disks. Two 
types of interactions are allowed between the particles. 
We shall loosely denote these interactions ‘hard particle’ 
and ‘soft particle’ collisions. Hard particle interactions 
represent the effects of impulsive collisions. Hard par- 
ticle collision models are, in most cases, an excellent 
approximation for dynamic particle interactions, but 
fail to describe the contact force behaviour for particles 
at rest with each other and the ground. To account 
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for this behaviour, we allow the particles to interpe- 
netrate once their relative velocities are sufficiently 
small. It is at this point that the n-body code is used 
to model the subsequent particle interactions. 

Hard particle collisions 
Although our n-body code does not place a limitation 

on the number of particle-particle contacts, there are 
certain circumstances where it is physically viable and 
computationally convenient to model particle-particle 
interactions via a two body process. In our code, this 
occurs when we have dynamic particle-particle or par- 
ticle-ground interactions, e.g., we may assemble a sand- 
pile by dropping particles onto the ground until a 
suitably large pile of particles has formed. If the particles 
are moving ‘rapidly’ (see eqn. (22)) relative to each 
other or the ground, it is possible to model their 
interactions analytically in the following manner. 

In the absence of external forces and torques on the 
colliding particles, linear and angular momentum are 
conserved. Suppose we have a collision between two 
particles as shown in Fig. 1. Then conservation of linear 
momentum gives 

mlcl* + m2c2 *=mlcl +m,c, (1) 

where m, ci, and ci* are the mass, velocity before and 
after collision for particle i, respectively. Conservation 
of angular momentum about the contact point Q implies 

m,r, Xq* +Ilq* =m,r, Xc, +ZIw, (2) 

and 

m,r, X cz* + I,** = m,r, X c, + Zzy (3) 

where Oi, Wi*, and Zi are the angular velocity before 
and velocity after the collision, and the moment of 
inertia about the centre of particle i, respectively. 
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Fig. 1. Particles 1 and 2 collide at point Q with initial velocities 
c1 and cZ and angular velocities w, and ~2 respectively. The unit 
normal vector, which points along the line joining particles 1 
and 2, is denoted by 1. The unit tangent vector, ^t, satisfies the 
equation il= ii xi, where 2 points out of the page. 

To describe inelastic collisions, we specify a coefficient 
of restitution E, together with the equation 

(c,*-ccz*)‘8= -e(cl -cJ*ii (4) 

which describes the incomplete restitution of transla- 
tional velocities in the normal (fi) direction. 

The collisional impulse Pi on the ith particle is defined 

by 

Pi = mi (Ci* - Ci) (5) 

Thus from (1) and (5) 

P=P,=ml(c,*- cl) = m,(c2 - c2*) = - Pz (6) 

In terms of the collisional impulse P, we describe the 
dynamic sliding friction between the particles 

p,=-‘p~p.&p.jj 
(7) 

where i is the unit tangent vector that satisfies the 
equation i= fix;, (where 2 is a unit vector directed 
out of the page, see Fig. l), and p is the coefficient 
of dynamic friction that needs to be specified. Equation 
(7) applies if the relative velocity in the tangential 
plane at the point of contact is reduced, but not entirely 
eliminated or reversed. We denote this as the SLIP 
case. 

On the other hand, if the relative velocity in the 
tangential plane at the contact point Q vanishes as a 
result of the collision event, then the appropriate friction 
equation is 

c12C**i=o (8) 

where clzc is the relative velocity between the particles 
at the point Q: 

c12c=c1+rlXy-cz-rzXy (9) 

A situation where eqn. (8) is applicable is called a 
NOSLIP case. 

Thus the effects of inelastic collisions on changes in 
the translational velocities in the normal direction are 
modelled by eqn. (4), while eqns. (7) and (8) describe 
two possible models for changes in the tangential com- 
ponents of particle velocities. 

From eqn. (1) 

c2 *=c2+m(c,-c,*) (10) 

where m =m,/m,. Substitution of (1) into (4) provides 
an expression for c,* - 8: 

c,**ii=[(m-e)cI*ii+(1+e)c2.fi]/(l+m) (11) 

If we combine (11) with the definition of P (eqn. (6)) 
we obtain 

p,=p.jj= (mTy;2) (l++C2-C1)*~ (12) 

which is true for both the SLIP and NOSLIP cases. 
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The angular velocities w1 and w, can be readily 
determined from eqns. (2) and (3): 

** = o1 + m*r1 x (c, - cl*)/Il = w, - r, X P/l1 (13) 

and 

y * = 0, + m2r2 X(c, - c2*)/Iz = 0, - r2 X P/I2 (14) 

For the NOSLIP case, substitution of eqns. (g), (13) 
(14) into eqn. (8) gives 

( ( 
2 2 

%.i+ &?!!?f +m!i! c,.Z+(rzXY).i-(rlXwl).i 
z 1 1 1 

= 

( l+m+ Eg + m!g 
* 1 

(15) 
It follows from (1.5) and (6) that 

NOSLIP _ 

pt - 
ml(c2 - cl + r2 X w, - rl X 4 

( l+m I ml4 + “;‘f 
12 1 ) 

(16) 

where we have from Fig. 3 

(r2Xq.)-i= -r,cu, (17) 

and 

(rlXol)+i=rlwl (18) 

To determine whether the SLIP or NOSLIP case is 
appropriate, we use the physical constraint that the 
tangential impulse must always be less than PtNoSLIP. 
Thus, 

P NOSLIP > p,SLIP j p, = p SLIP 
t t 

p,NOSLlP < ptSLIP j p, = p,NOSLlP 
(19) 

Once we have determined P( = P$ + P,i), we can eval- 
uate cl*, c2* from eqn. (6) and ol*, y* from eqns. 
(13) and (14) respectively. 

To transform to other coordinate systems, e.g. carte- 
Sian, we note thai in a two dimensional Cartesian system 
fi = (n,, rr,) and t= ( -n,, nJ. Thus 

P,=P,n,-P,n, (20) 

and 

P,=P,n,+P,n, 

Solutions for the velocities follow as before. 

(21) 

Although we shall only consider identical particles 
in this paper, the results given here are valid for non- 
identical particles. A more complete description of hard 
body collisions, particularly for particles of arbitrary 
shape, may be found in Hopkins [8]. 

Soft body collisions 
A soft body collision means that the particles can 

interpenetrate. This is a necessary attribute when we 
wish to study the force distribution in a static collection 
of particles, because computing the forces in a static 
structure is not possible if we use the hard body collision 
physics outlined above. A repulsive force, which is 
dependent on the interpenetration distance, can be 
easily programmed into a general n-body code. 

In our simulation study, the particle collision au- 
tomatically changes from hard to soft if the time step 
At satisfies the condition 

At>mlv-fiI/IF*iil if v.fi>O, and F-b<0 (22) 

where m is the mass of the particle, ci is a normal to 
an arbitrary surface, and F is the resultant force on 
the particle which has a component antiparallel to fi 
(see Fig. 2). An intuitive understanding of eqn. (22) 
is obtained if we consider F to be the force of gravity 
on a particle in contact with the ground. If we assume 
that the particle has a zero initial velocity, i.e. v=O, 
then the velocity of the particle (in the absence of a 
resistive normal force from the ground) after a time 
k will be -gAt (taking the ‘up’ direction as positive). 
This undesirable situation, of a solid particle moving 
through solid ground, would occur for all At > 0. Similarly 
if there existed a component of v in the ‘up’ direction 
then the particle would again move through the ground 
if the timestep At> Iv. al/g. The necessity for a resistive 
normal force in such a circumstance is obvious, and 
the code automatically changes from a hard to a soft 
body interaction to allow this normal force to be created. 

To simulate soft body interactions, we adopt the 
coordinate system shown in Fig. 3. Figure 3 differs 
from Fig. 1 in that the direction of vectors ii and i 
have been reversed. This slight change is convenient, 
because to model the soft body collision, we must solve 
Newton’s equation of motion and so we require the 
resultant force acting on particle 1 from particle 2, 
which will act in the direction of 8. 

We chose the potential energy of the particle-particle 
interaction to be 

Fig. 2. To determine when the hard particle turns into a soft 
particle, we can use the simple example given in this figure. If 
the initial velocity of the particle away from the surface is smaller 
than the velocity of the particle, acquired in a timestep A& due 
to the component of force acting towards the surface., then the 
particle will penetrate the surface and become soft. 



258 

b 
\ CT CZ f 

/ 

\ / \ / 
‘? UP/ 

/ 
\ / 

r a;3 A 

’ 1 n 
/ 2 ‘1 

\ 
/ 

2 
\ 

/ Cl \ 
/ 

/ \ 

Fig. 3. The coordinate system used for soft particle collisions. 

Fig. 4. Schematic depiction of the forces that are simulated by 
our computer code for particle-particle and partidle-ground 

contacts. Particle-particle interactions can be represented as a 
damped (repulsive) spring acting along the line joining the centres 
of the two particles. The repulsive spring force arises when the 

two particles interpenetrate. Additional tangential forces from 
rolling and slipping friction are denoted by the symbol CL. 
Particle-ground forces are simulated in exactly the same manner, 
with an additional static friction term. We simulate static friction 

via a damped (attractive) spring, which ‘breaks’ once the particle 
has moved a small distance away from its initial position. This 
is shown in the magnitude of the potential energy (V’) vs. distance 

(4 graph. 

v= O I for r>a 
K,(a- r)‘/2 for r < u (23) 

where u is the diameter of the particle, r is the distance 
between the centres of the particles and KS is a spring 
constant. Thus, when the particles interpenetrate, a 
spring effectively arises between them and forces them 
apart (see Fig. 4). From eqn. (23), we can obtain a 
difference formula for the repulsive force 

f = - v(r,+l)-v(rk) =Ks[a-(rk+l+r)/‘4 k 
rk+l-rk 

k (24) 

where fk and rk are the force and distance between 
the centres of the particles at the Ph timestep, re- 
spectively. This difference equation, coupled with the 
Newton-Raphson method, allows us to compute the 
repulsive normal force. Our difference equations are 
so constructed that energy is automatically conserved 
within the system [9]. To simulate real physical collisions, 
we require additional dissipative frictional forces. With 
this in mind, our repulsive force of eqn. (24), which 
acts in the normal ii direction, is given an extra damping 
term: 

F ;“-=K,[a-(rk+,+rk)/2]-K~Vnomt (25) 

where KD is a damping constant, and V,,, is the 
component of the relative velocity v, -v2 in the fr 
direction: 

Clearly, with this form of damping, it is possible to 
damp out all motion parallel to B. 

To damp out motion parallel to i, one must introduce 
sliding, rolling and static friction. Our sliding friction 
takes the form 

F+ = - Kslipz),ong (27) 

where KS,@ is the coefficient of sliding friction, and vrong 
is the component of the relative velocity v1 -v, in the 
i direction: 

V lang=(vl-vz+rlXwl-rzXy).~ 

= -(v,-v&y+(v,y-v.&x-rr,w,-r20, (28) 

Our form for rolling friction is based on that given by 
Witters and Duymelinck [lo] 

F,,,, = - P,&‘““~ (29) 

where r(~,,, is the coefficient of rolling friction, and 
F;““” is shown in eqn. (25). To determine whether the 
particle is rolling, sliding or both, we simply take the 
minimum magnitude of eqns. (27) and (29). 

For the purposes of our study, it is only necessary 
to consider static friction when the particle is in contact 
with the ground and the particle begins to move from 
rest. We simulate static friction by creating a potential 
well underneath the particle which opposes any motion 
parallel to the ground. The equation describing the 
static friction force: 

r 
0 for h-xol>n 

ek = I - PstnticN cr, + 1 -x/c) - - 
a ( 2 

-x0 ) 
(30) 

for h-xol<a 
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where x,, is the x position of the particle at rest on 
the ground, a is the half-width of the potential well, 

P static is the coefficient of static friction, and N is the 
normal force of the ground on the particle. Nis computed 
via eqn. (25). 

By combining all the forces in eqns. (25), (27), (29), 
and (30) we can compute the total force that acts 
through the centre: 

F ,Ota, = F,,i-i + Fj (31) 

where F,, is given by eqn. (25) and F, for a particle 
in contact with particles above the ground is given by 

6 = min(F,,,, F,u) (32) 

while F, for a particle in soft contact with the ground 
is 

F, = min(F,,,, FroN) + Fzatic (33) 

To convert from the d and ^t directions to the usual 
Cartesian coordinates we use the equations 

F,=F,,n,-F,n,, (34) 

F,=F,,n,+F,n, (35) 

and to compute the moment of force (7) that makes 
the particle roll, we have: 

Q- = uF,~,~ I2 (36) 

from which we can compute the angular velocities of 
the particles. 

All the above information is presented schematically 
in Fig. 4, which allows one to obtain an intuitive 
understanding of the mechanisms used in our computer 
code for simulating soft body interactions. A more 
complete description of soft body interactions may be 
found in Cundall and Strack [ll]. 

Results 

A close packed equilateral sandpile+nalytic model 
We can obtain simple analytic results for the force 

distribution in a two dimensional system, if we consider 
a sandpile where all the particles are ‘hard’, i.e. they 
suffer no change in size as they are subjected to an 
external force, and the particles lie on a grid as shown 
in Fig. 5. Unlike the normal Cartesian system, the X, 
y axes shown in Fig. 5 are not mutually orthogonal. 
We are motivated to assume this grid system by noting 
that the basic force unit is a system of three particles 
(see Fig. 5). The static forces will propagate through 
the contact points and thus at angle to the gravitational 
force g. If we analyze the forces acting on a particle 
at (x, y), we find by resolving forces in the horizontal 
direction, 

ux,y-1) R(x- 1,~) 

(x3 Y) x 8 e 

Nx, Y) ux. Y) 
mg 

i g 0 
Close Packed 
Triangular Unit 

Non - Close Packed 
Triangular Unit 

Fig. 5. To study the distribution of forces in a sandpile, we have 
created a coordinate grid where every intersection point can 
contain a particle. The forces propagate through the particle 
contact points which lie along the coordinate lines. Unlike normal 
Cartesian coordinates, our grid lines are not mutually orthogonal. 
We are motivated to assume this grid system by noting that the 
basic force unit is a system of three particles. The static forces 
will propagate through the contact points and thus at angle to 
the gravitational force g. If we analyze the forces through an 
arbitrary particle located at (x, y), we obtain eqns. (37) to (41). 
For close packed disks, with equal radii, the angle 0 will have 
the value 5-r/6. If the disks are not closely packed, then the angle 
0 may be greater than ?r/6. 

L&y-l)+R(x,y)-L(x,y)--R(x-l,y)=O (37) 

where L stands for forces directed along the left diagonal 
and, similarly, R stands for forces directed along the 
right diagonal. The vertical component of the force 
satisfies the equation 

L(x, y) + R(x, y) - L(x, y - 1) - R(x- 1, y) = W (38) 

where W=mglcos 8. By adding and subtracting eqn. 
(37) from eqn. (38), and setting 

L(x, 0) = R(0, y) = 0 (39) 

we can obtain recurrence relations for L and R, which 
have the solutions 

L(x, Y> = WE (40) 

and 

R(x, y) = Wxl2 (41) 
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A particle on the ground will experience a normal 
force plus a frictional force. From an analysis based 
on Fig. 6, we find that the normal force (N) exerted 
by the ground on the particle is 

N= (k + l)mg/2 (42) 

where k is the number of layers in the pile. Thus the 
normal force is constant for all particles in contact with 
the ground for this theoretical pile. The horizontal 
force that the particle exerts on the ground (H) is 
given by the formula 

H=mg tan f3[2i-k- 1]/2 (43) 

For e=rr/6, i.e. for close packed identical disks, eqn. 

(43) b ecomes 

H= mg[Z-k- 11 
243 

H has a maximum absolute magnitude when i = 1 and 
k. Also, H= 0 when i = (k+ 1)/2 (k odd). 

A close packed equilateral sandpile-computational 
model 

As a first test of our computational model, we create 
an equilateral pile consisting of 1035 identical soft 
particles (Fig. 7). Each particle in the pile satisfies the 
dimensionless equation 

rnglK,~I~ = 1 (45) 

where KS is the spring constant, and Ax is the distance 
a soft particle will sink into the ground due to the 
force of its own weight. Equation (45) is simply a force 
balance equation, where the spring force balances the 
weight force of the particle. In our simulations, it is 
computationally convenient to choose 

mgllr(;u= 10e4, or LLx= 10P4a (46) 

where u is the diameter of the particle. In other words 
our ‘soft’ particle will, under its own weight, sink into 
the ground a distance of lob4 CT. Our ‘soft’ particle is 
thus a good approximation to a ‘hard’ particle only 

i 1 2 3 k-l k 

000 . . . 00 

x k k-l k-2 2 I 
y 1 2 3 k-l k 

i w 
Fig. 6. The coordinate numbers and force structure for particles 
in contact with the ground. 

Equilateral Pile, 1035 particles 

Fig. 7. As the first trial for the force code, the force structure 

in this equilateral close packed pile of 103.5 particles is analyzed. 
There are 45 layers of particles in this pile, and the same number 

in contact with the ground. The unit of length is the diameter 
of a particle (0). 

down to one part in 104, since a hard particle would 
not sink into the ground at all. Indeed, the ground 
particles in the equilateral pile of Fig. 7 will have to 
support the weight of their higher fellow particles, 
which (from eqn. (42)) means that they will sink a 
distance of about 2.3 X 10e3 u into the ground. Thus 
the expected relative difference in force structure be- 
tween our pile of ‘soft’ particles and the theoretical 
pile of ‘hard’ particles should be of order 2.3X 10e3. 

In Figs. 8 and 9, we plot the normal and horizontal 
forces obtained from the code and from eqns. (42) and 
(44). As can be seen, the relative difference between 
the predictions of eqns. (42) and (44) with the com- 
putational model is less than 1%. The difference is 
obvious in Fig. 8, but is not seen in Fig. 9 due to the 
larger size scale over which the horizontal force results 
are displayed. 

In our analytic model, we have assumed that the 
forces act in diagonal lines thereby ignoring any possible 
contacts between particles on the same level. We can 
use our computer model to determine the veracity of 
this assumption for the spring constants chosen in this 
example. Suppose we study the force structure of a 
particle situated at an arbitrary point (x, y) in the pile 
(see Fig. 5). The force coming from above and from 
the left would be L(x, y- 1). Similarly the force from 
above and the right would be R(x- 1, y). Using eqns. 
(40) and (41) we can write 

L(x, y - 1) >R(x - 1, y) implies y >x 

and 

L&y-l)<R(x-1,~) impliesy6x 

(47) 

(48) 

So we should expect that the left and right hand forces 
should be equal down the central axis of the pile. On 
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Fig. 8. The analytic prediction of eqn. (42) vs. the results from 
the computational model for normal forces in an equilateral pile, 
where the forces have been normalized to the theoretically 
expected value. Also, the base length of the pile has been 
normalized to 1. The difference between the two results is (as 
expected) at the 1% level and is due to the compressibility of 
the computer particles. 

X 

Fig. 9. The analytic prediction of eqn. (44) vs. the results from 
the computational model for the horizontal forces the equilateral 
pile exerts on the ground. The forces have been normalized to 
the maximum magnitude of the theoretically predicted values, 
and the base length of the pile has been normalized to 1. 

the left hand side of the pile, the forces on the right 
diagonal (i.e. in the x direction) will be stronger than 
the forces on the left diagonal 0, direction) and vice 
versa. One of the advantages of our computational 
model is our ability to visualize all the forces acting 
on each of the particles. This allows us to view both 
the strongest and the weakest of the forces acting on 
each particle. In Figs. 10(a) and 10(b), we display the 
lines of maximum and minimum force, respectively, 
between each particle pair. As our analysis with eqns. 
(47) and (48) predicts, each separate line element 
between any two particles join up to form long lines 
that are parallel or make an angle of ?r/3 to the slope 
of our equilateral close packed sandpile. This is not 
surprising since, as mentioned previously, our funda- 

lines of maximum Force 

lines of minimum Force 
Direction of 

X’Y I X<Y 
I 

x=y 

Fig. 10(a) and (b). Lines of force in the equilateral pile shown 
in Fig. 7 as determined from our n-body code. The behaviour 
of the lines of force from the simulation are consistent with the 
predictions from our simple analytic model. The direction and 
magnitude of the lines of force are dependent on position in 
the pile as outlined in eqns. (47) and (48). For example if x>y, 
then the strongest forces are parallel to the x axis (Fig. 10(a)), 
while the weakest forces are parallel to the y axis (Fig. 10(b)). 
Force balance occurs along the centre line at x=y, and the 
pattern is reversed when x<y. 

mental force unit is an equilateral triangle of particles 
(Fig. 5). As is consistent with our theoretical model, 
no horizontal forces are found between neighbouring 
particles in this sandpile. 

A close packed sandpile with arbitrary slope-theory 
From the comparisons between the analytic and 

computational results for a close packed equilateral 
sandpile, it appears that we have achieved a relatively 
good understanding of a perfect equilateral pile. How- 
ever, for a general pile of base width B and a general 
angle of repose a< 7~/3, then our analytic model breaks 
down, since there is no longer a particle at every lattice 
point of our grid. It is still possible to work out the 
propagation of force down each diagonal, but we no 
longer obtain simple recurrence relations like eqns. 
(37) and (38). The problem becomes amenable to an 
approximate solution, however, if we take the continuum 
limit and make each of our particles, nearly, infinitesimal 
in size. Thus we assume that the force still propagates 
in a diagonal fashion (see Fig. ll), where the angle 
between the line of force and the ground is ?r/3 or 271 
3. This is true if our nearly infinitesimal particles have 
equal radii, are incompressible, and are close packed. 

We can now characterize a linear mass density x 
along each diagonal line. For example x can have the 
form: ,y =m/u. Thus the mass of a line of length 1 is 
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Fig. 11. An isosceles triangle outlines our ‘continuum particulate’ 
pile. The triangle has a base of length B, a height h and an 
angle of repose (Y which is strictly less than 7r/3. The force is 
assumed to propagate along diagonal lines of length I1 and IZ, 
where each line makes an angle of 2~13, and ~13 with the 
horizontal. The intersection point of lines 1, and I, is a distance 
x from the origin. 

~1 and the total force directed down the diagonal is, 
by analogy with eqns. (40) and (41) for 0=n-/3, 
,&/&. It is not difficult to show that for XQX~E 
h[cot cy - l/&l 

I, =x sin u/sin(27r/3 - CZ) (49) 

and 

I, =x sin cu/sin(7r/3 - CX) (50) 

If x,<x<B/2, then I, remains unchanged, but the I, 
line intercepts the other slope of the sandpile and its 
length becomes 

I, = (B -x) sin cu/sin(2r/3 - CX) (51) 

At X, the point of intersection of the diagonal lines, 
the normal force (N) of the ground on the pile satisfies 

N=x(l, +I,)/2 (52) 

and the horizontal force (H) of the pile on the ground 
is 

H= ~(1~ - 1,)/(243) (53) 

Substitution of (49), (50), and (51) into (52), and (53) 
plus the symmetric nature of the pile gives: 
For OGX~X, 

fixg sin (Y cos (Y 
N= 

2 sin(27/3 - CX) sin(v/3 -a) (54) 

and 

H= 
-xxg sin’s 

2fi sin(2r/3 - a) sin(7+3 - a) 

For x, <x <B -x, 

N= 
x@ sin ff 

2 sin(2r/3 - a) 

and 

H = xg(x -B/2) sin (Y 

fi sin(2r/3 - ff) 

(55) 

(57) 

Finally, for B -x, <x <B 

fi(B -x)xg sin (Y cos LY N= 

2 sin(2?r/3 - a) sin(r/3 - CX) 

and 

j-+ (B -x)xg sin’s 

2fi sin(27r/3 - a) sin(nY3 -a) 

(58) 

(59) 

A close packed sandpile with arbitrary 
slope -computational model 

We compare theory to our computational results by 
simulating piles of material with different angles of 
repose (a). In particular, we consider the values (Y = 55”, 
50”, 45”, and 30”. Also, noting that 

x=mla (60) 

we can express x in terms of eqns. (45) and (46). 
Finally, for convenience, we normalize B to take the 
value 1. 

To provide an example of what these non-equilateral 
sandpiles look like, we show the 55” pile in Fig. 12. 
In Figs. 13 and 14 we compare the analytic versus 
computed results for the normal and horizontal forces, 
respectively, along the base of the different piles. In 
Fig. 13, the circles represent the normal forces obtained 
from, the computer code, while the lines give the an- 
alytically derived forces from eqns. (54), (56), and (58). 
All the forces are normalized to the maximum force 
value obtained from the computer code. The difference 
between the theoretically expected normal forces and 
those obtained from the computer simulation is partially 
due to the finite size of the particles in the computer 
pile. The normal forces obtained from the simulation 
include the full weight of the particles on the base of 
the pile, while the analytic continuum model ignores 

55” sandpile 

45Y 
40 

35 
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25 
x 

20 

15 

10 

5 

n 
“0 5 10 15 20 25 30 35 40 45 

X 

Fig. 12. This pile has an angle of repose of 55”. Because the 
pile is made of discrete particle, the sides are composed of a 
number of sloping steps. The unit of length in this picture is 
the diameter of the particles. 
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Fig. 13. The computed and analytic normal forces for piles of particles with ct=30”, 45”, SO”, and 55”. The circles represent the 
normal forces obtained from the computer code, and the lines show the forces from eqns. (54) (56), and (58). All the forces are 
normalized to the maximum force value obtained from the computer code. The difference between the theoretically expected normal 
forces and those obtained from the computer simulation is partially due to the finite nature of the computer pile. The normal 
forces obtained from the simulation include the full weight of the particles on the base of the pile, while the analytic continuum 
model ignores this contribution. Also the size of the particle is approximately a fiftieth of the pile size, while the analytic results 
assume that the particles are infinitesimal compared to the size of the pile. 

this contribution. Also the size of the particle is ap- 
proximately a fiftieth of the pile size, while the analytic 
results assume that the particles are infinitesimal com- 
pared to the size of the pile. If we increase the number 
of particles in the pile, the difference between the 
models decreases (see Fig. 15). 

In Fig. 14, the circular points represent the horizontal 
forces the pile exerts on the ground as obtained from 
the computer code, while the lines show the analytically 
derived forces from eqns. (55), (57) and (59). Again, 
all the forces are normalized to the maximum force 
value obtained from the computer code. Interestingly, 

the central portion of the force profile for both the 
computer simulation and the analytic theory (eqn. (57)) 
is dependent on the angle of repose of the pile. The 
differences between the analytic. and computational 
force profiles are not due to the fact that we are 
comparing a continuum analytic model to a discrete 
particle model, since when we increase the number of 
particles, we still obtain basically the same horizontal 
pile-ground force profiles from our computer results 
(see Fig. 15). The fundamental reason for the difference 
is, we believe, due to our assumption that all the forces 
propagate at an angle of 7r/3 or 2n/3 to the horizontal 
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14. The computed and theoretical horizontal forces that piles 
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of particles with cr=30”, 45”, 50”, and 55” exert on the ground. 
The circular dots represent the horizontal forces obtained from the computer code. The dark lines represent the analytically derived 

forces from eqns. (55), (57), and (59). Note that the central portion of the force profile for both the computer simulation and the 
analytic theory is dependent on the angle of repose of the pile. 

in the analytic model, while the results of our com- 
putational model suggests that some of the forces 
propagate horizontally between neighbouring particles. 
This can be seen in Fig. 16, where we show the force 
lines of weakest and strongest forces in the LY = 30” pile, 
with similar results being true for the 55”, 50”, and 45 
piles. 

Experiment versus computer model 
As mentioned previously, the only experiment that 

has been done to measure the stress distribution in 
sandpiles is that of Smid and Novosad [l]. We have 
taken their results for the largest pile of sand in their 
experiment, normalized them and then compared them 
to the normalized results from our computational model. 
The angle of repose for Smid and Novosad’s sand pile 
was 32.6” which we have duplicated in our computer 
model. The comparison is shown in Fig. 17, where it 

can be seen that the central ‘linear’ portion of the 
horizontal force that the pile exerts on the ground is 
the same for both the computer simulation and ex- 
perimental results. Since the slope of this portion is 
dependent on the sandpile’s angle of repose (eqn. (57)), 
it is encouraging that the computer simulation and 
experimental results agree. The experimental pile, how- 
ever, exerted a greater horizontal shear stress near the 
edges of the pile than did our simulated pile. 

Although we have qualitative success in modelling 
the form of the tangential stress, we cannot obtain the 
experimentally observed depression in the normal stress 
underneath the centre of the pile (Fig. 17(b)). Instead, 
eqns. (42), and (56) suggest that the normal force 
should be constant between X, and B-x,. Possible 
reasons for this discrepancy between our results and 
experiment are: 
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Fig. 15. We typically use piles containing 360 particles to obtain 
the force structure of the 30” piles shown in Figs. 13 and 14. 

To check that our results are correct, we have created a 30” 
pile consisting of 5490 particles. Comparing the relevant results, 

it is clear that the normalized force profiles between the small 
and large piles are very similar, and although the difference 
between the theoretical normal force and the simulation force 

is smaller than that obtained in Fig. 13, it is seen that the 
simulation results for the horizontal force between the pile and 
the ground do not converge to the analytic model. 

(1) the experimental results are true for a three 
dimensional pile, while we are investigating the be- 
haviour of a two dimensional pile, 

(2) the experimental piles are not perfect cones, and 
(3) real particle piles are made of nonspherical 

particles with different sixes, and somewhat random 
positions. In our theoretical analysis however, we have 
created our piles with a regular, close packed distribution 
of identical particles. 

Unfortunately, our code is not yet ready to handle 
three dimensional structures, so this possibility will have 
to be investigated in our next study. We are prompted 
to make suggestion (2), because in Smid and Novosad 
[l] the authors created their sandpiles by pouring sand 
and fertilizer from storage containers onto a measuring 
platform. It is possible that the sandpiles formed via 
this method did not have a perfect triangular profile. 
For example, if the bulk solid had enough kinetic energy, 
it could have flattened the top of the pile (see Fig. 
18(a)), or if the material had a relatively small amount 
of kinetic energy, it is possible that it had a peak with 
a slope greater than the main pile’s angle of repose 

(4 

(b) 
Fig. 16 (a). The lines of maximum force obtained from our 

discrete particle computer code for a sandpile with a 30” angle 
of repose. As in Fig. 10(a), the maximum force lines still make 

an angle of ?r/3 or 2?r/3 to the horizontal. (b). The lines of 
minimum force obtained from our discrete particle computer 

code for a sandpile with a 30” angle of repose. Unlike Fig. 10(b), 
where there were no contacts between particles on the same 

level, the minimum force lines now propagate horizontally between 
neighbouring particles, although some still make an angle of -rr/ 
3 or 2~13 to the horizontal. 

(Fig. 18(a)). To investigate this possibility, we modify 
our continuum triangular pile as shown in Fig. 11 to 
the ‘tent’ profiles shown in Fig. 18, but still assume 
that the internal forces are propagating along lines 
inclined at an angle of rr/3 or 2z-/3 to the horizontal. 

As before, we can obtain analytic expressions for the 
lengths I, and Iz, but given the qualitative nature of 
the suggestions, it is more convenient to find the lengths 
numerically from the intersections of the lines I, and 
I, with the ‘tent’ profile. From these calculations, we 
found that piles with (Ye > az, (where LYE and (y, are the 
angles shown in Fig. 13) do not possess a minimum 
in the normal stress. However, if cu,> (Ye then it is 
relatively easy to obtain a depression in the normal 
force curve as shown in Fig. 19, although this normal 
force curve is not replicated when we analyze the force 
distribution, with our simulation code, in a similarly shaped 
pile made of discrete particles. 

Returning to suggestion (3), we have not created 
sandpiles with particles of different radii, preferring, 
instead, to learn about simpler systems where all the 
particles have the same radii. But we can easily create 
systems where the particles have been accumulated in 
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Fig. 17. Comparison of results from Smid and Novosad [l] (denoted 
by filled circles joined by lines) with the results from our com- 
putational model (denoted by open circles only) for a pile with 
a 32.6” angle of repose, which was the angle of repose for the 
experimental pile. Fig. 17 (a) displays the horizontal force the 
pile exerts on the ground, and the good agreement between the 
computed and experimental results. Fig. 17 (b) displays the 
normal force the pile exerts on the ground. The central depression 
in the experimental normal force is not replicated in the computer 
model. The possible reasons for this discrepancy are discussed 
in the text. 

a semi-random fashion. For instance, using our discrete 
particle simulation code, we can create a pile of ‘soft’ 
particles by dropping one particle at a time. An example 
of just such a pile is shown in Fig. 20(a), where we 
also show the normal force profile in Fig. 20(b). Note 
that we obtain a slight depression in the centre of the 
normal force distribution, but not of a magnitude that 
is comparable to that observed by Smid and Novosad 
[l] (see Fig. 17). A general conclusion cannot be 
obtained from a sample of one; indeed, other random 
piles that we have created in a similar fashion show 
no depression in the middle of the normal force dis- 
tribution. 

Conclusions 

We have attempted to replicate, by analytic and 
computational analysis of the force distribution in a 

0 X, B-X, B 

0 XI B-X, B 

Fig. 18. ‘Tent’ profile sandpiles. In (a), we have at> rrz, while 
for (b), q>q. The force lines L, and b make an angle of 2?r/ 
3 and rr/3, respectively to the horizontal. The first ‘bump’ in the 
tent profile occurs at a distance X, along the base of the pile, 
where the base length is denoted by B. 
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Fig. 19. The normalized horizontal and normal forces obtained 
from our analytic model for a ‘tent’ sandpile with a profile similar 
to Fig. 18 (b), where q =3W, era = 45”, and X, = 0.38B. Note that 
the dip in the normal force profile is not replicated when we 
analyze the force distribution for a similarly shaped pile with 
our discrete particle computer model. 
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Fig. 20. In Fig. 20(a) we show a particulate pile consisting of 
968 particles, which have been assembled by dropping one particle 
at a time from a height of two particle diameters above the 
highest point in the pile. As the pile grows with time, it experiences 
avalanches, forms ‘fault’ lines, and develops a more random 
internal structure. The normal force profile obtained at the base 
of the pile is shown in Fig. 20(b), although the normal force 
profile does dip around the middle of the pile. The relative 
magnitude of the depression in the normal force is small compared 
to what is observed experimentally. 

two dimensional sandpile, the results obtained by Smid 
and Novosad [l] for the vertical and shear stress at 
the base of a conical pile of particulate material. We 
have successfully replicated their results for the shear 

stress, but are unable to replicate the depression in 
the vertical stress distribution, which they showed oc- 
curred under the highest point of the pile. However, 
our models show that the vertical stress distribution 
should become constant within a certain distance of 
the centre of the pile. 

The most probable explanation for the difference 
between our theoretical models and the experimental 
results, is, we believe, due to our use of a two dimensional 
model to describe a three dimensional physical system. 
Development of a three dimensional discrete particle 
code, in a future study, will hopefully shed light on 
this issue. 

Our results suggest that in close packed particulate 
material, maximal force propagates along lines that 
make an angle of 7r/3 to the horizontal. This result 
allows us to create a simple analytic description of 
forces obtained in piles of particulate material of ar- 
bitrary shape. 
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