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Abstract. We present numerical solutions and analytical approximate solutions to problems of gas flow 
in porous media arising in the modelling of outbursts in coal mines and the efficient recovery of methane 
from coal seams. 
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1. Introduction 

Fluid flow in a porous solid contributes to the state of stress in the solid. If the fluid 
is flowing into a borehole or cavity then the fluid flow may contribute to the 
mechanical failure of that opening. The stress induced by the flow of liquids into 
boreholes has been studied by Paslay and Cheatham (1963) and Risnes et  al. 

(1982), but the stress induced by gas flow does not seem to have received attention. 
Gas is highly compressible, which provides pressure and stress profiles significantly 
different from those that occur with liquid flow. The compressibility of gas also 
means the equation to be solved to describe the flow is highly nonlinear, unlike the 
linear equation that describes the flow of an incompressible liquid. It is this 
difficulty that has restricted solutions for gas flow to small pressure changes or 
other restrictive conditions so that linear approximations can be made. Failure of 
an underground opening often is associated with dramatic changes in pressure, such 
as the gas outbursts which occur in coal mines (Paterson, 1986). In these situations, 
the nonlinearity of the gas flow equation cannot be ignored. 

It is our purpose here to provide some approximate solutions which may be used 
when there are sudden and significant drops of pressure in an underground 
opening. A knowledge of the pressure profile allows the determination of the 
effective stress (Jaeger and Cook, 1976) on the porous solid. This may be useful not 
only for preventing or avoiding failure, but also on those occasions where failure is 
desired. Such an occasion arises in the creation of cavities for the exploitation of 
methane occuring naturally in coal. In the coalbed methane completion technology 
called 'Openhole Cavity Completion' (described in Logan et al., 1989), a coalbed 
methane well is shut-in so that the pressure in the well approaches the original 
formation pressure of the coal seam. Then the well is suddenly opened to the 
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atmosphere resulting in a rapid pressure drop in the well. Coal has been observed 
to slough into the well on application of this procedure. 

In this paper, we examine the pressure distribution induced when a cavity at low 
pressure Po is created in a large (mathematically infinite) porous medium filled with 
gas at a uniform pressure Pl. In particular, after a discussion of the fundamental 
governing equations of the system and their steady-state solutions (Section 2), we 
obtain numerical solutions for the time-evolution of the pressure for an ideal gas 
draining into a cavity in a one-dimensional geometry (Section 3). For this geome- 
try, which is most appropriate to the outburst problem, one may seek a similarity 
solution to reduce the governing partial differential equation to an ordinary 
differential equation, but as we show in Section 4, accurate numerical solutions are 
most easily generated by a time-stepping procedure, which has the benefit of being 
easily generalized to other geometries where similarity solutions are not available. 
We give in Section 3 a simple argument leading to an analytic approximation for 
the solution and use this approximation to suggest in Section 4 a phenomenological 
explicit formula for the solution which fits the numerical data with high precision. 
In Section 5, we obtain numerical solutions for the time-evolution of the pressure 
for an ideal gas draining into a cylindrical cavity. An accurate empirical curve for 
the short-time behaviour of the system is obtained. The similarity between the 
numerical solutions and the steady-state solutions derived in Section 2 suggests an 
analytic approximation scheme which leads to simple formulae for the time 
evolution of the pressure at long times (Section 6). The details of the numerical 
scheme are contained in an Appendix. 

We have ignored additional complications that arise when water is also present, 
or the permeability of the rock depends on the fluid pressure, or the gas interacts 
with the rock. These complications arise when methane flows in coal (cf. Paterson, 
1990), but it is easier to begin by neglecting these complications. Also, although the 
basic techniques presented are applicable to general equations of state and general 
pressure-viscosity relations, we have illustrated them for the specific case of an ideal 
gas equation of state and a constant shear viscosity. 

2. Governing Equations 

We recall the fundamental equations governing flow of a gas through a porous 
material (Muskat 1937). The equation of continuity (mass conservation) 

4, ~ + v .  (pq) = 0 (2.1) 

relates the superficial velocity or volume flux q to the mass density p and the 
porosity 4,. Darcy's law 

k 
q = - "  V p ,  (2.2) 

# 
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couples the superficial velocity to the pressure p in the gas. The constants k and # 
are respectively the permeability of the porous material and the shear viscosity of 
the gas. In Eq. (2.2), we have omitted the effect of gravity, which for the systems 
to be modelled is unimportant. The pressure and density are coupled by an 
equation of state. We consider for the present a general equation of state of the 
form 

O =f(P).  (2.3) 

This equation of state includes as special cases the classic examples of isothermal 
flow of an ideal gas, in which 

p = Ap, (2.4) 

where A is inversely proportional to the absolute temperature*, and adiabatic flow 
of an ideal gas, for which 

p = Bp I/~, (2.5) 

where B is constant and 7 is the familiar ratio of the specific heats. 
Equations (2.1) and (2.2) imply that 

( #q5 Vp . (2.6) 

It will be convenient to write the equation of state of a general gas in the form 

p =f (p)  = Ap/Z(p) ,  (2.7) 

where A is the temperature-dependent factor in the ideal gas equation of state (2.4). 
We introduce the pseudopressure 

fp/(p') p' ~(p) = 2 Jo ~ dp' = 2 #Z(p-- 5 dp'. (2.8) 

Some authors define the pseudopressure with the lower terminal on the integral 
replaced by the pressure corresponding to a standard state, but for our purposes the 
definition (2.8) suffices. Equation (2.6) reduces to 

~ f ( p )  kA = ~ VZO(p). (2.9) 

If we note that 

•0 2f(p) 0p 2 0 tet" -~ (2.10) 
c~t IrA c~t t~Ac(t)) ~?t j tp ; '  

*If p is measured in gm cit1-3 and p in dyne cm -2, N~ = Avogadro ' s  number  = 6.02 x 1023, T is the 
absolute temperature and k~ = B o l t z m a n n ' s  c o n s t a n t =  1.38 x 10 16ergK -1, then A =molecu la r  
weight in gm mole-1/(NAkBT). 
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where 

c(~) = 1 d f ( p )  = 1 d p (2.11) 
pap p dp 

is the compressibility, Equation (2.9) can be formally rewritten as a nonlinear 
differential equation for the pseudopressure, viz. 

3~0 k 
- V20 .  ( 2 .12 )  

at  #4,c(~)  

In some contexts, the gas viscosity # may need to be allowed to be a function of  the 
pseudopressure. We shall not consider such cases here. 

Steady solutions '(i.e. solntions in which the  pressure is constant in time) are 
easily deduced by solving Laplace's equation 

V2~ = 0 .  (2.13) 

The three simple solutions given below describe the flow of a gas in a porous 
material bounded by surfaces at which the pressure is prescribed. These three 
solutions are the starting point for analytic approximate solutions for some 
time-dependent problems, as discussed in Section 6. 

(i) One-dimensional steady solutions 
With x a spatial coordinate, Equation (2.13) reduces to d2~/dx 2 = 0, and so ~ is a 
linear function of  x. If  we apply the boundary conditions 

P =Po at x = 0  and p =p~ at x = X > 0 ,  (2.14) 

we have 

~'(p)  = r  + [q4p l )  - r (2.15) 

(ii) Radially symmetric two-dimensional steady solutions 
With r a radial coordinate, Equation (2.13) reduces to d2~/dr2+ r -~ d~/dr = 0 ,  
and so ~ is a linear combination of 1 and log r. If  we apply the boundary 
conditions 

P = Po 

we have 

a t r = a  and P = P l  a t r = R > a ,  (2.16) 

q,(p) = 4,(po) + [ r  - r  - -  
log(r/a) 
log(R/a)" 

(2.17) 

P = P o  at r = a  and P = P l  a t r = R > a ,  (2.18) 

(iii) Radially symmetric three-dimensional steady solutions 
With r a radial coordinate, Equation (2.13) reduces to dZ~/dr2 + 2r -1 d~/dr = O, 
and so ~ is a linear combination of  1 and r-~.  If  we apply the boundary conditions 
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we have 

~(p)  = 

141 

R~t(pl) - -  a~'(po) aR[~b(pl) - ~9(po)] 
(2.19) 

R - a (R - a)r 

In all cases, the pressure p is determined in terms of the pseudopressure if, defined 
by Equation (2.8). In dimensions 1, 2 and 3, ~ is linear in the variables x, log r and 
l/r, respectively. We shall exploit this observation in deriving simple analytic 
approximate solutions for large time in Section 6. It may be noted here for later 
reference that for the ideal gas equation of state, 

c(~) = l ip and if(p) =p2/#.  (2.20) 

3. Similarity Solutions in One Dimension 

It may be noted here that the one-dimensional time-dependent problem may be 
solvedexactly for some special equations of state. The situation is an exact parallel 
of the non-linear diffusion problem addressed by Philip (1960). Equation (2.12) 
reduces in one dimension to 

&k k ~32~ 
•t #q~c(O) Ox 2" (3.1) 

The absence of any geometrical length scale suggests that we seek a solution in 
which x is scaled with a length constructed from the time and the other physical 
parameters of the problem. We write 

= x / X ( t ) ,  (3.2) 

where 

X(t) = ~kA[O(Pl) - ~(Po)]t } 1/2 
( c / ) f ( p  I - . (3.3) 

The significance of the choice of the prefactor in Equation (3.3) will become 
apparent in Section 6. It is easily shown that 

d2ff #c(~)A[t~(Pl) - ~(Po)] r d~ 
h-~ + 2f(p,) ~ =0. (3.4) 

This equation is to be solved subject to the boundary conditions 

~'(P) =ff(Po) at ( = 0  and ~ ( p ) ~ ( p , )  as ~ .  (3.5) 

In the nonlinear diffusion literature, the problem has sometimes been addressed 
by what amounts to searching for equations of state which make Equation (3.4) 
solvable in terms of known functions. In contrast, we address here the approximate 
solution of Equation (3.4) for equations of state of physical interest. We illustrate 
this with the case of an ideal gas, with P0 = 0, but the reader will readily see that the 



142 DEREK Y. C. CHAN ET AL. 

approach is easily generalized to accommodate other equations of state and 
nonzero pressure P0 at ~ = 0. For problems of gas flow in coal, P0 ~ Pl, so the 
neglect of P0 is usually reasonable. We write 

= Wp2 /# .  (3.6) 

Using Equations (2.20) and (3.6), we find that Equation (3.4) becomes 

d2q j ~ dW 
d~5 + 2 ~ -  = 0, (3.7) 

with boundary conditions 

q~(p)=0  a t e = 0  and q ~ ( p ) ~ l  as ~ G o .  (3.8) 

For large values of ~, where W is close to 1, we may replace Equation (3.7) by 

d2~ j ~ dW 

d4 ~ + 2 d~- - O, (3.9) 

so that 

d dq j 
~ {exp(~2/4) ~ - }  =0 .  (3.10) 

The solution of this equation can be expressed in terms of the error function 

eft(z) = ~  exp(--u 2) du, (3.11) 

but the important thing to note here is that for large ~, 1 - � 9  contains the rapidly 
decaying factor e x p ( -  ~2/4). 

If  we write 

qJ = 1 - exp[-~b(~)], (3.12) 

the differential equation (3.9) becomes 

~ '  
~,, _ (r + = 0. (3 .13)  

2[ 1 - exp( - qb)] 1/2 

We attempt a solution of the form 

�9 (r = a r  + b ~  2 + ' ' ' .  (3 .14)  

For small 4, the differential equation (3.13) leads to the requirement that 

2b = a 2. (3.15) 

Since we require ~(4) ~ 42/4 as 4 ~ o% if we make the choice 

a - 1/,,/2 = 0.707 and b = 1/4, (3.16) 
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the trial solution is consistent for ~ ~ 0  and for ~--, oc, although we have no 

guarantee that it will be reasonable for ~ ~ 1, so we tentatively propose that 

-~ 1 - exp( - ~/x/2 - ~ 2/4). (3.17) 

For  different equations of  state, the same approach goes through, although different 
numerical values of  a and b are obtained. The numerical performance of  Equation 

(3.17) is addressed in Section 4. 

4. Numerical Solutions in One Dimension 

We have obtained numerical solutions for transient one-dimensional flow of an 

ideal gas in one dimension. In most  practical calculations, the pressure in the well 
(typically 1 atmosphere) is far less than the pressure deep inside the porous medium 

(typically 40-60  atmospheres), so we have considered only the case in which the 

well pressure P0 is zero, while the pressure far from the well is p~ > 0. For  the ideal 
gas equation of  state, using Equations (2.20), the partial differential equation (2.12) 

becomes 

(~@ kip 1/2 (~2ip 

Qt ~D/.~ 1/2 ~X 2" 

It is convenient to introduce dimensionless variables by writing 

ip = P 2  ud, t = to~ and x = xoz,  

(4.1) 

(4.2) 

where Xo and to are length and time scales, respectively. The dimensionless version 
of Equation (4.1) is 

027 ,~ vI/1/2 OZ2,  (4.3) 

where 

kp l to 
e x~qS# (4.4) 

The appearance of the time and length scales as to/X 2 in the dimensionless 
parameter  e reflects the existence of a similarity solution for this system. Since we 

are able to choose x0 and to at our discretion, we may henceforth assume that 

= 1. ( 4 . 5 )  

The boundary conditions to be applied are qJ = 0 at z = 0 and W --+ 1 as z ~ oo. 
Equation (4.3) is solved by the implicit time-stepping method described in the 

Appendix. In Figure 1 we show W as a function of  4, where 

Z 2 (/) ]~X 2 
3 2 - - . (4.6) 

kpl t 
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Fig. 1. Numerical solution for the dimensionless pseudopressure �9 for one dimensional flow of ideal 
gas into a cavity at zero pressure. Here �9 = i~tp/p 2 =pZ/p2, where Pl is the pressure far from the cavity 
and ~ = z / z  1/2 = {@#xZ/(kpl 0} 1/2. The solutions for different times lie on a common curve. The analytic 
approximate solution (3.17) and the empirical approximate solution (4.7) are also shown. For practical 
purposes, the latter is indistinguishable from the numerical solutions. 

for several different dimensionless times z. These solutions for  different times fall on  

a single curve, which represents the similarity solution discussed in Section 3. It  is 

actually simpler to obtain  the similarity solution by timestepping and plott ing the 

solution as a funct ion o f  ~ than by solving the differential equat ion (3.9). 

The analytic approximate  solution (3.17) is included in Figure 1. It  fits the 

numerical  da ta  reasonably well, with the worst  error  (less than 10%) occurr ing for 

---2. We have also obtained an empirical equat ion for the solution, viz. 

W = 1 - e -(0"625r + 0"186r (4.7) 

which is also shown in Figure 1. The empirical solution, which has a correlat ion 

coefficient in excess o f  0.999, is for all practical engineering purposes the solution o f  

the problem. 

5. Numerical Solutions for a Cylindrical Well 

We have obtained numerical  solutions for transient flow of  an ideal gas into a 
cylindrical well. As the pressure in the well ( typically 1 atmosphere)  is far less than 
the pressure deep inside the porous  medium (typically 4 0 - 6 0  atmospheres),  we have 

only considered the case in which the well pressure P0 is zero, while the pressure far 
f rom the well is Pl > 0. The radius o f  the well is denoted by a. For  the ideal gas 
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equation of state, Equations (2.12) and (2.20) give 

a~ kO ,/2 
~t - ~b#l/a VRO �9 

We exploit the radial geometry by writing z = l o g ( r / a )  to give 

- -  2 z  ~21/t ~?O kO 1/2 e 
& (aa2~ 1/2 cqz 2 . 

It  is convenient to introduce dimensionless variables by writing 

O =  p~R* and t = t o r ,  
# 

where 

145 

(5.1) 

(5.2) 

(5.3) 

OR* c~2R* 
- -  e -2ZR*  1/2 - -  (5.6) 

& Oz 2 , 

to be solved with boundary conditions R* = 0 at z = 0 and R*--* 1 as z ~ oo. 

The solution is constructed by an implicit time-stepping method described in the 

Appendix. In Figure 2 we show R* as a function of z for several different times. It 
may be observed that the solution is linear over a substantial interval, so that at 

each fixed time the solution is qualitatively rather similar to the steady-state 

solution given by Equation (2.17). We exploit this observation in Section 6. 
For  small enough times, the pseudopressure R* has decayed appreciably only in 

a region of  small thickness compared to the well diameter, so the solution for the 
pseudopressure should be indistinguishable from that for a one-dimensional geome- 

try, with x = r -  a. As noted in Section 3, in the one-dimensional geometry, the 
absence of  any natural length scale forces the solution to be a function of  x / t  '/2. 

Thus, if for each value of r, we plot R* as a function of  

= ( r / a  - 1 ) / z  "U2 = (e z - -  1) / ' c  ' /2,  (5.7) 

the curves for different small values of  r should lie on top of  each other. That  this 
is so in practice is demonstrated in Figure 3, where data for two different values of  

I f  we increase a to mineshaft diameters (a - 1 m), to is increased to 80 sec. 
Equation (5.2) becomes 

t o ~ 0.8 sec. (5.5) 

For  methane (# ~ 1 0 - S P a s ,  Pl ~ 5  x 106pa) leaking into a typical well-bore 
(a - 0 . 1  m) from a coal seam (k -~ 1 milliDarcy = 10 . ' 5  m 2, q5 ~ 0.04), the charac- 

teristic time is 

~ # a  2 

to - (5.4) 
@l 
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u g =  0.9 

[] Theory . . . . ~ ~  
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�9 �9 �9 �9 . , - ,  

�9 .. - - u g = 0 . 1  

1'0 100 
17 

Fig. 2. Numerical solution for the dimensionless pseudopressure W for flow of ideal gas into a 
cylindrical cavity at zero pressure. We show the time evolution of  curves of  constant W for W = 0.1 to 
0.9 in steps of  0.1. The continuous curve marked with open squares represents the location of the 
fictitious moving interface (specified by Equation (6.16)) which is used to construct the analytic 
approximate solution in Section 6. 

1.0 

tp 0.8 

0.6 

0.4 

0.2 

0.0 
0 

, /  " "c=O,l 
~ /  x ~=i 

Empirical fit 

1 2 3 4 

Fig. 3. Small time numerical solution for the dimensionless pseudopressure W for flow of ideal gas 
into a cylindrical cavity at zero pressure. The dimensionless variable ~ is defined by Equation (5.7). 
The empirical approximate solution (5.8) is also shown. 
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Fig. 4. Large time numerical solution for the dimensionless pseudopressure ~s for flow of ideal gas into 
a cylindrical cavity at zero pressure. The dimensionless variable ~ is defined by Equation (5.7). The 
empirical approximate solution (5.8) is also shown. 

is shown. We have obtained an empirical equation for this curve, viz. 

~F = 1 - e (~176 (5.8) 

This curve is also shown in Figure 3. It  fits the numerical solutions for z ~< 0.1 with 

a correlation coefficient of  0.999. For  larger times, the curves for tp as a function 
of ~ are displaced f rom the small-time universal curve as shown in Figure 4. 

6. Approximate Analytic Solutions for Large Time 

The numerical solutions reported in Section 5 above show that at a given time, the 

pressure p rises from P0 at the well surface to pressure p~ over a region, the width 
of which increases with time. The form of ~(p)  over this region is similar to the 

steady-state solution derived in Section 2. We now use this observation to construct 
approximate analytic solutions for large times. Our fundamental  approximation is 
very easily explained. We assume that there is a 'dividing surface' in the porous 

material. Between the dividing surface and the well, the pressure distribution is 

approximated by the pressure distribution for steady flow. Beyond the dividing 
surface, the gas is assumed stationary and at pressure p~. The dividing surface 
recedes from the well as the gas escapes. The position of the dividing surface is 
located by an analogue of the boundary condition found in the well-known Stefan 
problems of heat conduction (Crank,  1984). I f  n denotes the normal to the dividing 
surface and v is the velocity of  the dividing surface, then 

~bpv" n = - p q -  n. (6.1) 
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This equation asserts that gas brought into motion as the dividing surface recedes 
is carried away by the usual pressure-gradient driven transport law. 

From Equations (6.1) and (2.2), we deduce that 

k kA 
v" n = ~ Vp" n - 2~f(p~) V~" n, (6.2) 

where the gradient is evaluated at the dividing surface. In simple geometries, such 
as those now to be considered, the combination of the steady-state formula for the 
pseudopressure and Equation (6.2) produces an ordinary differential equation, the 
solution of which locates the dividing surface. The initial condition for the problem 
is that at time t --0,  the dividing surface coincides with the well, which is held at 
pressure P0. The mass flux J(t). into the well is given by the normal component of 
(pk/#)Vp = (kA/2)Vq/ at the wall of the well. 

(i) One-dimensional approximate solutions. With x a spatial coordinate, the well 
corresponding to x = 0 and the dividing surface to x = X(t), we have from 
Equation (2.15) 

~9(p) = ~/(Po) + [~/(Pl) - ~/(po)]x/X(t). (6.3) 

Equation (6.2) reduces to 

dX kA[~b(pl)-q/(po)] 
d~ - 2(af(pl )X(t) (6.4) 

This equation is to be solved subject to the initial condition 

X(0) = 0. (6.5) 

The appropriate solution is evidently 

X(t) = ~kA[q/(pl) - ~(po)]t ~ 1/2 (6.6) 

( q~f(Pl) J " 

If we consider the one-dimensional model as representing the case when the well is 
a half-space (i.e. infinite, with a plane interface), the mass flux into the well per unit 
area of  wall is 

J ( t )=kA[~(P ' ) -O(P~176176  I / 2 " 2 X ( t )  (6.7) 

It may be noted here that the introduction of  the variable ~ = x/X(t), as used in our 
discussion of  similarity solutions in Section 3, enables the approximate solution to 
be written in the form 

~O(P0) + [O(P,) - O(Po)]{, 0 ~< r <~ 1, 4,(p) (6.8) 
= "(~,(p,), ~/> 1. 
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For the special case of  an ideal gas, with P0 = 0 and W = ~p~/#, this simplifies 
to 

{~, 0~<~:~<1} (6.9) 
, e =  1, ~ > 1  " 

Inspection of Figure 1 will show that the fit is rather poor, but fortunately we 
already have a reasonable analytic approximation (Equation (3.17)) and an excel- 
lent numerical fit (Equation (4.7)). 

(ii) Radially symmetric two-dimensional approximate solutions. With r a radial 
coordinate, the well corresponding to r = 0 and the dividing surface to r = R(t), we 
have from Equation (2.17) 

tp(p) = ~/(Po) + [I//(Pl ) -- ~(P0)] 
log(r/a) 

log(R(t)/a)" 

Equation (6.2) reduces to 

d R  kA[~9(p,) - ~(P0)] 

dt 2(af(p, ) log(R(t) /a)R(t)  

This equation is to be solved subject to the initial condition 

R(0) = a. 

Equation (6.11) can be transformed into an equation for 

(6.10) 

viz. 

(6.11) 

(6.12) 

S(t) log S(t) - S(t) = aT - 1. (6.16) 

For  small t, we write S(t) = 1 + e(t), where e(t) ~ 1, and Equation (6.16) implies 
that as t--+0, e(t) 2 ~  2at, so that 

R(t) 
= l + " / ( a t ) + . - -  as t ~ 0 .  (6.17) 

a 

For the special case of an ideal gas with P0 = 0, we have a = 2/t0, where t o is defined 
by Equation (5.4). The appropriate solution is 

2kA[~b(Pl ) - ~b(po) ] 
a - ( 6 . 1 5 )  

a2~ f (p l )  

where S(0) = 1 and 

dS 
log S ~  = a, (6.14) 

S(t) = [R(t)/a] 2, (6.13) 
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For  large t, standard asymptotic techniques (cf. Olver (1974), p. 12) show that 

R(t) (at) 
a [log(at)]l/2 as t ~ .  (6.18) 

The mass flux into the well per unit area of wall is 

k A [ ~ ( p l )  - if(P0)] aaOf (p~)  
J ( t )  = 2a l og (R( t ) / a )  - 4 l og (R( t ) /a ) "  (6.19) 

Using the asymptotic form (6.17), we infer that 

J ( t ) , , ~ { k A [ ~ b ( P ~ ) - ~ t ( P ~  as t ~ 0 ,  (6.20) 

so the initial flux is exactly the same as that for the one-dimensional problem. This 
to be expected, since at small times, the dominant gas motion occurs so close to the 
wall of  the well that the effect of  curvature is not seen. For  large times, we find from 
Equation (6.18) that to leading order, 

a a O f ( p l )  
J ( t )  -,~ 2 log(at) (6.21) 

(iii) Radia l ly  s y m m e t r i c  three-d imens ional  approx ima te  solutions.  We have not con- 
structed numerical solutions for the case of gas draining into a spherical cavity, 
since this problem is less relevant to the applications we have in mind, but for 
completeness we briefly discuss analytic approximate solutions for this case. With r 
a radial coordinate, the well corresponding to r = a and the dividing surface to 
r = R( t ) ,  we have from Equation (2.19) 

R ( t ) ~ ( p i  ) - a~k(po) a R ( t ) [ ~ ( p l )  - ~(Po)] 
O(p) = (6.22) 

R( t )  - a [R(t) - a]r 

Equation (6.2) reduces to 

d R  kAa[~b(pl )  - ~9(p0)] a3a 
dt  - 2 ( b f ( p , ) R ( t ) [ R ( t )  - a] = 4R( t ) [R( t )  - a]' (6.23) 

to be solved subject to the initial condition 

R(0) = a. (6.24) 

The solution is 

R(t) 3 aR( t )  2 a 3 a3at 
~- - (6.25) 

3 2 6 4 

The asymptotic analysis of the solution for small and large t is straightforward. 
With a as defined by Equation (6.15), we find that 

R( t )  _ 1 + , j ( a t )  ~ + - . .  a s t ~ 0  (6.26) 
a 
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(cf. Equation (6.17) for the two-dimensional case) and 

as t --+ oo. (6.27) 
a 

For  small times the asymptotic form of  the mass flux into the well coincides with 
that for the one-dimensional case. It is easily shown that 

a ~ f ( P l  ) J ( t ) ~ - -  as t ~ .  (6.28) 
4 

It may be noted that for a given dimension, the qualitative forms of the equation 
locating the dividing surface and the equation of  the mass flux into the well are 
independent of the details of  the equation of state connecting the pressure and 
density. 

Appendix. The Numerical Scheme 

In Sections 4 and 5, we are faced with the numerical solution of equations of the 
form 

~klJ ~2kI/ 
cgr = F(z, ~?) ~z 2 , (A.1) 

with boundary conditions ud = 0 at z = 0 and ud--+ 1 as z--+ oo. In Section 4, 

F(z, ud) = ~1/2, (A.2) 

while in Section 5, 

F(z, u?) = e 2zklJl/2. (A.3) 

Equation (1.1)  is solved by an implicit time-stepping method. With ~P{ denoting the 
dimensionless pseudopressure at zi = i k z  and dimensionless time zj = j k z ,  the 
partial derivatives are approximated by 

& ~_ (~{+1 _ Rj{)/Az (1.4)  

and 

~ 21-I,/ 
(~Z 2 ~ (lt//j+ ~ __ 2qJ~+ 1 + ~ +  l ) / (Az )2 .  (A.5) 

The partial differential equation is therefore replaced by the tridiagonal system of 
nonlinear equations 

-/3ih~ ~1 + (1 + 2fli)q~{ +1 - f l i ~ +  I = qJ{, (A.6) 
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where 
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fli = F(zi,  ~ +  1) (Az) 2" (A.7) 

For each time zj =jAz, we use an iterative scheme to determine the solution at time 
"cj+ 1 = (J + 1)Az. We use an initial estimate for q'~+ 1 to calculate the coefficients fli 
and then Equation (A.6) is taken as a linear tridiagonal system from which we can 
determine a better estimate o f  q,~+l and hence a better estimate o f  fli. This 
procedure, which is stable and rapidly convergent, is repeated at each timestep, 
until the desired accuracy for q~{+l is obtained. 
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