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SUMMARY 

We present solutions for the effective stress induced by gas flow through a porous solid into a borehole 
resulting from sudden pressure reduction. Tensile effective stress that exceeds the strength of the solid will 
lead to borehole failure. This has applications to the intentional creation of cavities, relevant to the efficient 
recovery of coalbed methane, and the avoidance of borehole stability problems in conventional gas 
production. 

1. INTRODUCTION 

Borehole failure can result from several mechanisms.' Hydraulic fracture can be initiated by high 
pressures within the borehole.' Wellbore breakouts are attributed to high horizontal stress at 
depth.3 These types of failure occur without consideration of the fluid flow within the rock itself. 
Fluid flow in a porous solid can also contribute to the state of stress in the solid. 

The stress and failure induced by the flow of liquids into boreholes has been studied by Pasley 
and Cheatham4 and Risnes et aL5 The stress induced by gas flow does not seem to have received 
the same attention apart from brief mentions (e.g. Reference 6). Here we investigate the stresses 
induced by transient flow of gases into boreholes, and we make some comparisons to liquid flow. 
Gas is highly compressible, which provides pressure and stress profiles significantly different from 
those that occur with liquids. The compressibility of gas also means that the equation to be solved 
to describe the flow is non-linear, unlike the linear equation that describes the low-Reynolds- 
number flow of an incompressible liquid. It is this difficulty that has restricted solutions for gas 
flow to small pressure changes or other restrictive conditions so that linear approximations can 
be made. Failure of an underground opening is often associated with dramatic changes in 
pressure, such as the gas outbursts which occur in coal mines,' and the analogous laboratory 
experiments of Ujihira et aL8 In these situations the non-linearity of the gas flow equation cannot 
be ignored. 

A knowledge of the pressure profile allows the determination of the effective stress' on the 
porous solid. This may be useful not only for preventing or avoiding failure, but also on the 
occasions where failure is desired. This occasion arises in the creation of cavities for the 
exploitation of methane occurring naturally in coal. Specifically, Logan et al." give a description 
of a coalbed methane completion technology called 'openhole cavity completion'. In this techno- 
logy, a coalbed methane well is shut-in so that the pressure in the well approaches the original 
formation pressure of the coal seam. Then the well is suddenly opened to the atmosphere, 
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resulting in a rapid pressure drop in the well. Coal has been observed to slough into the well on 
application of this procedure. 

In this paper, we obtain numerical solutions for the effective stress in the porous medium for 
a model of the openhole cavity completion process, to estimate the characteristic distance and 
time scales associated with tensile failure of the medium in the vicinity of the borehole. For the 
openhole cavity completion process the physically interesting time scale (associated with the 
escape of gas into the borehole) is short. It therefore suffices here to model the porous medium by 
a linearly elastic continuum. There has been considerable interest in plastic deformation of 
wellbore surrounds (see, e.g. Geertsma" and references therein), but this issue is not relevant to 
the problem at hand, since the associated time scales far exceed those studied here. 

2.  STRESS AROUND A BOREHOLE 

As in Geertsma,I4 we assume the system to be in a state of plane strain. As a result of tectonic 
forces, in the absence of any borehole, the radial and transverse principal stresses are uniform: 

Or, = = -Om (2.1) 

where cr, is a positive scalar. We have adopted the convention that the normal stresses are positive 
in tension. Stress increases at approximately 25 kPam- ' ,  so that if we examine a layer several 
metres thick and 400 m below the surface, 6, will be of the order of 10 MPa. Suppose a vertical 
borehole of radius a is then drilled through the rock. Equation (2.1) will now hold as a boundary 
condition far from the borehole, but near the borehole the stress tensor will be a radially 
symmetric function of the distance from the axis of the borehole. 

Whatever the constitutive properties of the rock, the stress tensor cr must satisfy the equilibrium 
equation 

v . 0  = 0 (2.2) 

For plane strain with radial symmetry about the vertical ( z )  axis, free from shear, the equilibrium 
condition is satisfied if 

(2.3) 

where r ,  0 and z are the usual polar co-ordinates. 
We consider a homogeneous, isotropic, linearly elastic porous medium. In the absence of fluid, 

the constitutive equation for such a material relating the stress tensor Q to the strain tensor e is 

ts = A,trace{e}I + 2pLe 

where A, and pL are the Lame constants and I is the unit tensor. The constitutive equation must 
be modified to account for the presence of the fluid, which can relieve the effective compressive 
stress on the matrix or even (as we show) produce a tensile effective stress. We use the 
modification proposed by Biot,' 2, ' writing for the total stress 0, 

c = -up1 + {A, - cr2M} trace{e}l + 2pLe (2.5) 

where c1 and M are parameters of the system which may be interpreted in terms of the physical 
model which leads to equation (2.5) and p is the fluid pressure. Briefly, the parameters a (dimen- 
sionless) and M (with dimensions of pressure) enter as coefficients in an expression for the strain 
energy as a quadratic function of the strain tensor and an appropriate measure of the increment of 
fluid content.' 
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For a purely radial displacement field u(r) = u(r) i ,  the only non-zero components of the strain 
tensor are 

du u 
err = - and eee = - 

dr r 

and we have 
du u 

trace{e} = - + - 
dr r 

(We have chosen to subtract off the uniform strain ezr corresponding to the existing deformation 
of the porous medium before the fluid flow process takes place.) Equations (2.3), (2.5)-(2.7) lead to 
an equation for the radial displacement field: 

For brevity we have written 

K = LY/(AL + 2pL - a 2 M )  (2.9) 
It is easily verified that the general solution of this differential equation is 

B 
Rp(R) dR + Ar + - 

r c r 
u(r) = - (2.10) 

and we obtain the simple result that 

trace{e} = Kp(r) + 2A (2.1 1) 

The solution for the stresses equivalent to equation (2.10) has been given previously by 
G e e r t ~ m a . ’ ~  In particular, we find after a little algebra (in which a number of terms involving the 
pressure p(r) cancel) that 

Crr = 2A{& - a 2 M }  + 2pL { - jI Rp(R)dR + A - ”) r2  
(2.12) 

The arbitrary constants A and B are determined from boundary conditions at r = a (the 
wellbore) and at r = co. These boundary conditions are most easily stated in terms of stresses. 

At the wellbore, where the outward normal to the solid is -P, the solid is in contact with the 
atmosphere at ambient atmospheric pressure p a ,  say, and we have the boundary condition 

-?.a = p a t  (2.13) 

so that 

g r r  = -Pa and ore = 0 (2.14) 

The latter condition is automatically satisfied, but the former enables us to determine one of the 
constants in equation (2.12) and our solutions for the radial stress becomes 

(2.15) 

We assume an isotropic compressive state as r -+ a. If we have [in accord with equation (2.1)] 
IJ -+ - 6, I and p -+ pm, the constant B is easily identified and we arrive at the key result, needed 
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for later analysis, that 

(2.16) 

where we have introduced the dimensionless quantity 

(2.17) 

which converges to 1/2 as r .+ co. The only way in which the elastic properties of the medium 
embodied in the parameters of Biot’s constitutive equation enter the formula (2.16) for the stress is 
via the dimensionless quantity 2KpL, which GeertsmaI4 notes is typically between 0.4 and 0.7 for 
rock. In the sample calculations reported below, we have taken 2KpL = 0.5. 

The total stress a can be regarded as a linear combination of an eflectiue stress on the solid ceff 
and the fluid stress - PI: 

(2.18) 0 = aeff - P I  

In particular, the radial component of the effective stress is 

O;ff = arr + p (2.19) 

If aeff > 0, the porous rock is effectively in tension, even though the total stress on the system is 
compressive. If the porous rock has a tensile strength T 2 0 (in the absence of gas) tensile failure 
in the gas-filled rock will occur at any point where 

aefr > T (2.20) 

In coal, the tensile strength is often very low. 
In a more detailed analysis which follows, the pressure is time-dependent. In principle, for 

time-dependent problems, one should solve the time-dependent form of the momentum equation 
rather than the steady equilibrium condition (2.2), but we shall not address this here. 

3. MODELS FOR FLUID FLOW 

Water flow 

incompressible, while the pore space has a compressibility defined in Reference 14 
Consider saturated liquid flow in a compressible aquifer, so that the fluid is taken as 

where 4 is the porosity. The continuity equation 

relates the superficial velocity or volume flux q to the mass density p, while Darcy’s law 

k 
P 

q =  - - v p  (3.3) 

couples the superficial velocity to the pressure p in the liquid. The constants k and p are, 
respectively, the permeability of the porous material and the shear viscosity of the liquid. In 
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equation (3.3), we have omitted the effect of gravity, which for the systems to be modelled is 
unimportant. If we assume that the permeability and shear viscosity are constant, and that the 
pore compressibility is small and constant, we arrive at a diffusion equation for the pressure: 

Here, as usual, V z  denotes the Laplace operator, and for circularly symmetric problems 

Gas f low 

Gas flow in a porous rock is similar. Equations (3.2) and (3.3) remain valid, but as the 
compressibility of the gas far exceeds that of the rock, rather than using equation (3.1), we use the 
equation of state of the gas to eliminate the density in favour of the pressure. After a little algebra, 
we obtain the equation" 

where t j  is the pseudo-pressure, given by an integral involving the pressure and c is the gas 
compressibility. For convenience, we choose to consider isothermal flow of an ideal gas, so that 
the density is a linear function of pressure and 

c(*) = l/P> *(P) = P2/P (3.7) 

Equation (3.6) thus reduces to the non-linear diffusion equation 

(3.8) 

In a previous paper," we have given a numerical scheme for solving equation (3.6) and discussed 
analytic and empirical approximate solutions. 

4. INSTANTANEOUS PRESSURE REDUCTON IN A BOREHOLE 

Let us consider the case in which the gas pressure is initially pm, with the well pressure abruptly 
lowered from pm to pa and restrict our attention to such short times that no significant gas flow 
has occurred, so that as a first approximation we may replace p by pm everywhere in r > a. Then 
in equation (2.16), we have n(r) 1/2 and 

(4.1) 

Since 6, > pm > pa, - pa, so long as the inequality 

KPL< 1 

is satisfied, the effective stress is positive (i.e. tensile) in the region a < r < ro ,  where 
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i.e. there is initially a region in tension close to the borehole. For typical coal reservoirs, one may 
take cm z 4 MPa, pm % 2 MPa, pa % 0, so that ro /a  z ,/(7/4) z 1.3. 

One would like to know for how long the tensile region endures. A reasonable estimate is the 
time T taken for the pressure at radius ro to drop significantly. We estimate T ,  assuming that 
ro /a  z J(7/4) for a borehole of radius a = 0.12 m in a medium of porosity 4 = 0.05 and 
permeability k = 1 x m2 (1 md). 

For wutev, an  estimate of this time T can be obtained from inspection of equation (3.4): 

r i  4 W P  T = -  
k 

Pas  [l  cp] and up = 4 x lo-'' Pa-', we obtain T z 0.5 s. Taking p = 1 x 
For gas, repeating the analysis above, using equation (3.8) we have 

r: 4FL 
k P m  

T = -  

(4.4) 

(4.5) 

Assuming that p = 1.5 x 
In practice, the pressure in the wellbore cannot be dropped instantaneously to zero. For the 

illustrated example, there will be no prospect for tensile failure of the well unless the pressure can 
be reduced from 2 MPa to atmospheric pressure ( % 0.1 MPa) in time less than 7. Thus, the 
pressure drop in the well must be extremely fast ( < 0.5 s) for water-filled porous media. For gas, 
the pressure drop in the well must still be fast ( < 10 s), but not as fast as for water. Moreover, in 
practical field applications, it is easier to reduce gas pressure rapidly by venting than to reduce 
water pressure by lifting water out of the borehole. 

Pas  [0.015 cp] and pa. = 2 MPa gives 7 z 9.5 s. 

5. NUMERICAL SOLUTIONS 

In an earlier paperI5 we have analyzed the transient flow of an ideal gas into a cylindrical 
j borehole. The borehole has radius a and is initially at pressure pa;.  At time t = 0, the pressure in 
' the borehole is instantaneously dropped to zero. This is an idealization and represents the 
' extreme case. In the field, it will take some time to draw the pressure down to atmospheric 

pressure, which we have assumed so small compared to the initial pressure in the coal that it may 
be taken as zero. For short times, the numerical solutions for the pressure p at distance r from the 
centre of the borehole and time t in the problem are well fitted by the empirical curve'' 

where 

i = (r /a  - l)(t0/t)l'2 (5.2) 

and 

(5.3) 

In Figure 1 we compare the empirical pressure curve with our numerical solutions. In our 
numerical studies below, we use the empirical curve for t d to.  For t < O.l to  the empirical curve is 
the practical solution of the gas pressure problem and the effective stress calculations are accurate 
(within the approximations of the model and for the physical parameters chosen). We believe that 
for O.lto < t < to, the results (though less accurate) will be a useful first approximation. For 
methane ( p  = 1.5 x lo-' Pas, p m  z 2 MPa) leaking into a typical wellbore (a z 0.12 m) from 
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Figure 1 .  Radial flow of an ideal gas into a cylindrical cavity of radius a. The pressure p is subject to the boundary 
conditions that p + 0 as r + a and p + pm as I* + c(3. Here [ and r* are as defined in equations (5.2) and (5.7). The 
numerical data and the empirical fit are from our earlier work (Reference 15). 

effective 
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r/a 
Figure 2. The total radial stress u,, and the effective radial stress a:." in the case p,/a, = 0.7 at time t / r n  = 0.05. The 
tensile region is where u;if > 0. 

a coal seam (k  = 10- l 5  m2 [l md], 4 z 0.05), the characteristic time is 

t o  zz 5.2 s (5.4) 

If we increase a to mineshaft diameters (a zz 1 m), to is increased to 6 min. 
We shall use the empirical solution for the pressure to estimate for how long the effective stress 

is extreme enough that tensile failure may occur. This enables us to set an upper limit on the time 
interval in which the well-bore pressure must be reduced from pa to atmospheric pressure if 
fracture of the coal surrounding the well-bore is to be possible. For more accurate computations, 
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Figure 3. Numerical solutions for the period of time in which the effective radial stress o;;" exceeds the tensile stress T of 
the material. 

especially at later times, the empirical solution (5.1) may be replaced by numerical solutions, using 
the implicit finite difference procedure described in our previous paper.' The numerical scheme 
is easily adapted to accommodate more general equations of state, and can also be generalized to 
wellbores or cavities which are not circular in cross-section. 

With the empirical pressure curve (5.1), using equation (2.16) and setting pa = 0, the effective 
radial stress can be written in the form 

where 

1 
r*' 

n(r) = - c' xJ{1 - exp[-0.776(x - l)/t*'/' - 0.152(x - l)*/t*]} dx (5.6) 

and we have introduced the dimensionless variables 

r* = rJa and t *  = t/to (5.7) 

In Figure 2 we show the effective and the total radial stress as functions of position at one time. 
Failure will occur provided that the effective radial stress is tensile and of magnitude exceeding T. 
At small times, there is a big range in large tension region which promotes fracture, but the width 
of this region decreases with time. 

We seek the time at which the region in adequate tension shrinks to a single value of r .  At this 
time, the extreme value of the effective radial stress will coincide with the tensile strength. Our 
results are summarized in Figure 3, where we show the dimensionless time t* = t/to at which the 
tensile region vanishes as a function of pm/om (the ratio of the gas pressure to the total stress far 
from the borehole). Each curve corresponds to a particular value of T/o,. Examining this figure 
we can study particular cases. For example, consider the case when methane ( p  E 1.5 x 10- Pa s) 
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at initial pressure p1 = 2 MPa, is suddenly released into a wellbore from porous rock with 
permeability k = 10- l 5  m2 (1 md), porosity 4 = 0.05 and tensile strength 0.1 MPa in a stress field 
of 5 MPa. Then effective tension exceeding the tensile strength will exist for 4.7 s for a borehole of 
radius a = 0.12 m. If the tensile strength is less, say 005 MPa, then a much longer period of 16.5 s 
exists. The possibility of failure depends critically on the borehole radius, with the time in tension 
increasing as the square of the borehole radius. The tensile strength of the porous rock is also 
important, with longer times in tension for weaker materials such a coal. 

These values serve to provide design parameters. If one is attempting to create a cavity, then it 
would often be necessary to reduce the borehole pressure in the order of a few seconds. 
Alternatively, if one were trying to avoid borehole failure by this mechanism, then rapid 
reductions in pressure should be avoided. 

6 .  CONCLUSIONS 

In this paper we have discussed the effective stress in the matrix of a porous solid due to fluid flow. 
For fluid draining into a borehole, transient tensile effective stresses can be generated in the 
vicinity of the borehole. If these tensile effective stresses exceed the tensile strength of the matrix, 
the borehole may fracture. Simple time-scale estimates suggest that for gas-filled porous rocks, 
reductions of borehole pressure in the order of a few seconds can lead to tensile failure of the 
borehole. The time scales for water-filled porous media are so short that it is difficult to achieve 
tensile failure of a borehole. For the case of gas flow, we have given more careful numerical 
estimates of the relevant time scales using our previously obtained empirical solutions for the 
pressure. 
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