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Cellular-automata calculation of frequency-dependent permeability of porous media
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We use a cellular-automata (CA) method to determine the frequency-dependent permeability k(co) of
a channel and a disordered porous medium. The CA results for the channel flow agree completely with

the analytical solution of the problem. For flow in a porous medium, we calculate k(co) over a wide

range of the frequencies co and for several values of the porosity. Our CA results for disordered porous
media support the relation k(to)/ko =f(to/to, ), where ko is the static permeability of the medium, c0, is

a characteristic frequency, and f (x) is a universal function, proposed previously, based on experimental

data.

PACS number(s): 47.55.Mh, 47.15.Gf

I. INTRODUCTION

Flow phenomena in porous media are important to a
wide variety of problems and have been studied for a long
time [1]. Problems as diverse as enhanced recovery of oil
from underground reservoirs, drainage and imbibition in
soil, mercury porosimetry in a porous catalyst for deter-
mining its pore-size distribution, and many other process-
es are all in this class of phenomena.

One of the most important properties of a porous
medium is its effective permeability, which is a measure
of its ability for allowing Quid Aow to take place. For this
reason, calculating the effective permeability and relating
it to the microstructure of the porous medium has been a
problem of great interest for many decades. Since the
effective permeability depends on the microstructure of
the medium, many models of pore space have been
developed, and many numerical and analytical techniques
have also been suggested for determining their permeabil-
ities. However, most of such models are very simple; oth-
erwise computations become almost impossible. But this
is now changing rapidly, as new computer simulation
techniques [2] are allowing us to develop highly eScient
algorithms for determining the effective permeability and
other transport properties of porous media. Among
these are cellular-automata (CA) methods [3—5] which,
in the context of Quid How problems, are the discrete
solutions of the Navier-Stokes equations. In the past few
years, CA methods have been used by many authors
[6—14] for investigating various flow phenomena in
porous media.

Most of the previous studies of Aow phenomena using

CA methods were restricted to the steady-state condition.
Time was involved only during the relaxation process for
reaching the steady-state condition. One notable excep-
tion is the work of Lim [15],who studied boundary layer
Aows. Lim's work indicates that the CA methods can be
used for studying dynamical Aow problems. In a previ-
ous paper [16], we reported preliminary results for dy
namic (frequency-dependent) permeability of a porous
medium, defined by

V(co) = — VP(co),k(co)

p
where V is the average Iluid velocity, k(co) is the permea-
bility at frequency co, p is the viscosity of the quid, and P
is the pressure. Dynamics is introduced into the system
by setting P =Pe '"' as the ac pressure between two op-
posite faces of a porous medium at time t. Equivalently,
an oscillatory inlet Aow velocity can be imposed on the
system. There are already some experimental data for
k(co) [17] measured in fused-glass beads. Very simple
models of porous media have also been used to investi-
gate the problem theoretically [18—20]. Instead of study-
ing the response of the porous medium to an oscillatory
pressure gradient, our previous paper [16] only looked at
the response of the system to a unit step input. This was
necessitated by the computational difticulties at that time
and, in fact, k(co) was not calculated. In the present pa-
per, we present the results of a full investigation of the
problem in both a channel and a porous medium. The
advantage of CA methods is that they allow us to calcu-
late k(co) for complex and realistic models of porous
media, a task that is very dificult with any other method.
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In Sec. II, we give the details of the model and the simu-
lations, and then, present the results for channel and
porous-media Aows.

II. CA METHODS FOR DYNAMIC PERMEABILITY

We studied dynamic permeability of both a channel
and a two-dimensional model porous medium. The
motivation for studying the problem in a channel is that
one can derive the analytical solution of the problem and,
thus, compare it with the CA results to assess their accu-
racy. The simulations were carried out with a system of
size L„XL,with L =2048 and L =512, where L and

Ly are the length and width of the channel, respectively.
To generate the porous medium, we placed at random
hexagonal obstacles in the channel to reach a desired
porosity, i.e., the volume fraction of the pores between
the obstacles. To eliminate the end effects, we only
packed the central —,

' of the channel with the hexagons,
and even then performed all of our measurements in the
central half of the system. The porosity was also calcu-
lated based on the central half of the system. As dis-
cussed by Kohring [11),if the size of the obstacles is not
large (much larger than the mean-free path of the parti-
cles), then true hydrodynamic regime may not be ob-
tained, and the results may be dependent on the obsta-
cles' size. Thus, we used large hexagons (the size of their
sides was 20 lattice bonds) to avoid this difficulty.
Rejecting boundary conditions on the surface of the obs-
tacles and on the channel's walls were used to mimic the
usual no-slip boundary condition at a solid surface. Par-
ticle density in the simulations was one particle per site.
Simulations start by distributing the particle velocities in
the system in such a way that the Quid is macroscopically
at rest. Note, however, that in agreement with the range
of validity of Darcy's law (i.e., very low Reynolds num-
ber), and in order to simulate incompressible fiows, the
average Aow velocities have to be low enough. We then
iterated the system 5000 time steps to allow it to relax,
where each time step corresponds to updating the state of
all of its nodes according to the usual rules of two-
dimensional CA. A time-dependent velocity wave was
then introduced at the inlet of the system, and the
system's response was monitored. The velocity wave was
either Gaussian with given mean and standard devia-
tions, or sinusoidal with a given period. The maximum
Aow velocity introduced at the inlet was chosen in all
cases to be 0.2 (lattice bond/time step), which is small
enough for the nonlinearities, which arise at higher veloc-
ities, to be negligible. To introduce the wave into the sys-
tem, we simply biased the motion of the particles at the
entrance, i.e., change the particles velocities at the inlet
so that the Aow velocity there matches the velocity wave.
The effect of the velocity wave has to be relatively strong
for its effect to be measured downstream. Typically, the
period of time during which we introduced the velocity
wave into the system was 200—1000 time steps, after
which the wave was withdrawn. In the next 20000 time
steps, the average Aow velocity and pressure gradient of
the system were measured, although in all cases the effect
of the velocity wave died out after about 7000 time steps.

Up to 180 different realizations of the system were used,
and the average values were calculated. We then used a
standard discrete Fourier transform [21] to convert the
measured V„(t) and VP(t) into frequency-dependent
quantities, and used Eq. (1) to calculate k (co). In our pre-
vious paper [16], a unit step velocity was used to disturb
the system. However, the measurements there proved to
be too noisy to yield any reliable results, which was the
chief reason we did not calculate k(co).

III. DYNAMIC PERMEABILITY OF A CHANNEL

In this section, we compare the CA results with the
analytical solution of the problem in a channel. Let y
denote the transverse coordinate (i.e., perpendicular to
the macroscopic fiow), and a be the width of the channel.
If we let V = —i~8' where V is the macroscopic veloc-
ity in the axial direction, then the Navier-Stokes equa-
tions, in the Fourier space, are simplified to

d 8' . i+i

come'=

——,

dyy

CO

(2)

subject to no-slip boundary conditions on the channels
walls, i.e., at y =0 and y =a. The solution of Eq. (2) is
given by

IV(y) = 1 cos(Pa—)
sin(Py ) +cos(Py )

—1
sin a

(3)

where p=(ice)' . From Eq. (3), the frequency-
dependent permeability is given by

k (co)= — IV(y)dy =—1—LCO i 2 1 —cosPa
a o co pa sin pa

(4)

where J, is the Bessel function of order i.
Figures 1 and 2 show typical time variations of the ve-

locity and pressure gradient measured downstream in the
channel Aow. The pressure gradient is calculated as fol-
lows. We first measure the pressure along the channel,
and then find the best (least-squares) fit to the measure-
ments. This explains why the pressure gradient is noisy,
whereas the velocity is relatively noise free. After the
system is perturbed by the wave at the inlet, they both
change sharply, but as the effect of the perturbation dies
out, they both reduce to zero again. It is this noise at
both ends of the pressure gradient that makes calculating
its Fourier transform dificult. In fact, this noise persists

Since (ice)' =(Zco)' (1+i )/2, if we write k(co)=k„
+ik;, we can easily obtain the real and imaginary part of
k(co). It is straightforward to show that, as co~0,

a' . a4m
k(co)~ i—

12 72

so that in the limit co=0, i.e., very long times, we recover
the usual relation, k(0)=ko=a /12, for the static per-
meability of the channel. Note that for a tube of radius a,
the corresponding dynamic permeability is given by [20)

2 J, (Pa)
'

k(co) =—1— (6)
co a Jo a
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FIG. 1. Time variations of the Auid velocity in the channel
obtained with CA.

k(co) =a, co ~ +ia2ro (7)

where a, and a2 are constant. Our CA results agree with

even with a very large system and, therefore, it is neces-
sary to make many different realizations (different initial
distributions of the particles and their velocities) of the
system, calculate the average velocity and pressure-
gradient profiles, and Fourier transform the average
values. The range of the frequencies that can be mea-
sured by the CA method is bounded on the low-frequency
end by the length of the time over which the measure-
ments are done, and at high frequencies by the noise in
the pressure gradient.

Figure 3 compares the CA results for the dynamic per-
meability of the channel with the analytical solution, and
the agreement is excellent. For large values of ro (i.e.,
very short times), we have

FIG. 3. Frequency dependence of the channel permeability
k(co), where + denotes the real part of k(co), and the other
symbols show its imaginary part obtained with different inlet ve-

locity waves. Solid curves are the analytical solution of the
problem.

Eq. (7). Equation (7) also tells us that if we were to use a
random resistor network model of porous media for cal-
culating k(co) at large values of frequencies, the bonds of
the network would not be linear elements, but would
have a nonlinear and unusual frequency dependence. The
agreement between the CA results and the analytical
solution for the channel Aow confirms the validity of the
CA method for calculating k(ro). We thus turn to How in
a model porous medium.

IV. FREQUENCY-DEPENDENT PERMEABILITY
OF POROUS MEDIA

We first ensured that the results for porous media are
insensitive to the form of the velocity wave with which
the system was perturbed. Figure 4 presents the frequen-
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FIG. 2. Time variations of the pressure gradient in the chan-
nel obtained with CA.

FIG. 4. Frequency dependence of the dynamic permeability
of the porous medium at /=0. 94, obtained with three diFerent
velocity waves. The upper symbols show the imaginary part,
while the lower ones show the real part.
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Fkop pko T ' (8)

where p is the Quid density and T is the tortuosity of the
medium. Here I' =o.f/o. is the formation factor of the
porous medium, where o. is the effective electrical con-
ductivity of the porous medium saturated with a Quid

with electrical conductivity of. With decreasing P, F in-

creases, but the decrease in ko is much faster than the in-

crease in F and, therefore, co, also increases. This means

cy dependence of k„and k; at a porosity /=0. 94, for
three different waves. Two of these are Gaussian with a
standard deviation of 200 and 500, while the third one is
a sinusoidal wave with a period of 300. As can be seen,
there is no difference between the permeabilities of the
three systems. For large co, the behavior of k(a~) is ob-
tained by a least-square fit of the results. For the results
shown in Fig. 4, we obtained k„(co)—co

' and

k, (cn)-co ', both of which agree with Eq. (7). Figure 5

shows the result for /=0. 87. In this case, we found
k„(co)-co

' and k; (co )-co ', again in agreement
with Eq. (7).

The real and imaginary parts of the velocity profile
represent, respectively, the viscous and inertial effects.
For small values of co (long times), the real part is much
larger than the imaginary part. However, with increasing
~ the imaginary part also increases, and at some charac-
teristic frequency co„ it becomes larger than the real part.
Thus, co, signals the point at which the inertial effects be-
come larger than the viscous effects. The value of ~, is

approximately the frequency at which k, achieves its
maximum (see Fig. 3). In Fig. 6, we show the results for
/=0. 79, and as can be seen, there is a large shift in co,
(i.e., the curves essentially start at the maximum), as a re-
sult of which one can no longer discern the high-
frequency behavior of k(co). As the porosity of the medi-
um decreases, co, increases rapidly. Johnson, Koplik, and
Dashen [18] proposed that
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FIG. 6. Frequency dependence of k„and k; for /=0. 79.
Symbols are the same as in Fig. 5.

that with decreasing P, the characteristic frequency co,

shifts to very large values, which then implies that in or-
der to locate co, we have to do all of the measurements at
very short times. However, at such short times the noise
generated by the CA pressure or velocity is too high,
which makes it dificult to do any meaningful measure-
ments. Nevertheless, we can obtain the low-frequency
behavior of k(co) at this porosity. This difficulty is not a
feature of CA methods, but is shared by all methods and
models of calculating k(co). Our results indicate that for
small co, k;-m, while k„ is essentially constant, both of
which are in agreement with Eq. (5). The conclusion is
that Eqs. (5) and (7) continue to hold for porous media, at
least for the range of porosities that we studied, but with
decreasing P it becomes increasingly more difficult to ob-
tain the high-frequency behavior of k(co). We expect
Eqs. (5) and (7) to hold for any nonfractal porous medi-

um.
It has been suggested [17—20] that, regardless of the

value of P, the dynamic permeability obeys a simple scal-

ing law

k(co) =f ( co /co, ),
0

(9)
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FICi. S. Frequency dependence of the real part k„(diamonds)
and imaginary part k; (+) of the permeability at porosity
/=0. 87.

where f is a universal function independent of the micro-
structure of the medium. The universality of f is, of
course, a disappointing result, because it indicates that
measurements of k(co) do not provide any information
about the microstructure of the porous medium. Howev-
er, Johnson, Koplik, and Dashen [18] showed that the
high-frequency values of k(co) can provide information
about a parameter that might provide a link between ko
and o., an outstanding unsolved problem. Using our CA
results, we checked whether Eq. (9) is obeyed. Figure 7
shows the collapse of our results for /= 1, 0.94, 0.89, and
0.79, and it is clear that the collapse is complete and,
therefore, Eq. (9) is obeyed. This is a confirmation of Eq.
(9) for a realistic and complex model of a porous medium.
Johnson [22] has shown that a large number of equations
with certain appropriate properties obey Eq. (9), and
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problem. The results for porous media indicated that the
frequency dependence of the dynamic permeability found
for the channel Aow continue to hold for the porous-
media fIow. Moreover, the ratio of the dynamic and stat-
ic permeabilities follows a universal scaling function of
col co„where co, is a characteristic frequency at which the

inertial effects exceed the viscous effects, which is in
agreement with experimental data.
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FIG. 7. Scaling of k(co)/ko with co/cu, . The curve with a
maximum shows the imaginary part.

Johnson, Koplik, and Dashen [18] gave one simple exam-
ple of such functions.

V. SUMMARY

We calculated frequency-dependent permeabilities of a
channel and a model porous medium using a cellular-
automata method. The results for the channel Aow were
in complete agreement with the analytical solution of the
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