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Perturbed spectra of glasslike chains
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In this paper we calculate the vibrational spectra of classical, disordered, glasslike chains using a
perturbation method and examine the e8'ect of various types of disordering on the spectra. The effects
of localization are discussed, and the strong influence of this phenomenon on the convergence of the
perturbation techniques is discussed. The influence of fluid damping on the lattice is also treated,
thereby providing an approximate calculation for the damped oscillatory behavior of coagulated
colloidal systems.

PACS number(s): 82.70.Dd, 63.50.+x

I. INTRODUCTION

This paper seeks to examine the vibrational spectra of
one-dimensional classical chains as a function of the ex-
tent of disorder. What we compute is the set of eigenfre-
quencies as a function of the chosen disordering distibu-
tion and the density of states implied by this set of states,
expanded as a power series in some parameter which ex-
presses the extent of disorder. The problem was moti-
vated by the question of whether a coagulated colloidal
structure would exhibit a "useful" response to acoustic
excitation, i.e. , does the vibrational spectrum of a col-
lection of elastically coupled, near-macroscopic particles
of random sizes and coupling forces exhibit features that
might be useful in ultrasonic experiments. The existence
of emulsion systems with prolonged acoustic resonances
[1] indicates that fluid damping is not always overwhelm-
ing, and calculations are performed to see whether this
is a characteristic feature of coagulated colloids.

The disorder in such colloidal systems is usually
"glasslike, " i.e. , the distribution of particle sizes, their
locations, and coupling forces is a continuous function,
so the spectra are also continuous funtions [2). Interest-
ing numerical work has been done on glasslike structures,
beginning with Dean [3], but most of the existing analytic
work (see, e.g. , [4, 5, 2]) is devoted to alloylike problems,
where the disorder arises from the random placement of
distinct species in a uniform lattice and the spectrum is
usually expanded as a power series in the impurity con-
centration [4, 6]. It is well known that the spectra of such
alloylike systems exhibit fine structure, so it seems fruit-
less to pursue approximation methods of obtaining the
spectrum (see in particular [7]), but the smooth, contin-
uous nature of glasslike spectra inspires confidence that
an approximation technique might work. In particular,
an expansion in the extent of disorder (i.e. , some param-
eter that measures the spread of particle sizes and/or
interparticle forces) is now an appropriate entity to seek
since it must converge to the well-known spectra of or-
dered systems as the disordering vanishes.

As would be expected, Anderson localization [8] is
strongly manifest for short-wavelength modes, and this

creates convergence problems in the spectrum series at
high frequencies.

II. FORMALISM OF DYNAMICS OF A LINEAR
CHAIN OF OSCILLATORS

Following Dyson [9], we consider a chain of N masses
coupled by springs. The jth particle in the chain has
mass ms and the spring coupling the particles j and j+1
has elastic modulus K~.

The equations of motion are

and by using the "Dyson" variables

A2~ = K~/m~+i, (2)

A2~ i = K~/m, s, (3)

it can readily be shown that the characteristic frequencies
u, of the chain are the eigenvalues of the (2N —1) x (2N—
1) matrix A whose elements are

(4)

all other elements being zero [9]. There is always one zero
eigenvalue, and the remaining eigenfrequencies occur in

(N —1) pairs, the members of a pair being u; and —~, .
We will be primarily interested in the "cumulative den-

sity of states" function M(p), defined as the fraction of
eigenvalues ~; for which io, ( p, . As N ~ oo, we expect
M(p) to become a continuous function whose smooth-
ness will depend critically on the set of constants Ks, rn~
and their distribution. If it is sufBciently smooth, we
can define the density of states function D(p) = dM/dp.
A disordered chain can be defined as a chain whose ele-
ments are distributed in a random way according to some
known probability law. If the distribution is continuous,
then we may intuitively expect M(p) to be continuous
and smooth; this is referred to as "glasslike" disorder.
On the other hand, if the distribution is discontinuous (as
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in a model of binary alloys), it is well known that M(p)
will be strongly discontinuous and exhibit fine structure.
This type of problem theh will not readily succumb to
perturbation methods [2].

Furthermore, we may expect the spectral frequencies of
a disordered chain to approach those of an ordered system
as the extent of the disordering diminishes. A suitable
variable to model the extent of disorder is the ratio of
the standard deviation to the mean of the distributed
variable, which we denote by u. The density of states of
a disordered system can then be regarded as a function
of the type of disorder, the extent of disorder, and the
frequency squared p, . It seems plausible that a power-law
expansion for M(p, u) of the form

M(p, u) = ) u"MI, (p)
I =O

might exist in some cases, and that a few of the Mi, (p)
might be analytically derivable, a task which occupies
much of the remaining discussion. The first correction
term in such an expansion has already been derived by
Dyson [9] for the only exactly solved model known to
date and is readily derived for the low-frequency part of
the spectrum starting from some results of Alexander et
al. [11].

The object M(p, u) we call the "average density of
states" and must be understood in the sense of the av-
erage of an ensemble of density of state functions corre-
sponding to an ensemble of possible chains. It is mani-
festly different to such hypothetical objects as the "den-
sity of states of the average chain. "

The first problem is to find the density of states for a
given chain; this in turn reduces to the problem of find-
ing the eigenvalues of the matrix A. In this task we are
facilitated by the introduction of periodic boundary con-
ditions (PBC's), which in efFect turns the infinite chain
of masses into an infinite ring. As is well known, no bulk
eKects are introduced by this change in the thermody-
namic limit N ~ oo.

The imposition of PBC's implies that

(ug)~ = e'~'i" j E (0, 1, . . . , V)
V

and the density of states can very rapidly be computed
to be

k=N —1

Mo(p) = — ) O(p —~a)
k=—N+1

—'cos-'(1 —~), 0 & q & 4A

1 p, ) 4A

where O(z) is the usual Heaviside function.
If we now consider a disordered chain and regard A in

some sense as an "average" value of AA. , then we may
write

A= so+
where

P=—
2

0 —Pi
Pi 0
0 Pz

0 ~ ~ ~ ~ ~ ~

p2. —
0

po
0
0

po—0 0
pv i--

Pv-i 0

1/2
(f A,

b~

(AJ
—1 )

so clearly a weakly disordered chain (i.e. one in which the
distribution of masses and/or spring constants is quite
narrow; A, —A ) will produce a matrix P whose elements
PA, are small compared to those of Ap.

2' A: 2vrk

2N —1 V
and V:—2N —1 has been defined for future convenience.

The corresponding orthonormal eigenstates may be
written as

~O = &~-1,

m1 = m+

(6)
A. Perturbation theory

and thus we may write

0 —A"' 0
01 2

0 A"' 02
~ ~ ~

1/2
0
0

~ ~ ~ ~ ~ 0
1/2
2N —2

~ ~ ~

1/2
A2N —2

0

For an ordered crystal, with all Ay = A—:K/m, the
eigenvalues of A—:Ap are well known

—1/2
~k = 2A sinqA. ,

It is now quite a simple matter to apply canonical non-
degenerate perturbation theory to Eq. (13) (see, e.g. ,

[10]) in order to compute how the eigenfrequencies are
affected by the disorder embodied in the nonzero P,

, +) -g (i)

j=1
(16)

where AmI ~ is the jth-order perturbation to the lth
eigenfrequency u~. The first three perturbation terms
are

„tP„,

where

A: e ( N+1, N+2, ..., —N —1) —(9)
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t
(s) ) f ) zl~Pug zll Pu(

u~ Pu„l (~i —u)„)(~i —~k)
n(QL} I)..(gt)

~ pu, u, au,

I(~(-~ )' (19)

The question of the convergence of this series has to be
considered in the light of the nature of P. If, on the av-
erage, each P; is genuinely "small, " then we may assume
rapid convergence, at least in the asymptotic sense; but
there may very well be "bad" points or regions in which
the series does not converge even asymptotically. Prom
the existing eigenstates (9 and 11) we can then calculate
explicitly

slil qi )
2

—1 (e ''t' —e'q )(e 'q' — 'q')
Acti = i ~ )

8 (qg))
1/2 Sin Q~

—sin Q&

x) p p.""-"'(--")
m, A;

~ (s) & (s, i) + & (s,s)

where

(20)

) ) )( ) ) p p. p ~(p(~- —q )+i(q —.)+ ( — )}
32AV3 (sin q&

—sin qt, ) (sin q&
—sin q„)n, k (g)) ~tgtP

(23)

1 ~ (sin qi )(e qt e&q~ ) (e
—&q~ eeq) )

16AV~ (sin qi —sin q„)sn (+L) s, t,P
(24)

aI1 of which are clearly of successively higher powers of
the small numbers P, . It turns out that for a symmetric
distribution of particle parameters, the power series for
M(p, u) is even, and consequently we need to know the
average value of AwI for all j & 2k in order to obtain an
O(u~") correction to the density of states Thus . the first
correction term requires explicit evaluation of the first-
and second-order perturbations.

the perturbations Aw& and the average is taken over
the entire ensemble of chains. Since a power series in u
is sought and the Heaviside step function is not smooth,
it is necessary to take the Laplace transform of M(p, u)
with respect to p,

M(s, u) = M(p, u)e *"dp)
0

B. General formalism for obtaining
the average density of states ) exp —s ui + ) Au& (u) )

Given a particular disordered chain, the set of eigen-
values of A is

i~,'} = l~(+ )

%+1, %+2,—. . . , N——1 . (25)

(27)

which is a smooth di8'erentiable function. The ensem-
ble averages can be moved directly onto the eigenvalues
because of the central limiting, yielding

2

(,)M(s, u) = ) exp —s ~ cui+) (AwI )(u))
2

Now it can readily be shown (see Appendix A) that these
eigenvalues "central limit" in some sense in thermody-
namic limit N —+ oc. The associated average density of
states is

(.)M(p, u) = —) 0 p — ~i + ) E~i' (u)
) )

(26)

where the "width" u of the disorder will clearly enter into

&(0) = ~
—(4 —0)'/(2~')

/27ro'2
(29)

where the mean is g and the standard deviation 0.. In a

(28)

Little further can be done without assuming further
specifics of the disordering, and for the purposes of the
remainder of this discussion we assume that the distribu-
tion of the relevant parameter is normal (and therefore
glasslike), i.e. ,
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physically realistic model, (~ will be the mass m~ or the
spring constant Kz or perhaps some likely combination
of these. An appropriate width measurement i then u =
o j(, and it is fruitful to renormalize the distribution by
introducing the coordinates zz defined by (39)

(& = ~&(u*&+(
so then

(&~I"(u)) =
OO

2
dxke

~sr

xA(uI (v 2(u2:„+() .

(31)

+u (2s ~~2 —s)

(30) then Q(u) has a power series

Q(u) = e

) -(~ (i))

M(s 0)= ) e (32)

An immediate observation on the structure of M(s, u)
is that it is an even function of u; the substitutions
u ~ —u and xk —+ —xk leave the perturbation aver-
ages invariant. Furthermore, in the limit u —+ 0, all the
perturbations Ant (v 2 (u2:„+() vanish and thus(k}

xe '+O(u). (40)

Evidently the term involving —(AuI~) ) vanishes for

all except the first-order perturbation, for the same rea-
sons as advanced previously in the case of the second
derivative. Thus we need consider only

so

M(p„0) = Mo(p), (33)
(g~( ))

which is the ordered result. The power series for M(s, u)
is even, so the first correction term is O(u ) and will
clearly involve (at most) the second derivatives

g2 (~ (i)
) g2(~~(a)) g2p„

Bp Bu
~=O k u=O, Pg=0

(34)

Now the parameters P~ always vanish in the limit u ~ 0;
for example, if the masses m~ are distributed normally
and the spring constants are fixed, we have explicitly

i/2
=2(~)"'

I(m, ) (35)

1/2

(m, +i) (36)

p2, i(u) = 2(A)'/ [(v2ux, +1) '/2 —1),

p2i(u) = 2(A) [(V2u2:,+i+1) / —1],

(37)

(38)

which shows explicitly that lim c PA, = 0.
Since the perturbation L~& involves the product of

j P parameters, it is clear that ss, (AwI~)) = 0 for
PA:=O

all j & 3. In other words, contributions to the second-
order correction in u come entirely from the first- and
second-order perturbations.

Proceeding from Eq. (31), if we define

where A = Kjm naturally. Under the renormalization to
coordinates x, this becomes

pI = ).~~(« —() + O(((t —()') (42)

thus

(0 ~I')) v2(sinqi
~
k, l

=0 (43)

Hence this term does not contribute to the final result,
and so we have from Eqs. (31) and (40)

M(s, u) = M(s, 0)

——,»-, . . ((~-l"), , ~

+O(u ) .

2
e

—SM)

(44)

Thus the method to obtain M2(p) simply involves com-

puting the average of the first two perturbations Lu&
and backtransforming Eq. (44).

III. SPECIFIC MODELS OF DISORDER

We proceed to consider four diferent types of disor-
dering.

u=Omgj =('

(41)

Now since each Pq vanishes for u = 0 (or equivalently
(~ = (), we can write
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(i) The parameters A~ defined previously are indepen-
dent random variables, distributed normally. This coin-
cides with Dyson's "type 1" case [9],where the parameter
n is large in his chosen distribution

G (A) An 1 —nA—
(n —1)! (45)

T~ T~+ g

r~ + r~+y
(46)

thus approximating a Gaussian function with mean 1 and
variance 1/n. The equivalences u2 ~ 1/n and A ~ 1
then enable a comparison of the results of this paper and
Dyson's original results.

(ii) The masses of each particle m~ are distributed nor-
mally, the spring values being held constant.

(iii) The spring constants K~ are distributed normally,
all masses being the same.

(iv) The particles interact via typical colloidal-type in-
teractions, the elastic constant Kj coupling the jth to
the (j+ l)th particles varying as

e.g. , [13)), this yields a very stiff effective spring con-
stant, typically requiring several eV of energy to displace
the particles 1 A. If the mass of a particle is taken to
be rn = 4vrpa /3 and typical values of a and p are used,
the characteristic frequencies of the system (gK/m) are
very high, certainly in the 0Hz region.

A. Summary of results

Tables I and II show the first- and second-order shifts
in the lth eigenfrequency and the second-order shift in
the density of states for each of the four cases itemized
above. The methods used to obtain all of these results
are virtually identical, so details will be shown only for
the distributed mass case, particular details of the other
cases being given as necessary. The divergence of these
expressions near the band edge (p 4A) is clearly a
consequence of localization effects (see [3],[8]) and will
be more fully discussed in Sec. IVC.

B. Case of distributed masses
where r~ is the radius of the jth particle (assumed spheri-
cal). This introduces an rs dependence to the mass of the
particles if the density is assumed constant, and the radii
r& are distributed normally with mean r and variance o .

Here we have

~( )
—(m~ —m)~/(2n )

&2vrcr2
(49)

This interaction arises from modeling a coagulated col-
loid by a set of spherical particles of uniform molecular
number density n, where the potential energy of two ad-
jacent spheres S,Sb of radii a and 6 with surface sepa-
ration d is

and

P„,= 2(A) '/'[(m/m, )
'/' —1],

j92~ =2(A) / [(m/m~~i) / —1], (51)

U(d) = n
g &Sa

d'r1
q &Ss

d'"V(lr. —r. l) (47)
where A is naturally defined as A = K/m, . Hence

82U
Mz

dp

5ab A

a+ bdo3
' (48)

where A is the usual Hamaker constant. Given that val-
ues of A in SI are typically around 10 2c—10 is (see,

Here V(~r, —r, ~) is the intermolecular potential energy
of the molecules comprising the colloidal particles. If one
uses a standard law for V(jjr, —r, ~) such as the Lennard-
Jones potential, then a deep primary minimum is found
for U(d) at a spacing do of a few angstroms, typically
much less than generic colloidal particle sizes. Explicit
evaluation of this integral [Eq. (47)] leads to a "gener-
alized" Hamaker law for the effective spring constant of
the particle pair

and

1V—1).[(1+~2u*g+i) ' ' —1]
j=l

N

+) I(&+v2uz, j
'" —

&j)
j=1

= —u Ldf +0(u )8
(52)

TABLE I. First- and second-order perturbations to u~.

Disordering type

m
K

Colloidal

(~ (i))

—u 4)] /8
3u (d(/8
—u'~(/8

19u u)(/16

(~ (2))

—u uzi/8
—3u'~(/8
—3u cui/8

—u ur(( —25+6~, /A —cu, /A )/16
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TABLE II. Second-order shift in density of states M2{p).

Disordering type

Colloidal

M2{p)

—;.{4~/V —1) '"
0
0
—:{4~/~—1) '"
0

{4A/p —1) [3 —12@/4A —8{@/4A) ]

0

Range of p,

0& p, &4A
p, & 4A

Vp
0& p&4A
p) 4A

0& p&4A
p&4A

(Q~( ))
1/2

—1 . (e 'q' —e'q~)(e 'q' —e'q')

&(/t)
Sin /II

—sin Q&

x ) (p p )ei(q~ —q()(m —k)

m, k

(53)

The final summation over m and k is split into four sums
corresponding to the possibilities of m and k being even
or odd, and if the m, are normalized to 2:, as before and
the resulting radicals are written as a power series in u,
then this final summation may be written as

N —1 2) i2q(, (n —k) (~ ~ ) + ) e& e g(~ —") — (~ ~~)
n, k=1 n, k=1

P/ —1,N 2
e*q-'(&( -~)+ ~ (~ +»„)+ ) e'q- I'("-")-'~—(z„x„+,) ~+O(u') . (54)

n, k=1 n, k=1

Clearly only the "diagonal" terms in these sums will con-
tribute, giving the expression

(~ (2))
—u A . (e 'q' —e' ~ )(e 'q~ —e'q')

SV~ »n Qt
—»n Q,

(g&)

x [V+ 2(N —1) cos(q& —q~)] .

(55)
These sums can be done exactly using the result derived
in Appendix B to give the result

2
—1/2

(&,' ') = —— ' +, q'+o(1/v) . (56)2V cos2 I

so there is no contribution from the second-order term.
That the spectrum exhibits no change to order u is

highly interesting; this implies that a spread of mass val-
ues corresponding to, say, o. = 0.3m (a very broad dis-
tribution) will not affect the spectrum by more than a
few percent (for long-wavelength modes, where the series
will converge well), assuming that the correction func-
tions M~(p) for j & 4 are not wildly divergent for small
p values.

C. The Dyson case: Distribution of the A~

Although the last term superficially looks like it is
O(1/V), there are values of l near the band edge (qt-
m /2) where it diverges, so it is retained for completeness.
This phenomenon will be discussed more fully in a later
section.

The density of states can now be derived from Eq. (44)
using these results. It is of interest that the first- and
second-order perturbations cancel nearly exactly away
from the band edge. We have, using Eqs. (44), (52),
and (56),

In this case we have

aIld

G(A, ) = -(A~-A) /(20. }
+27rcr~

(58)

—1/2
sin @ —sw~

Mg(s) = — )V2 cos2 I
t

= o(1/v) (57)

The average first- and second-order perturbations are
found by very similar means to those used in the random
mass case, except that the second-order term is simpler.
These are presented in Table I. Equation (44) now yields
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M2(s) = ) (6O)
1

M2(p) = 4A (sin g) 6'(p —4A sin2 g) pg

Inverting the transform, we arrive at

M2(&) = ) .~P(I —~t')
l

(61)
O& p&4A

4A/p —1

p) 4A.
(62)

This Riemann sum can be done as an integral in the usual
way, obtaining

Comparison with Dyson's large n asymptotic results (see
[9])

( )
m 2 2wn g4]
—'cos '(1 —&)+ ' ' +O(n 2), 0&@&4
1 ——exp[—n —2n(sinh n —n)], p ) 4

where

a. = cosh (p/2 —1) (64)

D. Case of distributed springs

shows that the two expressions are identical for 0 & p, &
4, but very difFerent for p ) 4 under the equivalences
u +-+ 1/n and A ~ 1. This is due to the fact that there

2
is no power series for expressions of the form e
about the point u = 0, hence attempting to force such
a series simply returns a null result. This phenomenon
is clearly closely related to the relatively new field of
"asymptotics beyond all orders. "

Once again the r~ are normalized to r~ in the usual way
and the expressions in the perturbation sums are written
as power series in u (best done on a program like Math-
ematica) The r.est of the details follow as before, giving
the results presented in Tables I and II,

IV. SUNDRY MATTERS OF INTEREST

A. Alternative approach to high-frequency limits

These results can be checked against work done by
Alexander et al. [11].In their treatment, the distributed
mass and spring problems are virtually identical and lead
to the integral equation

This is very similar to the distributed mass case, except
that the first two average perturbations add rather than
cancel. The inversion of M2(s, u) is done exactly as in
the Dyson case.

E. Colloidal distribution

f (*) = dx' f (x')

( f'1 1
dy p(y)b'I x —

i

—+
(, y ~+ x'p

(69)

nlrb
—mrj r

~ =2~r ~+i/[r(r +r +r)l

and defining A as K/m, we have

(65)

(66)

Since the distributed variable here is r~, the mass mj
and the elastic constant Kj may be written as

where p(y) is the distribution of K or m and is nat-
urally usually only nonzero for positive y. If the masses
are distributed as G(m), then p(m i) = m~G(m). Once
a solution f (x) of (69) is found, the spectrum can be
readily computed via the following formulas:

D(p) = Im(PO( —y+iO+))
—1

1/22r',„
+ .+ )r

—1 ) (&0(~)) = dg' f (g') g" f (g")u+ g'+ g"

where for random spring constants

s/a2r'r,
2~ =2A

( +)"+)j
—1 . (68)

and for random masses

0~ = «G'~e dg'f (g')
CO 1

cue+ ~/(~ + g') + ~/(~ + g")
'



1214 JAMES GUNNING AND DEREK CHAN 48

B. Low-frequency results

(z) = g(x)(x+ z) 'dx (73)

p(z) & f (z) & p(z) + 1/(u (74)

defines f (x) to order O(1/w) for large ur. In fact, for

large ~, f (x) can be written as

(75)

denotes the Stieltjes transform of g(x), then it can be
shown (see [ll]) that the inequality

The low end of the spectrum is of interest for both
low-temperature thermodynamic results and also for the
damped lattice problem discussed later. The expansion
converges well in this region, since the low-frequency
modes are not strongly localized and consequently the
sums in the perturbation cannot "smother" any local ef-

fects. Graphs of the perturbed spectrum in this region
are similar in nature to those displayed by Dean (p. 734
of [3]) for a glasslike chain with rectangular distribution
of spring values. From Table II we compute the low-

frequency expansions for both the distributed mass and

spring cases, giving

Case of distributed springs

Putting cu = —@+i' in Eq. (71) produces a pole below
the negative real axis in, say, the g' plane at a point
go —iO(e) where go = O(p). The contour is indented
above this point, and the imaginary part of D(p) comes
entirely from this indentation, giving the result

1 1 pexp —— —1
~

2uA~vr u 2A ) (76)

if the first N+ 1 moments of the given probability distri-
bution exist and one has the patience to determine the
P~ (x) recursively.

,&, p ~ (distributed masses)
D(&) =

,~, (1 + u /2) p (distributed springs) .

(79)

A general method to obtain these is given in [ll] and

gives the result D(p) = 2 t i p ~~ up to a trivial di-

mensional correction. Here t i ——Jz x p(x)dx and p
is the distribution of K or m . A simple calculation
shows that these results agree to the order given in u,
hence confirming the well-known fact that systems with
a finite average mass M = (m) behaves as an ordered
system of masses M~ as w ~ 0 (see, e.g. , [12]).

to leading order, and thus

M(p„u) = 1— (77)

2. Case of distributed masses

The technique illustrated above cannot be applied to
random-mass problems where the distribution G(m) is

nonzero at the origin (like the Gaussian distribution),
since the distribution p(m) will then have no finite mo-

ments and therefore Eq. (75) is inapplicable. If only a
finite number of moments exist, say lim~ om "G(m)
= 0 only for k & n, then it is easy to show that

C. Singularities at the band edge:
EfFects of localization

Given that the spectrum M(p) of an ordered system is
not smooth at the band edge p, = 4A, it is to be expected
that the perturbation method will fail at this point, as
can be seen from the function M2(p). Previous results
(Chap. 8 of [4] and [3]) lead to the expectation that some
of the large eigenvalues will "spill" over the band edge
as disordering is introduced. These modes are strongly
localized and involve only finite numbers of particles, so
it is to be expected that the sums in the perturbation
terms swamp these effects in the manner of a "law of
large numbers, " and consequently the series diverges.

It is interesting, nonetheless, that for q~ = ir/2,
Eq. (56) shows that

(78)
(2) ~2 ~2V

Vqz (Al) 2 (80)

8. Implications of the moment-truce method

This technique, described in Chap. 7.4 of Hori's
work [2], proceeds from the observation that the pth mo-
ment of the density of states m„= Io p,"D(p)dp is equal
to the trace of the (2p)th power of the dynamical matrix
A divided by V, i.e. , &tr(A ). This is true for all finite

p, even in the limit V —+ oo. The implication of this
is that D(p) ~ 0 faster than any power of p and thus
the expansions just outlined in the distributed mass case
must be strictly divergent.

~ = (uEE/(1 —~')'~', e —= 1 —m, /m (81)

above the band edge wBF.) By manipulation of Eq. (56),
it is readily shown that the fraction of these high-

frequency modes goes like V ~/, so no contribution to

where q~~ =—vr/2 —q~, hence a finite number of (divergent)
modes appear above the band edge. (This is comparable
to the treatment in Sec. 8.8 of [4] where the insertion of
a light atom m, in a uniform chain of masses m is shown

to give rise to a mode of frequency
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D(~) =
2

1
~(v ~~'(qt)) dqI (82)

the density of states in the V ~ oo limit can be found
by this approach.

It is also possible to "invert" the high-frequency spec-
tra given in Sec. IV A in order to obtain an approximate
form for uI(qi) for qt = 7r/2. This is achieved by manip-
ulating the definition

A. Stokesian damping

The equation of motion incorporating Stokesian damp-
ing ls

xg dxg
2 ~j(+j+1 +j) + ~j 1(2j 1 +j ) /j

(s9)

and using the symmetries

(i)( ) ~ (i)( ) (83)

If the system is ordered (m~ = m, K~
p Vj), then the ansatz x~ = exp[i(jql, —ut)j yields the
eigenmo des

(84)
(s)

~k ~~S + 2 —2
+S (90)

4~u
( /(2X) —l.

&2

dqt
(85)

can readily be obtained and integrated to give the strictly
asymptotic (and therefore nondifferentiable) result

2Au( —inc) (1+O(ln( —inc)/inc) + )

(86)

together with the requirement that AcuI (q) be real.
For the distributed spring ease at large frequencies, the
asymptotic result

where periodic boundary conditions apply, the notation
of Sect. II is used, and rs = 2m/p -10—100 ns for typical
colloids. This indicates that the low-wave-number modes
(small qi) are overdamped, but there is a possibility of
ringing modes at high wave numbers, where wI, & 7.S
Unfortunately, the equation of motion (89) is unlikely to
be valid at frequencies much above 1 MHz, so Eq. (90)
is an unreliable guide except for systems comprising very
heavy or large colloidal particles where rs O(pa /q)
might be in the microsecond regime.

B. Reynolds damping

where

4
(m./2 —qi) (s7)

A similar treatment of the equation of motion with the
Reynolds force (88) used instead of the Stokes expression
yields the eigenmodes

and qi ( 7r/2. = wa( irR~a + 1 —rR~i, )(a) 2 2 (91)

V. EFFECTS OF DAMPING IN COAGULATED
COLLOID S

Fi —p~ (vs+i —vi) ++~+i(vi i vi) ~—(~) (R) (88)

where p (r + r +i) is a consequence of the spher-(&) -& -& ~

ical geometry.

One possible way to examine the damping of oscil-
lations in coagulated colloidal systems is to model the
system as a lattice of harmonically coupled particles irn-
mersed in a Quid. The resistive force acting on particle
j moving with velocity e~ may be modelled in two ways:
(i) Stokesian damping, i.e. E~ = —6+rlR~v = —p~v,
where Rz is the radius of particle j; and (ii) "Reynolds"
damping, a situation in which the resistance to motion
is dominated by the force required to "flush" Quid in or
out of the volume between two closely packed spheres.
This force thus depends on the relative velocity of the
neighboring spheres and a geometrical factor which de-
scribes the growth of Quid volume away from the point of
nearest approach. If we take the dependence on relative
velocity as linear, then the Reynolds force on particle j
in the chain may be written as

where rR = p( )/2Am. Clearly the low-wave-number
modes are only lightly damped (since the relative veloci-
ties of the particles are small), so one would expect Stoke-
sian damping to dominate the long-wavelength modes.
The dominance of the Reynolds flushing effect implies
that ~~ & vs, but it is still likely that ~~~I, ( 1 for
all or some of the modes, so high-frequency (u ) r& )
ringing modes might still be observed.

The combined effect of Reynolds and Stokes damping
indicates that ringing modes are only likely to appear at
frequencies in the megahertz to gigahertz region, where
the mode lifetimes are comparable to the period of the
oscillation.

VI. CONCLUSIONS

The method derived in this paper has been found to
work well in the low-frequency end of the spectrum of a
glasslike disordered structure, where localization effects
are not strong, but diverge in the upper part of the spec-
trum. It seems likely that the method will be unable
to elucidate any but gross features of the spectrum, and
that the sort of structures to which it is most applica-
ble may not have any spectral features of great interest
anyway. In damped colloidal systems, the mode lifetimes
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are unlikely to be longer than 100 ns, so any measur-
able oscillations must have frequency of order 10 MHz or
higher.

so the left-hand side of Eq. (A3) becomes

([~'(q (p~)) l' —p(q)]') « (A5)
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APPENDIX A: CENTRAL LIMITING
OF THE EIGENVALUES

OF THE DISORDERED CHAIN

It is well known that all extensive properties of disor-
dered systems "central limit" in some sense in the ther-
modynamic limit [8]. The density of states is extensive,
so in the limit N ~ oo where the qi, defined by Eq. (10)
becomes continuous, we may write

which is clearly positive, resulting in a contradiction. The
rest of the proof is obvious, leading to the conclusion

[~'(q (p~))1' = 9(q)]' (A6)

which amounts to saying that the eigenvalues m' are
free from statistical scatter in the thermodynamic limit.
It is nevertheless interesting to observe that the statis-
tic Aw& ((PA, )) does central limit to its average value,

whereas the statistic Au& ((Pg)) does not (as can be
confirmed by tedious calculation). Since we know that
the eigenvalues central limit as N ~ oo, it seems likely

that all the Lu&' for i & 1 do not.

D(~) = ~(s —~'(q (p~))')« (A1)

Here (Pg) is the infinite set of distributed constants, and

q is now interpreted as a label for the eigenvalues. Since
glasslike disorder always leads to a smoothly continuous
density-of-states function [as can be deduced from the
smoothly continuous integral equations leading to D(p)
derived by Dyson and others: see [9, 5, 8]], it is clear
that the eigenvalues densely fill the acoustic band, so
u (q, (Pg)) is continuous in q. But since D(p) is scatter
free in the thermodynamic limit, we may also write it as

APPENDIX B: A USEFUL SUM
FOR EVALUATING

THE SECOND-ORDER PERTURBATIONS

We seek to evaluate

S N, p, t
sin qi —sin q~~(~t)

where qt 2~ y ~ and the sum over j runs from
—N+1 to N —1. By writing the sine functions as complex
exponentials, we can write this as

1
&(~) =-

27r
~(~ —9(q)]')« (A2)

&ipq
9 N, p, t = 2ie (1+e i(Q. +m—))(1 e i(Q. Ql.))——

i(At)

where A(q) is some continuous function in q. Subtracting
Eqs. (Al) and (A2) and integrating the result multiplied
by any integrable, piecewise-smooth f(p) over the posi-
tive reals gives

(f([~'(q (P~))]') —f(9(q)]'))« = o (A3)

Suppose [~'(q, (pp))] ) A(q) at some point q'. Then
by continuity, u1'(q, (pg))2 ) A(q) for all points q in
some interval (qi, qq) around q'. Hence we can choose

and if we define

f(e) =
(1 +. ee—i(q, +ql))(1 ee—i(q, —ql})

~(~t)

then

S(N, p, t) = lim 2ie '~' f(e) .
e—+1—

(B2)

(B3)

(B4)

q e (qi, q2)
0 otherwise, (A4)

These sums can now be done exactly if the denominators
in f (e) are rewritten as geometric series:

f(e) = ). (—« '") (« '")").e'" "+"'"
m, n=O i(At)

) (
—iq~ )m( iqt )n e—

~ qp m+n 7 0(mod2vr)—
V —1, q„+„——0(mod2sr)

—iql rn

m=G
(B5)

Doing the sum over n requires that we pick out the values of n such that q„+ ——0(mod2m), which can be written
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as

n= Vk+m —p,

where the requirement n & 0 implies that k & (p —m)/V. Hence

(B6)

q ) ( e iq—t)vk+m —PU &
iq—t(P—m+n)( e

—iqt)n

[
gs —era ]+ n=o(,v[ =-]'

eiqt(P —m)
!

Vem —P
1 —ev 1 —e)

(B7)

Now the sum over m has to be broken up into intervals in which [(p —m)/V]+ is a constant integer, say j. For each j,
this interval is [p —jV, p —1 + U(1. —j)] and the constraint m ) 0 means that j can run from —oo to [p/V] . Hence(,v["=™]'

f( )e) ( ee q ) teqt(P ) Ve P
1 —ef

v v
~v

~—i+v(i —~)

( e2e —i2qt )m

+~v([~/v] +~)
~- ~-~[~/ v1-

m=0
( e2e —i2qt

)
m

'bP —l2q~ m

1 m=o

+&V)—1t &2)p( V}—t'/V] tt~&2V) —2PI + V/I'p/Vl +l)(t t &2)p
—Vtp/Vl ~

—'2lq)]

Qg
—p g&jpql ~iyql

(1 —ev)(1+ @2e—i2qt) (1 &)(I + &e i2qt) '— (B8)

The limit e —+ 1 is best taken by writing e = 1 —rl and expanding f(e) as a power series in ri. This yields the result

S(N, p, l) = —e '"q' (—1)" lpI I + p —V !
— + — ——tan tIi

e'"q'

cosa ( 2 I.V 2 2 )
(B9)

In principle it is possible to obtain analytic expressions for the perturbation sums of every order by extending this

method, but the algebra rapidly becomes prohibitive, even for the third-order perturbation sums.
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