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The linearized Poisson-Boltzmann theory is used to calculate the electrical double layer interaction free 
energy, as well as the double layer force, between unequal spherical colloidal particles. Results are given 
for interaction under conditions of constant surface potential, for constant surface charge, and for the case 
in which charge regulation due to the dissociation of surface groups may be modeled by a linear relationship 
between the surface charge and the surface potential. The interaction energy and force between a spherical 
colloidal particle and a plate, which has particular relevance to force measurements with the atomic force 
microscope and particle deposition studies, are also calculated. The results are used to test the accuracy 
of the linear Deryaguin approximation which forms the basis of the Hogg-Healy-Fuerstenau formula. 
The validity of the linearized Poisson-Boltzmann theory is tested against a numerical solution of the 
nonlinear Poisson-Boltzmann equation in the special case of spherical particles of the same size but 
opposite surface potentials. 

I. Introduction 
Although the fundamental theory for the electrical 

double layer interaction between colloidal particles has 
been established for more than half a century,lr2 analytic 
expressions for the forces and free energies of interaction, 
even for spherical particles, are only available as ap- 
proximate expressions such as the linear superposition 
approximation3 (which is valid when the particles are far 
apart and the double layer overlap is relatively weak). 
Alternatively, one can use the Deryaguin construction 
(valid for thin double layers relative to the particle size) 
to derive the interaction free energy between spheres from 
that between parallel  plate^.^ The advent of the atomic 
force microscope (AFM) has given colloid scientists the 
ability to measure directly the force between a colloidal 
particle and a planar ~ u r f a c e . ~  In order to interpret such 
measurements, it would be useful to be able to compute 
the expected force curve, given parameters describing the 
colloidal particle and the surface. In this paper, we present 
results for the electrical double-layer force and interaction 
free energy, both for unequal spherical particles and for 
the sphere/plate geometry, based on the linearized Pois- 
son-Boltzmann equation, but without any further re- 
strictions regarding particle size, separation, and relative 
magnitudes of the surface potentials. 

Part of the difficulty of calculating the force and 
interaction free energy is due to the nonlinear nature of 
the Poisson-Boltzmann theory which renders the problem 
analytically intractable except for the simplest geometries. 
However, in many practical problems, the surface potential 
of the particles are comparable to or only slightly larger 
than the thermal potential (kTle). Conventionally, the 
linearized Poisson-Boltzmann theory is thought to  be 
restricted to systems with electric potentials less than 
the thermal potential (KTIe), corresponding to about 25 
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mV at room temperature. Recent results for the force 
between two identical spherical colloidal particles using 
the nonlinear Poisson-Boltzmann theory6 suggest that, 
in some circumstances, the linearized Poisson-Boltzmann 
equation gives fairly accurate results for potentials up to  
about 40 mV, that is, the region of applicability of the 
linearized Poisson-Boltzmann equation is larger than is 
usually supposed. As a consequence, it is desirable to 
have an accurate and convenient way to calculate the 
electrical double layer interaction based on the linearized 
Poisson-Boltzmann theory. 

The theoretical framework for the analytic solution of 
the linearized Poisson-Boltzmann equation has been 
available for some time.7 In this paper we provide an 
efficient method for calculating the double layer interac- 
tion free energy and force between two dissimilar spherical 
colloidal particles by solving the linearized Poisson- 
Boltzmann equation using a two center expansion method. 
Here we consider (a) particles which maintain a uniform 
fixed surface potential during interaction, the constant 
potential model, (b) particles that maintain a uniform fured 
surface charge density during interaction, the constant 
charge model, and (c) particles that, as a result of the 
chemical ionization of surface groups, maintain a known 
relation between the surface potential and surface charge, 
the regulation model. For this last model, the surface 
charge-potential relationship is in general nonlinear for 
amphoteric or zwitterionic surfaces. This nonlinearity is 
inconsistent with the linearized Poisson-Boltzmann 
theory. However, we have shown elsewhere8 that under 
appropriate conditions, it is possible to replace this charge- 
potential relation by a linear equation between the surface 
charge and the surface potential so that the method of 
solution for the cases of constant potential and constant 
charge models can be readily extended to the linearized 
regulation model to calculate the interaction free energy 
and force. 

Previous work for identical spherical particles has used 
the two center expansion method to calculate the force 
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between the particles for the constant potential and 
constant charge models' and the linearized regulation 
modelg and the interaction free energy for all the above 
surface models.lOJ1 The only similar work we are aware 
of for unequal spheres obtained the force for spheres a t  
constant potential and then integrated numerically to 
obtain the interaction free energy.lZ Ohshima has recently 
obtained an explicit (albeit involved) analytic series 
solution for the interaction free energy for unequal spheres 
a t  constant p~ten t ia l . '~  We are unaware of any previous 
work in the sphere/plate geometry. 

In our previous work on identical spheres,1° we allowed 
for the possibility of the particles having arbitrary 
dielectric constant ep which is relevant to cases b and c 
described above. For the common case cp < 5 in a highly 
polar solvent, the energy and force are well approximated 
by those for ep = 0 (for an illustration of this, see ref 61, 
and so we follow this simplification here. The more general 
case can be dealt with using the methods in ref 10, if 
desired. 

Our method of solving the lineraized Poisson-Boltz- 
mann equation for the electrostatic potential near two 
interacting spheres is based on a two center expansion in 
terms of spherical harmonics. The coefficients in this 
expansion are found by solving a system of linear equations 
that arise from matching boundary conditions at  the 
particle surfaces. In section 11, we derive this system of 
linear equations for various combinations of boundary 
conditions on each interacting spheres. In sections I11 
and IV, we give the formulas for the force and interaction 
free energy in terms of the expansion coefficients. For 
the interaction between a sphere and a plate, a slightly 
different expansion for the electrostatic potential is 
required. This is because the series expansion of the 
potential around two spheres ceases to converge as the 
radius of one sphere goes to infinity to form a plate. In 
section V, we furnish this new expansion for the electro- 
static potential for the interaction between a sphere and 
a plate and derive the system of equations that has to be 
solved to find the coefficients of this expansion. Expres- 
sions for the force and interaction free energy are given 
in sections VI and VI1 for the sphere/plate interaction. 
Numerical results are presented in section VI11 and 
conclusions in section E. 
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11. The Potential around Interacting Dissimilar 
Spheres 

We now outline the method of determining the elec- 
trostatic potential near the two interacting spheres. In 
the linearized Poisson-Boltzmann model the electrostatic 
potential ly satisfies the equation 

v2 7 )  = K2 7 )  (outside the spheres) (1) 

in the electrolyte characterized by K ,  the inverse Debye 
length. With the assumption of zero dielectric constant 
for the particles, cp = 0, it is only necessary to determine 
the potential in the region exterior to the spheres. We set 
up a coordinate system with the origin located midway 
between the centers of the spheres of radius a1 and az, as 
shown in Figure 1. 
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Figure 1. Coordinate system for two dissimilar spheres. 

In the electrolyte (q > a1 and r2 > ad, the solution of 
(1) can be written as a two center expansion using spherical 
harmonics7 

m 

m m 

where 

00 

(3) 

( n + m - v ) ! ( n + m - 2 v + -  n m + n - v + - ) x  3 
2 ',I r( 2 

(n - v)! (m - v)! Y !  (4) 

The distance between the centers of the two spheres is R, 
T(z) is the Gamma function, P,(x) is a Legendre polynomial 
of order n, and i,(x) and k,(x) are, respectively, modified 
spherical Bessel functions of the first and third kind14 
and are related to modified Bessel function of half integer 
order I n + 1 / 2 ( ~ )  and K,+I/Z(X) by i,(x) = ( d 2 ~ ) ~ / ~ 1 , + 1 / ~ ( x )  and 
k&) = (~/X)'2K,+i/d~). 

The unknown coefficients {a,} and {b,} are found by 
applying the appropriate boundary conditions on the 
surfaces of the spheres. We now give in detail the 
equations that need to be solved to find the coefficients. 
It will become clear that the constant charge model is 
actually a special case of the linearized regulation model. 
Since the two spheres are not forced to have the same 
surface model, this means we have three distinct 
cases-each sphere can have either constant potential or 
linearized regulation boundary conditions: (a) constant 
surface potential model on both spheres; (b) constant 
potential on one sphere and linearized regulation or 
constant charge on the other; (c) both spheres with 
linearized regulation boundary conditions. The constant 
charge boundary condition is a special limit of the 
linearized regulation boundary condition. We now give 
the equations that are needed to solve for the unknown 
coefficients {a,} and {b,} that appear in the spherical 
harmonic expansion for the electrostatic potential in eq 
2 for the three cases listed. 

(14) Abramowitz, M.; Stegun, I. A. Handbook of Mathematical 
Functions; Dover: New York, 1965. 
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(a) Constant Surface Potential Model on Both 
Spheres. When the potential on the surface of both 
spheres is uniform and remains fixed at  q1 and q 2 ,  
respectively, the coefficients a, and b, can be found by 
applying the condition q = q1 a t  rl = a1 and q = q 2  at  r2 
= a2. Using eqs 2-4 this gives a system oflinear equations 

Ia + Lb = v1 e (5a) 

Ma + Ib = v2 e (5b) 

where the components of the vector of coefficients are given 
by 

aj = ajkj(Ka,) ( 6 4  

bj = bjkj(Ka2) (6b) 

the matrix elements of L and M are 

Ljn = (2j + 1)B,jZj(KCZl)/k,(KU2) 

Mj,  = (2j + 1)Bnjij(KU2)/k,(KU,) 

(7a) 

(7b) 

and 
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where E = is the product of the permittivity of free 
space, E O ,  and the relative permittivity of the solvent, E*, 
and n is the outward surface normal. 

Applying the boundary conditions (9) together with (10) 
a t  7-2 = a2 and setting q = ~1 at  r1 = al, we obtain the 
system of linear equations for the coefficients {a,} and 

Ia + Lb = +,e (l la) 

(bn} 

1, j = O  
0, j > O  

e . =  { 

There should be no confusion between the coefficients {a , }  
and the radii a1 and a2. The coefficients always have 
generic subscripts. 

It can easily be seen that, for the case of spheres of 
equal size and surface potential, we recover the previous 
results.’ A system of equations for the Coefficients {a,} 
and {b , }  can also be obtained by collocating the first form 
of eq 2 a t  a set of points on the surface of each sphere, as 
done in ref 12. We have tried both methods-they give 
identical results and require about the same size matrices 
so there seems to be no pressing reason to choose one 
method over the other. 

(b) Constant Potential on One Sphere and Lin- 
earized Regulation or Constant Charge on the 
Other. We can, without loss of generality, choose sphere 
1 to have constant surface potential and sphere 2 to have 
the linearized regulating boundary condition. The most 
general form of a linear relation connecting the surface 
charge density, u, and the surface potential, v ,  that models 
surface ionization is given by 

where the sign of the constant S is the same as the sign 
of the surface charge when the particle is in isolation. The 
constant K is always positive: its magnitude reflects the 
ability of the surface ionization reactions to maintain a 
constant surface charge. The limit K = 0 corresponds to 
a constant charge surface. For later reference, we call 
the constant K ,  the regulation capacity since it has the 
dimension of electrostatic capacitance per unit area (F/ 
m2). Previously,lo we used the symbols K1 and Kz for S 
and K,  respectively; here, for obvious reasons, we reserve 
the subscripts 1 and 2 to refer to the spheres. 

For the case c,, = 0, the surface charge satisfies the 
equation 

(10) u = - c V p n  at r1 = a ,  or r2 = a2 

where 

aj = ajkj(Ka,) ( 1 2 4  

bj = [(a&dc)kj(Ka2) - ~U,k)(~a,)]b~ (12b) 

Lj, = (2j + l)B~~(Ka,)/[(a&d€)k,(KUZ) - Ka~k’~(Ka2)I 
(12c) 

Mj, = (2j + 1)B~[(a&dE)ij(Ka2) - KU2Z)(K~2)]/k,(KUl) 
( 1 2 4  

In the second equality of eq l l b ,  we have eliminated the 
quantity S2 in favor of the surface potential of sphere 2 
when it is in isolation, q ~ ,  and the regulation capacity of 
sphere 2, K2. 

The case in which sphere 2 has a constant charge 
boundary condition can be obtained by taking the limit Kz - 0. 

(c )  Both Spheres with Linearized Regulation 
Boundary Conditions. Applying the boundary condi- 
tions 9 and 10 on the surfaces of both spheres, we obtain 
the system of linear equations for the coefficients {a,} 
and { b n }  

Ia + Lb = w,( 1 + K C Z ~  + a1K1 -)e (13a) 
€ 

where 

and and ~2 are the surface potentials of the spheres 
when they are infinitey far apart. 

For each of the cases where the surface is modeled with 
linearized regulation equations, the special case of a 
constant charge surface can be obtained by simply setting 
the appropriate value of K to zero. 

Provided R > (a1 + a2), the coefficients of the exterior 
solution {a,} and {b , }  are then found by truncating the 
matrix equations (5, 11, or 13) at  an appropriate upper 
limit and solving the system of equations by direct 
numerical methods. We defer discussion of the choice of 
the cutoff size of the system of linear equations until later 
in this paper. We now proceed to  derive expressions for 
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the force and interaction free energy in terms of the 
coefficients (a,> and (b,} which appear in the spherical 
harmonic expansions of the potential outside the spheres 
as given by eq 2. 

111. The Force between Dissimilar Spheres 
We can calculate the force acting on the particles by 

integrating the stress tensor 

( 1 6 )  T = (n + 5cE2)I 1 - EEE 

over a suitable surface. Here E = -Vly is the electric field 
and n is the difference in the local osmotic pressure from 
that in the bulk electrolyte solution. In the linearized 
Poisson-Boltzmann theory this difference in osmotic 
pressure is related to the electrostatic potential by 

If we want to evaluate the force on sphere 2 (due to the 
presence ofsphere 11, we can choose any convenient surface 
S that encloses sphere 2 and perform the following surface 
integral to get the vector force on sphere 2 

f = L T a  dS (18 )  

where the unit normal n at the surface S is directed toward 
sphere 2. Here we calculate the force on sphere 2 by 
choosing S to be the surface of sphere 1 (rl = a l )  so that 
n will be the radius vector directed away from the center 
of sphere 1-the outward surface normal. By setting the 
origin of a Cartesian axis system a t  the center of sphere 
1 and the z axis to lie along the line joining the center of 
the spheres, the magnitude of the force on sphere 2 in the 
z direction can be expressed as integrals over functions 
of the r and 8 components of the electric field: 

where the integrand is evaluated on the outside surface 
of sphere 1 (rl = al+) and the integration variable p is p 
= cos 81. Positive values offimply repulsion between the 
spheres. 

The evaluation of eq 19 proceeds differently for (a) a 
constant potential sphere as compared to (b) a sphere with 
linearized regulation boundary conditions. We shall 
consider these two cases separately. 

(a) Sphere 1 at Constant Surface Potential. For 
either the constant potential model or the case where 
sphere 1 is at  constant surface potential and sphere 2 is 
a linearized regulating surface, eq 19 for the repulsive 
force between the particles simplifies to 

f = - ~ C Z ? C  f-',E;p dp (20) 

If we write the potential from eq 2 in the form 
m 

n=O 

where 
m 

dn(Krl) = unkn(Krl) + ( 2 n  + l ) Z n ( ~ r l )  bmBm, ( 2 2 )  
m=O 

then the force in eq 20 becomes 

n g m f l  

In what follows we shall present results for a nondimen- 
sional force 

f 

(25 )  

i.e. we scale by the thermal potential rather than any of 
the particle surface potentials as was done p r e v i o u ~ l y ~ , ~ J ~  
because we want to have the freedom to let either particle 
have zero surface potential. This means that 

m m 

n=O p=o 

where the potentials appearing in the governing equations 
(5  or 11) are to be interpreted as (eVIkT), that is, the 
potential scaled by the thermal potential. 

(b) Sphere 1 a Linearized Regulating Surface. For 
the other two cases, eq 19 for the repulsive force between 
the particles can be rewritten, using E, = ole = (S1 - 
KIV)E, as 

Explicitly, the nondimensional force is 

where 

- 2 m ( m  + 1) 
( 2 m  + 3) (2m + 1)' 

2 m ( m  + 1 )  (29 )  
( 2 m  + 1) (2m - 1)' 

n = m + l  

n = m - 1  I 0, n t m f l  
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1 when the spheres are at a separation h. While (32a) is 
general for constant surface potential interactions, (32b) 
is only valid for the linearized Poisson-Boltzmann model. 

Using (10) and (21), we get 
2m(m + l)(m + 2) 

n = m + l  (2m + 3)(2m + 1) ' 
2m(m - l)(m + 1) 

n = m - 1  (2m + 1)(2m - 1) ' 
0, n + m f l  

(30) 

Again, the quantity 5'1 can be eliminated in favor of 
and K1, see eq l l b .  Thus having solved the set of linear 
equations given in section I1 for the coefficients {a,} and 
(b,}, the results can be substituted into the above 
equations to calculate the force. 

W. The Interaction Free Energy between 
Dissimilar Spheres 

While the expressions for the force between the particles 
are somewhat cumbersome, the expressions for the 
interaction free energy take on very simple forms. We 
calculate the interaction free energy for all cases by a 
thermodynamic integration otherwise known as a coupling 
constant integration or charging procedure. This scheme 
has a very simple graphical representation in terms of 
the surface charge-surface potential re la t i~nships .~~*J~ 
For the linearized Poisson-Boltzmann model, the ther- 
modynamic integrations are trivial. Furthermore, con- 
siderable simplification is afforded by judicious use of the 
j = 0 equation in the linear systems for the unknown 
coefficient a, and b, given in eqs 5,11, or 13 to eliminate 
terms like &,B,o. 

The interaction free energy between the two spheres 
with a distance of closest approach h = R - a1 - a2 can 
be written as a sum of surface integrals over each sphere: 

The quantity uk(h,p) (with k = 1,2) is the interaction free 
energy per unit area at  position p = cos 8 on the surface 
of the sphere k when the spheres are at a distance h apart. 
The surface model for each sphere determines the ap- 
propriate expression for ul(h) and uz(h). We present 
details of the derivation of ul(h), the corresponding 
expression for uz(h) can be found by interchanging the 
indices 1 - 2 and exchanging for the appropriate coefficient 
as detailed below. There are two different forms for the 
integrands ul(h,pl) and uZ(h,pZ) depending on whether 
the constant potential or linearized regulation boundary 
condition applies a t  the sphere. The constant charge 
boundary condition is a special case of the linearized 
regulation boundary condition. We now derive expres- 
sions for ul(h,pl) for these two different boundary condi- 
tions. 

(a) Constant Surface Potential Sphere. The in- 
teraction free energy per unit area when the sphere is 
held at constant surface potential ~1 is given by 

where a(h,p) is the surface charge at p = cos 8 on sphere 

(15) Chan, D. Y. C. In Geochemical Processes at Mineral Surfaces; 
Davis, J. A., Hayes, K. F., Eds.; ACS Symposium Series No. 323; 
American Chemical Society: Washington, DC, 1986; p 99. 

where the second term comes from the contribution at h 
= -. Using the j  = 0 equation in either (5a) or ( l l a ) ,  this 
simplifies to 

where U is the nondimensional energy 

(35) 

which again is different to our previous scaling.1° As for 
the force, the potential ly1 in (34) for the nondimensional 
interaction free energy should be interpreted as potentials 
scaled by the thermal potential. 

If sphere 2 has a constant surface potential, we simply 
change the subscripts in (34) from 1 to  2 and use bo in 
place of ao. 
(b) Linearized Regulation Sphere. The interaction 

free energy per unit area for a sphere with linearized 
regulation condition as a function of surface position p = 
cos 8 is given by8 

where q(h,p) is the surface potential a t  position p = cos 
8 on the surface of the sphere when the spheres are at a 
distance h apart. 

Using equation (211, we get 

u,(h) = 2JCUl2Sl x 

where again the second term comes from the contribution 
at h = 03. Using the first equation (j = 0) in (13a) for the 
coefficient ao, the nondimensional interaction free energy 
simplifies to  
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'Image' +/ 
R R l  

Figure 2. Coordinate system for a sphere and a plate. 

where we have eliminated 5'1 in terms of VI, the potential 
of the sphere a t  infinite separation. The potential in 
eq 38 should be interpreted as the nondimensional 
potential (eV/kZ'). Again, if sphere 2 has a linearized 
regulating surface, U2 can be found from (38) by changing 
subscripts from 1 to 2 and using bo in place of ao, This 
completes the specification of the force and interaction 
free energy for unequal spheres. 

V. The Potential in a SphereiPlate Geometry 

We now consider the solution of the electrostatic 
potential for the interaction between a sphere and a flat 
plate. The addition theorem for Bessel functions that lies 
a t  the heart of the potential representation in eq 2 becomes 
invalid in the case where one of the particle radii becomes 
infinite, that is, the sphere/plate geometry. This means 
we must look for an alternative representation for the 
potential. 

In order to motivate our choice, first consider the case 
of a plate at constant zero surface charge. Near the sphere 
the potential is represented by the same expansion in 
K,(Krl)P,(cos 61) as  before. The electric field normal to the 
surface must be zero at  the plate due to the zero surface 
charge boundary condition imposed. This condition can 
be maintained by placing an image sphere of the same 
properties a t  a position reflected in the plate, the center 
of the image sphere at  a distance R behind the plate. Then 
the potential has the form 

w 

where the coordinates (r1,Ol), (e$), and (r2,Bz), as well as 
the distance R are defined in Figure 2. This representation 
for the potential satisfies the field equation outside the 
sphere and plate and satisfies the boundary condition a t  
the plate. The coefficients {a,) are found by applying the 
appropriate boundary condition on the sphere, as done in 
section 11. We now consider representations for the 
potential for the cases in which the plate obeys constant 
charge, constant potential, or linearized regulation bound- 
ary conditions. 

If the surface charge on the plate u f 0, we can add the 
term IQO e-" to the potential. This additional term still 
satisfies the field equation, eq 1, and if we choose the 
constant y j o  = (u/ /EK),  the boundary condition on the plate, 
eq 10, will also be met. So for the case of a constant charge 
plate we have 

ou 

q = ~a,(kn(Krl)P,(cos e,) + K,(K~,)P,(cos e,)} + 
n=O 

(u/€K)e-KZ (39) 

If the plate is a t  constant potential VP instead of a t  
constant charge, an image sphere with the same mag- 

nitude in the potential but opposite in sign will produce 
zero potential on the plate and the choice y j o  = qp will 
satisfy the boundary condition on the plate. So for the 
case of a constant potentia2 plate we have 

w 

q = Ca,{k,(Krl)Pn(cos e,) - ~,(K~,)P,(cos e,)} + 
n=O 

VJpe-= (40) 

In the case where the plate obeys the linearized 
regulation boundary condition, we can use the following 
representation for the potential 

VJ = x{a,k,(Kr,)P,(cos 6,) + b,k,(~r~)P,(cos 6,)) f 
w 

n=O 

q0e-" (41) 

where the constant I,/JO is yet to be determined. In the 
special cases of constant charge plate and constant 
potential plate, we know 

b, = a, (constant charge plate) 

b, = -an (constant potential plate) (42) 

as well as the value of the constant Z ~ O .  We use the special 
forms in eqs 39 and 40 when applicable since they halve 
the number of unknowns to solve for; in the most general 
case, we must use the form (41). 

In all cases we must satisfy the appropriate boundary 
condition on the sphere. This is made possible by using 
the expansion14 

exp(Kr, COS e,) ,-KZ = e - ~ R  -K(n-R) = e - ~ R  e 

to express e-= in terms of the coordinates centered about 
the sphere. We now give the equations that determine 
the coefficients {a,} and {b,} that arise from matching 
boundary conditions at  the sphere. If the plate is held at 
constant charge or constant potential, we only have one 
set of unknown coefficients {a,} to determine, but if the 
plate obeys the linearized regulation boundary condition, 
we need to determine two sets of coefficients: {a,)  and 
{b,} plus the constant VO. We shall consider these two 
cases separately. 

(a) Constant Potential or Constant Charge Plate. 
For this case, we only have one set of coefficients {a,} to 
determine. The system to be solved depends on the 
boundary condition on the sphere. As in the preceding 
section, the constant surface charge condition on the 
sphere is treated as a special case of linearized regulation 
by setting K,, the regulation capacitance of the sphere, to 
0. So we have two cases to consider: constant potential 
sphere and linear regulating sphere. 

Constant Surface Potential Sphere. Applying the 
condition ?/J = wB, the constant potential on the sphere, a t  
rl = a and using eq 39 for a constant charge plate or 40 
for a constant charge plate together with eq 43, we obtain 
the linear equations for {a,} 

(44) 

with the appropriate choice ofthe constant IQO as discussed 
above. The upper sign applies to a constant charge plate 

(I f L) a = Vse - qoe-KRc 
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and the lower sign to a constant potential plate. The 
explicit forms of the vector and matrix elements are 
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Linearized Regulating Sphere. Applying the condi- 
tions in eqs 9 and 10 at rl = a and using eq 39 (or 40) with 
43, we get 

where 

and again the upper sign applies to a constant charge 
plate and the lower sign to a constant potential plate 
together with the appropriate choice for V O  depending 
whether the plate is at constant charge or constant 
potential. 

(b) Linearized Regulating Plate. In this case, we 
must not only choose the coefficients to satisfy the 
boundary condition on the sphere but also (9) and (10) on 
the plate. We first consider the simpler case S, = 0 for 
which V O  = 0 in the general solution given by eq 41. The 
more general case of S, * 0 is covered by retaining the 
term (VO e-"*) with vo = ( S ~ E K ) .  From eq 41, with ly0 = 
0, we see that the potential on the plate, z = 0, is 

and the surface charge is given by 

So, substituting these results into eq 9, with S, = 0, we 
obtain the following set of equations for {a,} and {b,}  

where A, (K, - EK)/(K, + E K ) .  Equation 50 must hold 
for all values of@. The constant potential limit corresponds 
to A, = 1 (K, = -a) and the constant charge case corresponds 
to  A, = - 1 (K, = 0). Unfortunately, recurrence relations 
derived from eq 50 connecting the coefficients (a,} and 
(b,} proved not to be numerically helpful. Instead we use 
collocation at  points on the plate given by equally spaced 
values of the angle 8 defined by cos 6 = R/(R2 + @2)1'2. This 
will give one set of equations that relates the coefficients 
{an} and 

The second set of eauations for (a,} and (b,}  comes 
from applying the apiropriate boundary conditions on 
the sphere. The resulting equations differ depending 
whether the sphere is a t  constant potential or has 
linearized regulation boundary condition. 

Constant Surface Potential Sphere. For a constant 
potential sphere (surface potential V,),  application of the 
boundary condition on the sphere gives 

where a, L and c are given by eq 45 and 

bj = b j k j ( ~ a )  (52) 

Linearized Regulating Sphere. For a linear regu- 
lating sphere (a = S, - K,V), application of the boundary 
condition on the sphere gives 

Ia + Lb = a s ,  __e - yo e-KR c = a s ,  ~e - -e sp -KR c (53) 
E E €K 

where a, L, and c are given by eq 47 and 

bj = [ ( U K J € ) k j ( K U )  - KU k>(KU)]b j  (54) 

This completes the specification of the linear equations 
that needed to be solved to  obtain the coefficients in the 
expansion of the electrostatic potential in the electrolyte. 

VI. The Force between a Sphere and a Plate 
As in the unequal sphere case, we evaluate the force by 

integrating the total stress over the surface of the sphere. 
The force is then again given by eq 26 or 28, depending 
on the boundary condition on the sphere, but with KU 
replacing Kal and eq 22 replaced by 

with the appropriate choice for Po depending on boundary 
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conditions of the plate. Of course, eq 42 should be used 
to simplify eq 55 for constant potential or constant charge 
conditions on the plate. 

Carnie et al. 

VII. The Interaction Free Energy between a 
Sphere and a Plate 

As in the case of interacting spheres, the interaction 
free energy consists of two parts: one from a surface 
integration over the sphere and the other from an 
integration over the surface of the plate (cf. eqs 31 and 32 
or 36). The contribution from the integration over the 
sphere has the same form as in the unequal sphere case 
discussed earlier. The contribution t o  the nondimen- 
sional interaction free energy from the sphere, Vu, is 
given by (34) or (38)) depending on the boundary con- 
dition on the sphere, but with all subscripts changed 
from 1 to s (to denote the sphere). All that remains is to 
specify the contribution from integrating over the plate. 
The term proportional in eq 39, 40, or 41 does not 
contribute to the interaction free energy since its contri- 
bution is independent of separation, see eqs 31 and 32 or 
36. 

(a) Constant Surface Potential Plate. In this case, 
the interaction free energy per unit area is given by (32b) 
so, using (42) and (491, we have for the contribution to 
nondimensional interaction free energy from the integra- 
tion over the plate 

,I n 

In the absence of analytic expressions for these integrals, 
we use Gauss-Laguerre quadrature to evaluate the 
integrals in (46) since the integrand decays as e-"Q for 
large K e .  The potential qp should be interpreted as the 
potential on the plate scaled by (kT/e). 
(b) Linearized Regulating Plate (Including Con- 

stant Surface Charge) Plate. In this case, the con- 
tribution to  the nondimensional interaction free energy 
from the integration over the plate is given by eq 36 and 
this together with the expression for the potential given 
by eq 48 gives 

where Ap (Kp - EK)/(K~ + E K )  and Kp is the regulation 
capacity of the plate. The constant qo should be inter- 
preted as the potential scaled by (kT/e). 

The case of constant surface charge corresponds to the 
limit Ap = -1, Kp = 0. And using (42) to eliminate { b J ,  
we find the explicit expression for the contribution to 
dimensionless interaction free energy from a constant 
charge plate 

Both integrals in eqs 57 and 58 are evaluated numerically 
by Gauss-Laguerre quadrature. 

VIII. Results 
For interacting dissimilar spheres or interacting sphere/ 

plate, there are many combinations of particle sizes and 
boundary conditions on the two surfaces to consider. 
Suppose we characterize the charge state of each surface 
by the surface potential of each surface when they are in 
isolation-at a large distance (h = -1 apart-we call these 
potentials q$O and ~ 2 ' " .  We can now simplify the situation 
somewhat by observing that both the force and the 
interaction free energy in the linear Poisson-Boltzmann 
theory have the bilinear form 

where the functionsfl(h),fiz(h), andfdh) are independent 
of vlisO and lyziS0. Therefore it would be possible to consider 
just three canonical cases corresponding to the potential 
ratios ( q ~ 1 ~ ~ ~ / q ~ ~ ~ ~ )  = 1, 0, and -1. All other combinations 
of vliS0 and 7 / ~ 2 ~ ~ ~  can then be constructed from the results 
of these three cases. 

We used these three cases in order to determine the 
required sizes of the matrices in eqs 5,11,13,44,46,51, 
and 53. For dissimilar spheres, the coefficients {a,} and 
{bn} are truncated at indices ZVI and N2, respectively (the 
matrices are of size Nl + 1 by Nz + 1). As in earlier work,l0 
empirically it was found that four-figure accuracy for all 
boundary conditions was obtained for 

5 ifhlai > 1 

if hlai < 1 (59) Ni = { [7(ai/h)1/2] 
for i = 1 , 2  and where [XI denotes the integer part of the 
real number x .  For the sphere/plane geometry, the 
coefficients {a,} and {bn} (where necessary) are both 
truncated at  index N where, for four-figure accuracy 

5 ifhla > 1 
if hla 1 (60) Ni = { [ 6 ( ~ l h ) ' / ~ ]  

is sufficient. 
In what follows, however, we will present results for 

four more physically useful cases having potential ratios 
( q 1 ~ ~ ~ / ~ 2 ~ ~ ~ )  equal to 3, 1, -1, and -3. Since the case of 
identical double layers-a potential ratio of 1 with equal 
sizes-has been well studied?-" we will pay more attention 
to the other cases. Since we are using the linear Poisson- 
Boltzmann equation, the cases with potential ratio 3 and 
-3 should be thought of as representing spheres with 
potentials of, say, 30 mV and f10 mV. 

comparisons were made with the 
linear superposition approximation (LSA) and the Der- 
yaguin approximation. Although the LSA has been 
worked out for dissimilar  sphere^,^ its applicability is 
limited to large separations and is not considered here. 
The Deryaguin approximation for dissimilar spheres a t  
constant (small) potential was first derived by Hogg, Healy, 
and Fuerstenau3 and we use DA to denote the Deryaguin 
approximation for any boundary condition. The ap- 
propriate expression for linearized regulating surfaces has 
been given only recently.sJ1 

In previous 
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Figure 3. (a, top) Nondimensional interaction free energy, eq 
= q~~~~ = 1, 

and unequal radii, K u l =  1, K U ~  = 10, for nine combinations of 
boundary conditions. The boundary condition on sphere 1 is 
denoted by the line style: constant charge, -; linearized regu- 
lation, - - -; constant potential, - a. The boundary condition 
on sphere 2 is denoted by the symbol: constant potential, U, 
linearized regulation, 0; constant charge, 0. (b, bottom) The 
nondimensional force, eq 25, for the same parameters as (a). 

35, of spheres with equal isolated potentials, 

Deryaguin Approximation (DA). 
Force (newtons): 

2nc~a,a ,  
f D A  = (a ,  + a,) 

~ v ~ v , 2 i s o  e-Kh - [ A 1 ( ~ P ) 2  + A2(qlis0)21e-2Kh 

1 - AlA,e-2Kh 
(61) 

Interaction free energy (joules): 

X 
(a, + a,) U D A ( h )  = 

where A1 and A2 are defined by Ai = (Ki - CK)/ (K~ + EK), 
i = 1,2. The appropriate expressions for the sphere-plate 
geometry are obtained simply from eqs 61 and 62 by taking 
one of the radii to infinity in the prefactors. 

In Figures 3 and 4 we show some results for the full 
range of boundary conditions covered in the previous 

-531 O . 
-uv 

0 1 

k-h 
2 

I 

Figure 4. (a, top) Nondimensional interaction free energy of 
spheres with unequal isolated potentials, vlL8O = l ,1 / )2iso = -3, 
and unequal radii, Kul= 1, K U ~  = 10, for nine combinations of 
boundary conditions. Symbols and styles are as in Figure 3 so 
that the top three curves have sphere 1 with constant charge, 
the middle three curves have sphere 1 with a regulating surface, 
and the bottom three curves have sphere 1 with constant 
potential. (b, bottom) The nondimensional force for the same 
parameters as (a). 

sections. To limit the number of cases, for linearized 
regulating surfaces the quantity AI or A2 or Ap is set to  
zero-this is the canonical “intermediate” case between 
constant charge and constant potential.8 Even so, for 
spheres of unequal size, including a sphere and a plate, 
this leaves nine possible combinations of boundary 
conditions-each surface can be either constant potential, 
“intermediate)), or constant charge. For spheres of equal 
size, degeneracies reduce this t o  six cases. 

Figure 3 shows results pertaining to spheres of unequal 
size: Kal = 1, Ka2 = 10, but with equal isolated 
potentials-the interaction free energy in Figure 3a, the 
force in Figure 3b, scaled according to eqs 35 and 25, 
respectively. For the energy, the nine combinations of 
boundary conditions cover the whole range of behavior 
from constant charge to constant potential. That is, when 
both spheres are a t  constant charge, the repulsive 
interaction energy is the largest, while if both spheres are 
a t  constant potential, the repulsive energy is the smallest 
for all separations down to ~h = 0.1. Similarly when the 
spheres have equal but opposite isolated potentials (not 
shown), the case of both spheres at constant charge gives 
the least attractive interaction energy while that with 
both spheres at constant potential gives the most attractive 
interaction. Again this observation is valid for separations 
down to Kh = 0.1. We have not explored the behavior for 
smaller separations as such regions are physically less 
interesting. However, graphical arguments suggest that 
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Figure 5. (a, top) Nondimensional interaction free energy of 
spheres with qlisO = 1, qzisO = 3 and unequal radii Kal= 1, Ka2 
= 10 for nine combinations of boundary conditions. The top 
three curves have sphere 1 with constant charge, the middle 
three curves have sphere 1 with a regulating surface, and the 
bottom three curves have sphere 1 with constant potential. (b, 
bottom) The nondimensional force for the same parameters as 
(a). 

these remarks are valid for all separations.lsJ6 The same 
is not true for the force curves (Figure 3b) although it is 
violated only at  separations smaller than K h  % 0.2. The 
same features are seen in recent work on interacting plates 
using the nonlinear Poisson-Boltzmann equation1' Nev- 
ertheless, the generalization that double layer interactions 
are bounded by the constant potential and constant charge 
cases is a useful approximation in most cases. 

Figure 4 shows energy and force curves again for a size 
ratio of 10 but for a potential ratio of -3. Both sets ofnine 
curves split into three groups of three curves except for 
the force at  small separation. The splitting is determined 
by the boundary condition on the sphere with the potential 
of smaller magnitude (sphere 1). The bottom three curves 
all have constant potential boundary conditions on sphere 
1, the middle three have regulation conditions on sphere 
1, and the top three constant charge conditions on sphere 
1. The boundary conditions on sphere 2, which has a 
higher value of 1 ~ ~ ~ ~ 1 ,  have a lesser effect and determine 
the splitting within each group of curves. 

Figure 5 shows the same splitting and with the same 
ordering for a potential ratio of 3 and Figure 6 a splitting 
with different ordering for a potential ratio of -3. In 
Figure 6 the larger sphere (sphere 2)  has the smaller value 
of 1qlSol  and so the potential on sphere 2 determines the 
major splitting, with the boundary condition on sphere 1 

(16) Chan, D. Y. C. J. Colloid Interface Sci. 1983,95, 193. 
(17) McCormack, D.; Carnie, S. L.; Chan, D. Y. C. J. Colloidlnterface 

Sci. ,  in press. 
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Figure 6. (a, top) Nondimensional interaction free energy of 
spheres with qlim = -3, yjziM' = 1 and unequal radii Kal = 1, 
K a 2  = 10 for nine combinations ofboundary conditions. The top 
three curves have sphere 2 with constant charge, the middle 
three curves have sphere 2 with a regulating surface, and the 
bottom three curves have sphere 2 with constant potential. (b, 
bottom) The nondimensional force for the same parameters as 
(a). 

controlling the splitting within each group. Again, similar 
effects are seen for p1ates.l' 

The general conclusion is that the sphere or plate with 
the smaller value of IvisOl is perturbed proportionally more 
due to the presence of the other surface with a larger 
value of llyisOl and so it is the boundary condition on the 
sphere with the smaller value of IviE0l that primarily 
determines the form and magnitude of the energy or force 
curve. Notice that the curves become independent of 
boundary conditions for K h  > 2 so that effective surface 
potentials could be extracted from that part of the force 
curve. The effects of different boundary conditions are 
evident a t  smaller separation, K h  < 2. 

The splitting behavior shown in Figures 3-6 for spheres 
of size ratio 10 is also seen for other size ratios, including 
a size ratio of 1, and for the spherelplate geometry. In 
what follows we shall generally be content to examine 
only the constant charge and constant potential cases with 
the knowledge that other cases will exhibit behavior 
intermediate between these two cases. 

Within the context of DLVO theory, the only ap- 
proximation we are making is that of linearizing the 
Poisson-Boltzmann equation. It is pertinent to ask 
therefore, how reliable is the linear theory for given values 
ofparameters such as K a ,  K h ,  and vim? In previous work,6 
we have found that for identical double layers, the 
linearized theory gives force curves within 10% of the 
nonlinear result for surface potentials up to 35-40 mV 
under constant potential conditions but is only qualita- 
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Figure 7. Percentage error in the linear theory for the force 
under constant potential. ,From top to bottom, Ka = 10, 5, 3, 
and 1. (a, top) qlisO = -t)zlS0 = 1. (b, bottom) qliao = - q ~ ~ ~ ~  = 
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tively correct under constant charge conditions. However, 
for small particles ( K a  I 11, the linear theory is reliable 
for both constant potential and constant charge boundary 
conditions. 

For the special case of spheres of equal size and opposite 
isolated potentials, the force curve for the nonlinear theory 
can be calculated using the methods of ref 6 with two 
minor changes. The first is that, a t  the midplane, the 
potential vanishes rather than the radial derivative. The 
second difference occurs in the expression for the stress 
a t  the midplane where the osmotic pressure and transverse 
electric fields vanish, leaving contributions only from the 
radial electric fields. 

For identical surfaces the performance of the linear 
theory can be explained by observing that in the constant 
potential case the potential is fixed at the boundaries and 
so there is relatively little freedom for the potential profile 
to change with surface separation. However, in the 
constant charge case the surface potentials rise as the 
spheres approach so that the linearization becomes 
unjustifiable. For surfaces with potentials equal in 
magnitude but opposite in sign, however, similar argu- 
ments would suggest that there is more room for optimism. 

For surfaces having equal but opposite surface poten- 
tials interacting under constant potential, the potential 
is again fured at  the surfaces and as the spheres approach 
the potential profile varies almost linearly between the 
surfaces. This suggests that, provided transverse gra- 
dients are not important, the linear and nonlinear results 
should be close especially a t  small separations. For the 
constant charge case, the surface potentials actually fall 
as the spheres approach which suggests that the linear 
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Figure 8. Percentage error in the linear theory for the force 
under constant charge. , From top to bottom, Ka = 1,3,,5, and 
10. (a, top) qllS0 = -qzuo = 1. (b, bottom) qllS0 = -qZls0 = 2. 

theory should get better a t  small separations, even for 
fairly large isolated potentials. 

Numerical results for the nonlinear case show that these 
expectations are a t  least partially fulfilled. The ratio of 
linear to nonlinear results for spheres of equal size held 
a t  constant potential is shown in Figure 7 for various 
values of K a  and zyisO. Comparison with the corresponding 
results in ref 6 shows that the linear theory is in fact more 
accurate for spheres of equal size but opposite potential 
than for identical spheres. The error is less than 10% 
even for K a  = 10 at = 50 mV for separation Kh I 2 and 
even for 75 m v  for small separation (Kh I 1). In this case, 
our optimism has been justified. As before, the linear 
theory improves for smaller particles. 

Results for the constant charge case for equal sized 
spheres are shown in Figure 8. In this case, our hopes are 
only partially fulfilled, in that the linear theory is very 
good for qiS0 = 25 mV (error within 5% for K a  = 10) but 
starts to deteriorate for lyiao = 50 mV (error is almost 20%). 
Nevertheless, it is a significant improvement over the 
corresponding performance for identical spheres where 
the error varies from 25% to 150% for similar parameter 
values. 

Having obtained exact results for the case of equal- 
sized spheres with opposite potentials, we can also test 
how the nonlinear Deryaguin approximation performs in 
this case. Results for the constant potential case are shown 
in Figure 9 and for the constant charge case in Figure 10. 
The nonlinear Deryaguin results are obtained by applying 
the Deryaguin construction to solutions of the nonlinear 
Poisson-Boltzmann equation for parallel plates. The 
results are similar to the identical sphere case6 in that in 
the range Kh I 2 the error is within 10% provided K a  2 
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5 and improves as the isolated potential is raised. The 
error is similar for both constant potential and constant 
charge boundary conditions. It is noticeable from Figure 
1 l a  that the error in the Deryaguin result appears to scale 
as (Ka)- l .  This suggests that a correction to the Deryaguin 
expression to the next order in a (Ka1-l  expansion should 
be worthwhile. Figure l l b  shows the result of adding 
a correction of this order to the linear Deryaguin 
term18v7-although a worthwhile improvement it is clear 
that the correction is only valid for the regime ~h << K a .  
In any case, a heruistic modification of the Deryaguin 
expression using Levine's surface dipole method for the 
constant potential case gives good accuracy for a wide 
range of conditions.lg 

These results, together with those of ref 6, suggest that 
the linear theory has a surprisingly wide region of 
applicability, a t  least for the force curves. I t  must be said, 
however, that the only evidence comes from the two rather 
special cases of equal-sized spheres with identical (equal 
but opposite) potentials. In particular, the force is always 
manifestly repulsive (attractive) for all boundary condi- 
tions so that none of the rich behavior seen for double 
layers with potentials of different magnitude (see Figures 
4-6) has been directly tested. The methods of ref 6 can 
be extended fairly readily to those cases, which we hope 
to pursue in the future. 

The next results we present are for the spherdplate 
geometry similar to  force measurements on the atomic 

(18)Ohshima,H.;Chan,D.Y.C.;Healy,T.W.;White,L.R.J.Colloid 

(19) Sader, J.; Chan, D. Y. C.; Carnie, S. L. To be submitted for 
Interface Sci. 1983, 92, 232. 
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force microscope. For this reason we limit ourselves to 
force curves in this section. In this geometry there is only 
one value of Ka, and by varying this parameter, we study 
the effect of the curvature of the spherical particle. In 
Figure 12 we show results for K a  = 10 where a priori we 
would expect the Deryaguin approximation to perform 
well. For the comparison in Figure 12, the Deryaguin 
result is given by eq 61, which is obtained by applying the 
Deryaguin construction to the linearized Poisson-Boltz- 
mann result for parallel plates8-we call this the linear 
Deryaguin approximation. For the cases where both 
surfaces have constant potential or are regulating, the 
accuracy of the linear Deryaguin approximation is con- 
firmed by the data. However the constant charge case is 
never accurate for ~h < 1 with the exception of the case 
with potential ratio equal to -1. This special case is the 
only case where the linear Deryaguin approximation gives 
a force that is always attractive-in every other case, the 
constant charge curve becomes repulsive at  sufficiently 
small separation. Similarly, the linear Deryaguin ap- 
proximation for the constant potential case is always 
repulsive only for identical surfaces-it becomes attractive 
for sufficiently small separation in all other cases. 
However, the linear Deryaguin approximation is good for 
constant potential surfaces even in these attractive 
cases. 

The effect of the particle curvature can be seen in Figure 
13 where, in one case, the sphere has the potential of 
lower magnitude (Figure 13a) and, in the other, it is the 
plate (Figure 13b). Since it is the surface of lower (in 
magnitude) potential that controls the interaction, as in 
the splitting seen in Figures 3-5, the linear Deryaguin 
approximation is noticeably worse in describing the first 
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Deryaguin approximation under constant potential multiplied 
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The percentage error in the corrected force (the linear Deryaguin 
force plus the correction from ref 18) compared to the linear 
theory under constant potential for vliS0 = -v2is0 = 1. From 
top to bottom, KU = 10, 5, 3, and 1. 

case, where the important surface has KCC = 10, than the 
second case. Nevertheless, the performance is good except 
for constant charge surfaces. 

Figure 14 shows similar results for a sphere with KU = 
1. As expected, the linear Deryaguin approximation 
performs worse for such a small particle but there are 
several notable features of the curves. Firstly, the 
constant potential and regulating cases are still described 
remarkably well. It is as if having one surface as a plate 
with infinite radius of curvature has extended the ap- 
plicability of the linear Deryaguin approximation to low 
values of ~ a .  A heuristic explanation of this observation 
is given in ref 19. Secondly, the constant charge results 
are again good only for a potential ratio equal to -1; all 
other cases are poorly handled. In particular, the behavior 
for a potential ratio of -3 is not even qualitatively correct 
a t  KU = 1 with the Deryaguin approximation giving quite 
strong repulsion compared to a mild attraction in the exact 
calculation. 

In the case of regulating surfaces with As = Ap = 0, the 
linear Deryaguin approximation reduces to  the linear 
superposition approximation8-this may explain the rela- 
tively good performance for this case for a wide variety of 
conditions. 

In Figures 15 and 16 we show results for “mixed 
boundary conditions-one surface has constant charge and 
the other constant potential. Again, the performance is 
remarkably good at  KU = 10 and deteriorates somewhat 
at KU = 1. Once again the surface with the lower (in 
magnitude) potential controls the interaction so, if it has 
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Figure 12. Force curves in the sphere/plate geometry for KU 

= 10 and three sets ofboundary conditions: from top to bottom, 
both surfaces constant charge, both surfaces regulating, both 
surfaces constant potential. Results of the linear theory are 
shown as small solid symbols, corresponding results for the 
linear Deryaguin approximation are shown as large open 
symbols. (a, top) y:so = 1, ljlplso = 3. (b, middle) = 1, vpisa 
= 1. (c, bottom) v,iSO = 1, *pis0 = -1. 

constant potential, the curve is “constant-potential-like” 
e.g. the lower pair of curves in Figure 15, corresponding 
to the sphere in parts a and b of Figure 15 and the plate 
in Figure 15c. Again, by far the worst performance is for 
a “constant-charge-like” curve with potential ratio equal 
to  -3 at  low KU (Figure 16b). 

To summarize, the sphere/plate geometry has the happy 
result of extending the applicability of the linear Der- 
yaguin approximation to values of KU as  low as perhaps 
1 but certainly 3 for any boundary conditions except 
constant charge. In that case, it consistently overesti- 
mates the force except for a potential ratio equal to -1. 
For a potential ratio of -3 a t  low KU, the linear Deryaguin 
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approximation is qualitatively wrong. Our confidence in 
this statement is bolstered by the good performance of 
the linear theory at low K a  compared to the nonlinear 
theory as we have seen here and in ref 6. 

Having dealt so exhaustively with the sphere/plate 
geometry it is only necessary to mention the new features 
exhibited by dissimilar spheres. Because heterocoagu- 
lation studies (for example, ref 11) tend to focus on the 
interaction energy, we will present the interaction free 
energy curves in what follows. 

With both surfaces now being of colloidal dimension, 
we would expect the Deryaguin approximation to  be less 
accurate than in the above discussion. In Figures 17 and 
18 we show results for spheres of equal size. The energy 
curves at  KU = 10 show all the characteristics of the force 
curves above: good performance for constant potential 
but not for constant charge, except a t  a potential ratio of 
-1. At KU = 1 the agreement is much worse in terms of 
the relative error especially a t  large Kh-a feature that 
does not show up in the force curves above. A key 
ingredient in improving the performance ofthe Deryaguin 
approximation for the energy is to incorporate the correct 
asymptotic behavior a t  large ,h.I9 

By comparing Figure 18 against Figures 19 and 20, we 
see the effect of increasing the size ratio of the particles 
from 1 to 5 to infinity with one particle held at  K a  = 1. The 
performance of the Deryaguin approximation in the range 
1 I ~h 5 2 improves in all cases. The constant charge 
case is never very accurate and the constant potential 
curve at  a potential ratio of -3 improves dramatically. 
The performance of the constant potential curve a t  a 
potential ratio of 3 is more problematic-it appears that 
the agreement at K a l  = ~ a 2  = 1 may be fortuitous. 
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Figure 15. Force curves in the sphere/plate geometry for KU 
= 10 and two sets of"mixed" boundary conditions: circles denote 
the case of a constant charge plate and a constant potential 
sphere, squares denote the case of a constant potential plate 
and a constant charge sphere. As before, results of the linear 
theory are shown as small solid symbols and corresponding 
results for the linear Deryaguin approximation are shown as 
large open symbols. (a, top) q:so = 1, qplsO,= 3. (b, middle) lysis0 
= 1, qplso = -3. (c, bottom) qsiS0 = 3, qplso = 1. 

IX. Conclusions 
We have shown how to obtain solutions for the double 

layer force and interaction free energy for dissimilar 
colloidal spheres as  well as between a sphere and a plate, 
according to the linearized Poisson-Boltzmann equation. 
Numerical calculations here and in ref 6 suggest that such 
results are reasonable, especially for constant potential 
surfaces, for surface potentials approaching 40 mV. 

For experimentalists using the atomic force microscope, 
the most significant finding is that, except if the surfaces 
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Figure 16. As for Figure 15 but with K a  = 1. (a, top) 
1, *'piso = 3. (b, bottom) qsis0 = 1, qpiS0 = -3. 

= 

under study are known to be constant charge surfaces, 
the Deryaguin approximation gives an accurate picture 
of the double layer force between a sphere and a plate for 
particle sizes currently used in the AFM. Since results 
from the nonlinear Poisson-Boltzmann equation6 show 
that the Deryaguin approximation improves a t  higher 
potentials, this strongly suggests that the Deryaguin 
approximation should be adequate for the analysis of 
sphere/plate force curves in most circumstances. Even in 
the constant charge case, the Deryaguin approximation 
consistently provides an upper bound on the true force. 

For heterocoagulation studies, the picture is similar 
except that the energy curves start to deteriorate once 
both particle sizes fall below KU = 5. For very small 
precursor particles ( K a  < 1) the linearized Poisson- 
Boltzmann equation is known to be good6 and so the 
present method should be reliable. This method is not 
numerically daunting-each force or  energy curve pre- 
sented here only takes a t  most a few minutes to calculate 
on a Macintosh Centris 650. 

Needless to say, the comparatively good performance 
of the Deryaguin approximation compared to an exact 
solution of the linearized Poisson-Boltzmann equation 
found here for particles of quite different size and isolated 
surface potentials is in marked contrast to the claimed 
poor performance by Barouch et aL20 The theoretical flaws 
in that work have been eloquently stated by Overbeek21-it 
suffices to say here that our numerical calculations support 
the arguments of Overbeek in every respect. 

(20) Barouch, E.; Matijevic, E.; Ring, T. A.; Finlan, J. M. J. Colloid 

(21) Overbeek, J. Th. J. Chem. SOC., Faraday Trans. 1 1988, 84, 
Interface Sci. 1978, 67, 1, and later papers cited in ref 21. 

3079. 
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Figure 18. As for Figure 17 but with KUI = KUZ = 1 and two 
sets of boundary conditions, from top to bottom, both surfaces 
constant charge, both surfaces constant potential. (a, top) ljtliso 
= 1, vz'? = 3. (b, middle) vllso = 1, v~~~~ = -1. (c, bottom) vlisO 
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Figure 17. Interaction free energy curves for spheres of equal 
size K U ~  = KUZ = 10 and three sets of boundary conditions, from 
top to  bottom, both surfaces constant charge, both surfaces 
regulating, both surfaces constant potential. Results of the 
linear theory are shown as small solid symbols; corresponding 
results for the linear Deryaguin approximation are shown as 
large open symbols. (a, top) vliW = 1, vziSo,= 3. (b, middle) vliS0 

3. - 1, &fsO = -1. (c, bottom) vlisO = 1, 7)p0 = - - 
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The one remaining doubt in this work is how reliable 
are these conclusions for particles with large surface 
potentials. In two special cases, equal size spheres with 
equal or opposite surface potentials, we have answered 
those doubts. "hose results strongly suggest that the 
Deryaguin approximation improves at  large surface 
potentials and so the general conclusions regarding the 
effects of size ratio and curvature are correct. Definitive 
evidence however awaits numerical results of the non- 
linear Poisson-Boltzmann equation for dissimilar spheres 
and the spherelplate geometry, a goal we now believe is 
in sight. 

S, K 
f 
F 
h 

U 

U 



Electrical Double Layer Znteraction Free Energy 

_ _  

100' 

e 80- 
2. 

C 

1001 1 

Interaction free energy 
in spherelplate geometry 

y $ = l  y = 3  
A m = l  

Langmuir, Vol. 10, No. 9, 1994 3009 

60- 

40. 

Interaction free energy 
for unequal sized spheres 

y , = l  y,=3 
lea, = 1 mr = 5 

- m 
0 .- E -60- 

E 
z" -80- K 

0.5 1 1.5 

Kh 

.201 

e 

* 
Interaction free energy 1 

! in  spherelplate geometry 
y = I  y = - 3  

e 

"~ . r 

. 3  I 

C i 
0 Interaction free energy 

for unequal sized spheres 

0 

0.5 1 1 . 5  2 

Kh 

Figure 19. As for Figure 18 but for spheres of unequal size 
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Figure 20. As for Figure 18 but with a sphere (!a = 1) and 
a plate. (a, top) ykso = 1, *piso = 3. (b, bottom) = 1, ?#p 
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