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In this paper we study the double layer interaction between two heterogeneous surfaces of either constant charge 
or constant potential. The surface heterogeneities are assumed to be distributed on periodic lattices of arbitrary 
structure. General expressions for the 3-D electrostatic potential distribution and the interaction free energy 
between the two surfaces are given. Asymptotic forms and numerical examples for the interaction potential 
are provided for the symmetric lattice problem. In general, the interaction potential or osmotic pressure decays 
exponentially at large separations. When a nonuniform, but net neutral, surface interacts with a uniform 
surface (charged or uncharged), the interaction can be either attractive or repulsive depending on whether the 
surfaces are constant potential or constant charge. For two nonuniform net neutral surfaces, the interaction 
can be either attractive or repulsive depending on whether the surfaces are constrained in configurations in 
which regions of unlike or like charge are in opposition. For this case, a statistical mechanical average over 
all relative lateral displacements shows that asymptotically the interaction will always be attractive. The 
magnitude of the attraction is comparable to or can exceed the van der Waals interaction. The results given 
here would warrant inclusion in any interpretation of surface force measurements in systems involving adsorbing, 
neutralizing surfactants. 

I. Introduction 

A knowledge of the interaction between particles or between 
surfaces in general is fundamental to our understanding of many 
properties of colloid science. In a large class of colloidal systems, 
the surface forces are dominated by long-range electrostatics, 
the familiar double layer force.' For many applications under 
colloidal conditions the traditional approach to double layer 
interactions, the mean-field model based on the Poisson-Boltz- 
mann equation, has proven to be very useful for experimental 
analysis. In recent years, considerable effort has gone into 
improving the mean-field description of the electrolyte behavior 
under more extreme conditions (see, for example, ref 2). In 
comparison, considerably less effort has been spent in studying 
departures from the classical assumptions which arise from a 
more detailed prescription of surface structure. 

Techniques for scanning surface irregularities with atomic 
accuracy, such as atomic force microscopy (AFM), now show 
quite convincingly that many systems comprise surfaces which 
cannot be treated as uniform. In fact, there are many situations 
wherein nonuniformities can be envisaged to arise. In some cases 
this feature has been confirmed by AFM. For example, a host 
of these involve solutions of highly surface active species, that is, 
species which adsorb strongly. These species may range from 
polyelectrolytes, or bulky multivalent ions, of charge opposite to 
that of the surface to ionic amphiphiles. Our focus is on systems 
which possess isolated surface regions which are occupied by a 
concentration of charge opposite to that of the surface as for 
instance in the case of negatively charged mica surfaces with 
adsorbed or deposited cationic surfactants.3 

Richmond4 and Nelson and McQuarrieS examined the effects 
of discrete surface charge distributions on the double layer 
interaction between surfaces. From these studies one already 
sees that interesting and potentially important behavior can be 
found. While Richmond studied surfaces held at constant charge, 
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Kuin6 recently considered surfaces held at constant but nonuni- 
form surface potential. However, Kuin's results were obtained 
with the superposition approximation which restricted their 
validity to large separations. 

We recognize that it is difficult to consider a completely 
arbitrary charge distribution in a quantitative calculation. 
Consequently, we shall consider sources of charge or potential 
which are periodically distributed on the surface. In the next two 
sections we present a general formalism, outlining the process of 
solution of the electrostatic potential problem, and the evaluation 
of the interaction free energy invoking only the assumption that 
on each surface there is some periodic but otherwise unspecified 
arbitrary two-dimensional lattice distribution of charge or 
potential. We consider the two cases of constant charge and 
constant potential surfaces when thesurfaces approach each other. 
In section IV we present numerical and asymptotic results for the 
interaction between two surfaces with the same periodic lattice 
structure. The calculations are based on distributions of inho- 
mogeneities which are arguably more relevant than the examples 
given by either Richmond or Kuin. The main effect of periodic 
charge heterogeneities is that the additional interaction that arises 
can be repulsive or attractive depending on the relative transverse 
displacement of the surfaces. In section V, we discuss the 
procedure of performing the proper statistical mechanical average 
over possible transverse displacements of the patchy heterogeneous 
surfaces. The general conclusion is that when averaged over 
transverse displacements, the extra contribution to the interaction 
between from charge heterogeneities is an additional attraction 
between the surfaces. The paper closes with a summary of the 
major results. 

11. Electrostatic Double Layer Potential 

Consider two infinite planar half-spaces with dielectric per- 
mittivities, c 1  and t3. These are separated by a third dielectric 
continuum of permittivity e2 and of width h; see Figure 1. This 
central medium contains a solution of simple electrolyte of species 
valence, zi, in chemical equilibrium with a bulk solution of molar 
concentration cm, or number density, nm, at a temperature T.  We 
are interested in determining the mean electrostatic potential, 
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For an arbitrary electrolyte the electrostatic potential, $(r), 
satisfies the following equations 

V2$(r) = 0 for z < 0, z > h ( 3 4  

(3h) 
47r 

e2 
V2J.(r) = - -p(r)  for 0 < z < h 

with volume charge density, p ( r )  at r given by (,9 = 1 JksT) 

p( r )  = x z , q o  exp(-z,ep$(r)) (4) 
i 

Since the surface source distributions are no longer uniform, the 
scalar mean potential retains its dependence on the three- 
dimensional vector position, r, and the equations to be solved are 
oartial differential eauations. A simolifvine assumotion that can 

Figure 1. A schematic representation of the system under study. Two 
surfaces with a periodic distribution of sources of charge separated by 
an electrolyte solution of thickness h. 

$(I) across this intervening region, when the interfaces between 
medium 1 and 2, at  z = 0, and between medium 2 and 3, at  z 
= h, carry specified surface charge or surface potential distribu- 
tions. In this paper we concentrate on either of the two limiting 
conditions where the surface charge or surface potential distribu- 
tions are independent of separation. Weshall refer to thesecases 
as constant charge or constant potential. The intermediatecases 
of self-consistent regulating surfaces and the asymmetric system 
of one surface held at  constant potential and the other held at 
constant charge are made the subject of a separate report. 

We consider nonuniform distributions of sources +(s) and 
yR(s) on the left and right surfaces, respectively. We use the 
subscripts and superscripts L o r  R to refer quantities to the left 
(z  = 0) or right ( z  = h )  interfaces, respectively. The variable y 
represents either the surface potential, 9, or surface charge, g, 
as the case may be, and s = (x ,y )  represents the transverse vector 
position. 

Without lossof generality, wecanassume that for eachsurface, 
y contain a uniform part, yo, on which is superimposed a periodic 
distribution of sources, yp. Since yp. and therefore y. is periodic 
we may represent them by their Fourier expansions, 

rL(s) = 7; + x y k L  exp( ikL4  (la) 
*L 

and 

As stated in the Introduction, we shall not limit ourselves to the 
same typeof lattice on each of the left and right surfaces. kL and 
kR therefore represent reciprocal lattice vectors for two as yet 
unspecified lattices. ykis in general different from 7,” as are the 
Fourier expansion coefficients, ykL and ytR. at the same order of 
kLand kR. Thesecoefficientscan beobtainedonceaprescription 
for yL(s) and yR(s) in real space is given. Notably, they are 
obtained from the Fourier inversion theorem, 

(2) ykj = -s 1 (&) - %) exp(-ik-s) d s  Ai 4 

where Ai is the area of the unit cell on the j = L or R lattice. We 

bften be made is to &me that $6) ii small everywhere, Le., 
&(r)/ksT< I ;  wemaythen linearize thedependenceoftheionic 
densities on the mean potential to give 

p ( r )  = -Cz,’e2ndJ.(r)  ( 5 )  
i 

Note that this approximation is better for symmetric electrolytes 
as the O(Y) term in theexpansionvanishes identically. Basically, 
the linearization assumption is needed to achieve any analytical 
progress. However, what qualitative features appear in the 
linearized model are certain to remain in the more complex 
nonlinear calculation. The approximation we adopt therefore 
does not detract from our conclusions. Given the form of the 
source functions on the boundaries, together with the linearity 
of the problem, the solution for the electrostatic potential $(I) 

can be expressed as a Fourier expansion in terms of the transverse 
coordinates s = (x , y )  

where the Fourier coefficients, &), depend on the wave vector 
k and the normal coordinate z. 

Substitution of (6) into (3) gives a set of four ordinary 
differential equations for each k 

pk”(z) - k?qkp) = 0 for z < 0, z > h 

for 0 < z < h 

(7a) 

(7b) 

for j = L, R, where q, = [ (d + k,9]W, and the usual inverse 
Debye length is K = [ ( 4 ~ e 2 ~ / ~ z ) ~ 7 i z n i ~ ] ’ / z .  Solutions of these 
differential equations which remain finite for all values of z are 

I 

vk,”(z) - q?$z) = 0 

pkp) = A(kj) exp(kjz) z < 0 ( 8 4  

vkp) = B(kj) exp(qF) + C(kj) exp(-q@ 0 < < h (8b) 

pkp) = D(kj) exp(-kF) z > h (8~) 

for j = L, R, where the coefficients A, B, C, and D have to be 
chosen to satisfy appropriate boundary conditions. 

As we have two linearly independent expansions in (6).  which 
individually are appropriate expansions to accommodate the 
boundary conditions to be satisfied on one of the two surfaces, 
we only need to impose constraints on each solution on the other 
surface. For instance, the expansion given by the first series in 

note thai the k = 0 term of the expansion also contributes to the 
uniform background, according to (2),  with an area average of 
the periodic part. 

(6) can be made to satisfy thk boundary conditions on the left- 
hand surface at  z = 0, so the condition on the second series is that 
it should vanish at  z = 0. Likewise, the first series should vanish 
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at the right-hand surface at  z = h since the expansion given by 
the second series in (6 )  can be made to satisfy the conditions at  
z = h. Explicitly, if the surfaces are held at constant potential, 
where y(s) = Q(s) is a given function, then the appropriate set 
of conditions on the Fourier coefficients are that 
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where q k L  and q k R  are the known Fourier coefficients in the 
series representation for the specified surface potential distribu- 
tion, 9 ( s ) ,  on each surface. On the other hand, if the surfaces 
are held at constant charge, where y(s) = u(s) is a given function, 
then the boundary conditions are that the potential and the normal 
component of the displacement field be continuous across the 
interface 

where bkL and ukR are the known Fourier coefficients in the series 
representation for the specified surface charge distribution, u(s) 
on each surface. 

For the constant potential case, only the solution for e, in 
0 I z I h are required and they are 

For surfaces held at  constant charge, the solutions for z between 
0 and h are dependent on the solutions outside the central region: 
z < 0 and z > h. This arises from the effect of ion image 
interactions introduced by the dielectric discontinuities. In 
general, the solutions (8) for 0 I z I h satisfying eqs 10 are 

u,,e-Rh 
(eqRz + At1e*’) (12b) 4 a  

fip = - 
NR ‘2qR + ‘jkR 

where 

N j  = 1 - A$,A$3 exp(-2qih) j = L, R (1 3) 

and the ratio 

is a measure of the strength of dielectric images on the left and 
right side. By inserting either eqs 1 1 ,  for constant potential 
surfaces, or eqs 12, for constant charge, into the double Fourier 
expansion for $(r) in eq 6, one can obtain all the necessary 
information to evaluate any thermodynamic property of the 
electrical double layer. Also, the splitting of the terms as given 
by either eqs 1 1 or 12 naturally highlights the direct contributions 
from either surface to the total potential at a given position z. 

However, in each case there is always an indirect contribution 
which recognizes the presence of the other surface, represented 
by the term in the denominators of (1 1) and (1 2) which depends 
on the separation h. In the case of constant surface charge the 
dielectric discontinuities also contribute. Consequently, despite 
the linearity of the problem, our solutions are not to be confused 
with a superposition approximation, in which the important factors 
in the denominator of (1 1) and (12), and the factors, Azi, which 
are explicit in eqs 12 do not appear. We point out that eqs 12 
represent the generalization of expressions obtained by Richmond4 
for symmetric lattices, to the case of arbitrary lattices. For the 
special case of symmetric lattices, our expressions for constant 
potential surfaces therefore remain the complete solution to this 
problem attempted by Kuin6 who in fact invoked the superposition 
approximation, using the mean potential for an isolated surface. 

In the case of surfaces held at  constant potential, the 
corresponding values of surface charge are obtained by evaluating 
the derivative of the potential at the respective surfaces. That 
is, 

These results are needed for the calculation of surface and double 
layer free energies discussed in the next section. 

III. Double Layer Interaction Free Energy 

The free energy of the double layer can be obtained by a 
thermodynamic charging integration,l~~*~J which depends on the 
assumed surface equation of state. In the linear theory, the 
expression for the free energy per unit area is simply 

where the negative or positive sign is taken appropriately for 
surfaces at constant potential or constant charge. Naturally, as 
each surface has a nonuniform source distribution, one must 
perform an area average over the surfaces at z = 0 and at z = 
h. Kuin6 indicated no such average in his evaluation of the double 
layer free energy. Quite simply, the integral over A separates 
into twocontributions, one for each surface, which we shall denote 
by F and Fa. The values of surface potential and charge 
appearing in eqs 16 are taken from the respective cases given in 
the previous section. For surfaces interacting at  constant potential, 
y = Q is prescribed on each surface-the first of eqs 1 appears 
in F and the second in Fa. The corresponding surface charge 
densities, u are found from (15) using (6) and ( 1  1 ) .  Performing 
theoperations indicated in eq 15 and substituting into (1 6) above, 
we have 

@(h) = 
r 

For periodic functions, the integral over A breaks down into an 
integral over the unit cell, in this case AL for the left surface, 
multiplied by the number of unit cells within A. Evaluating the 
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integral, we find 
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which show the explicit dependence on separation, h, 

where we have used the fact that, as kL and k'L are reciprocal 
lattice vectors of the lattice a t  z = 0, we have the identity 

= 0 otherwise 

We have also introduced the quantity 

with theintegralevaluatedover a unit cell AL. A similar expression 
for Fa can be obtained directly from symmetry. The result is 

where 

For a general discussion, the lattices, L and R, are treated as 
dissimilar; therefore, the reciprocal lattice of the left surface, kR 
cannot, in general, be expressed as a simple combination of basis 
vectors of, kL, the reciprocal lattice of the left surface; thus, CL 
is nontrivial. When the lattices L and R are identical, CR and 
CL reduce to a Kronecker delta function, as in (19). We remark 
that in deriving (18) and (21) we have used the fact that qL,R = 
[ ( K ~  + k ~ , ~ * ) ] l / ~  is invariant under a sign change of kL,R. 

For the free energy of surfaces held at  constant charge: y = 
u is prescribed on each surface and $ is given by expansion (6) 
with coefficients (12). The free energy again separates into two 
contributions, F and Fa. F ( h )  is given by 

To obtain this result we have argued as before: because of 
periodicity, the integral ovef A is equivalent to an integral over 
the unit cell multiplied by the number of unit cells in A. CL is 
given by (20). Fa(h) can be deduced from symmetry, L -. R, 
z = O - z = h  

Inserting the coefficients qk of (1 2) we obtain the following results 

and 

Toobtain theinteraction freeenergy, V(h), one takes thedifference 
between F a t  finite h and F evaluated a t  infinite separation. That 
is, 

V(h) = F(h) - F ( m )  (27) 

where, for constant potential surfaces 

and, for constant charge surfaces, 

IV. Numerical and Asymptotic Results for Similar Lattices 
The general solution presented in the preceding sections contains 

a large number of parameters. For our numerical study, we 
consider two surfaces with identical lattice structure, but retaining 
the option of dissimilar source values, yo and yp. That is, the 
lattices have now the same lattice structure, but the periodic 
potential/charge amplitude may be different. A study of 
dissimilar lattices will be considered elsewhere. 

We first derive and discuss some general results that apply to 
surfaces with identical lattice structures. We shall then give 
results for a specific type of lattice. For identical lattices, the 
reciprocal lattice vectors, k, and the areas of the unit cells are 
identical. 

Similar reduction occurs in eqs 13 and 14. Consequently, the 
two expansion sets in (1) become identical and the two sums in 
(6) merge into one. The values for the C functions also simplify 
in the case of identical lattices, 

= 0 otherwise 

which leaves us with quite simple expressions for our principal 
results, namely the interaction free energies. Hereafter, we can 
also drop the L and R subscripts on the wave vector since kL = 
kR. Finally then, for surfaces with identical lattice structures, 
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held at  constant potential, the interaction free energy is 

and, for constant charge surfaces, the interaction free energy is 
given by 

We have introduced the phase factor, cos(k.d), which originates 
from the Fourier coefficients, Tka, of expansion 1 b. This factor 
allows the lattices to be displaced laterally relative to one another 
by a vectorial amount d = (dx,d,,), written in Cartesian coordinates. 
We again point out that (31) is identical to Richmond’s eq 4.3 
in ref 4 and reduces to his eq 23 in ref 4b when t l  = c3. It is of 
interest to determine the asymptotic forms of eqs 30 and 31. 
These will help in the interpretation of numerical results and are 
potentially useful for direct experimental analysis. Each term in 
the sum in (30) and (31) decays exponentially with separation, 
h.  Naturally, as h becomes very large, the interaction quickly 
becomes dominated by the term with the smallest value of k = 
lkl. For surfaces with a net nonzero surface charge, this smallest 
value is k = 0 which corresponds to the standard uniform double 
layer result: the force decays exponentially with decay length 
given by K- I .  However, for the systems that are exactly 
“neutralized” by adsorbed counterionic species, the zero k term 
vanishes, by construction. Thesesurfaces contain periodic positive 
and negative regions which, while locally charged, are neutral 
when averaged over a unit cell. The interaction for large h is 
then determined by the next lowest terms in the expansion, terms 
corresponding to the smallest nonzero value of k = kmin with qmin 
= [ ( K ~  + kmin2)]1/2. For identical, net neutral surfaces, at  constant 
potential the asymptotic form of the interaction free energy is 
then 

while, for constant charge surfaces, the interaction potential is 
given by 

If there are several wave vectors with the same magnitude, kmin, 
that is if kmin is degenerate, then all terms with the same kmin will 
contribute to the asymptotic behavior, each represented by 
expressions like the formulas above. 

We shall now consider the interaction between surfaces that 
are net neutral but contain charged patches that are distributed 
periodically on the surface. For such systems, there are three 
important observations to be deduced from the last two equations. 
Firstly, there is the obvious fact that a net interaction exists with 
magnitude governed by the strength of the periodically distributed 
sources. The underlying uniform surface charge does not play 

any role here apart from providing a charge that exactly neutralizes 
the periodic charges distribution. Secondly, the force decays 
exponentially with decay length l / q d n  rather than 1 J K .  Our 
understanding of double layer interactions must now be modified 
to take into account the competition between the usual decay 
length scale of K-* which is associated with electrical double layer 
interaction between charged surfaces and another decay length 
scale, kd - I ,  introduced by the discreteness of the lattice of charged 
patches. When the salt content becomes sufficiently high so that 
K is large compared to kmin, the discreteness of the lattice is 
unimportant and the force decays as we expect. The interesting 
cases are therefore those with low salt content, K << kmin, for 
which we will see the lattice dimension being reflected in the 
characteristic length of the double layer interaction that arises 
out of the presence of charged patches. 

Finally, for surfaces with the same lattice symmetry, because 
of the phase factor, cos(k.d), the interaction for both the constant 
potential and constant charge cases can be either repulsive or 
attractive. When the two lattices are in register, that is, when 
the relative displacement vector d = 0, the repulsive force is a 
maximum. When the surfaces are exactly out of register, that 
is, k-d = T ,  so that cos(k.d) = -1, the attractive force is maximal. 
However, for asymmetric cases, when the sources on one surface 
are of opposite sign to the sources on the other, which implies that 
the underlying uniform charges are also of opposite sign, the 
dependence on the phase is the reverse: the attractive force is 
greatest when the surfaces are in register and the repulsive force 
is greatest when the surfaces are exactly out of register. This is 
not difficult to appreciate. The lowest (highest) energy con- 
figuration, that is, attraction (repulsion), corresponds to the 
situation when regions of unlike (like) sign are in opposition. 

Further interesting features appear when we consider what 
happens when a net neutral patchy surface (the left surface L, 
say), in the above sense, interacts with a uniformly charged 
nonpatchy surface (the right surface R, say), that is, when -$ = 
0. The asymptotic forms for this case are easily deduced from 
eqs 30 and 31. When the uniform surface is charged, the 
magnitude of the interaction is governed by its source value. For 
constant potential surfaces, we have for the interaction free energy 

while, for constant charge surfaces, we have 

As should be expected, this pair of expressions is independent of 
the phase variable, d. From these asymptotic forms we see that 
the constant potential interaction is always attractive while the 
constant charge interaction is always repulsive. The interaction 
decays exponentially with characteristic length one-half of the 
usual Debye length, K-I. 

When the uniform surface is uncharged, that is, electrically 
neutral, so that 7: = 7; = 0, then the interaction free energy is 

for a constant potential net neutral patchy surface interacting 
with an uncharged surface, and 

for a constant charge net neutral patchy surface interacting with 
an uncharged surface. As in the symmetric case the value of kmin 
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may be degenerate. The magnitude is now dependent on the 
value of the periodically distributed source on the net neutral 
patchy surface. The force also decays exponentially but with 
characteristic length one-half the value obtained in the symmetric 
problem (cf., eqs 32 and 33). That the forces are attractive and 
repulsive, respectively, for constant potential and constant charge 
conditions of dissimilar, uniform surfaces has been known for 
some time. Evidently, these sameconditions continue up through 
the higher order modes of the Fourier expansion, as an examination 
of eqs 30 and 31 will show. 

This completes our survey of general results for the interaction 
between patchy surfaces with identical lattice structures or 
between a patchy surface and an uncharged surface. For our 
numerical study, we have selected rectangular lattices on both 
surfaces. We place our origin at  the center of a cell which extends 
over the ranges -a, 5 x 5 a, and -a, I y I a,. In a Cartesian 
coordinate system the appropriate real lattice vector isa = n(2aX,0) 
+ m(0,2a,) and the reciprocal lattice vector is then k = n(?r/a,,O) 
+ m(O,?r/a,), where m and n run over all positive and negative 
integers. In general, a, does not necessarily equal to a,, although 
for most of the case studies we have set a, = a, = 100 A. The 
area of the unit cell is then A = 4a,u,. As pointed out earlier, 
the interesting cases are at  low ionic strength where the decay 
of the interaction free energy is controlled by the lattice spacing 
of the charged patches. We have therefore focused on a 
monovalent electrolyte at  a concentration of 2.25 X M, which 
gives a Debye length of K-1 = 640.7 A. Other variables are T = 
298 K, ez = 78.5, and el = e3 are set to be either 78.5 or 2, as the 
two extreme values. 

To model experimentally realizable conditions we have chosen 
to represent the periodically distributed sources as finite-sized 
rectangular regions, rather than point charges495 or continuous 
functions.6 Centered within each rectangular unit cell is a 
rectangular “patch” of area B = 46,b,; obviously we must have 
b, I a, and by I a, (see Figure 1). Within a unit cell then, a 
patch occupies the region -b, 5 x I b, and -by I y 5 by, and 
so our source functions, ~ ( s ) ,  of eq 1 can be written as 

= yl,e(x + b, )w,  - + p ( b ,  - Y )  + 6 (36)  

where j  = L, R, s = (x,y), 6 is a constant that specifies the 
strength of the source, and 

e(x) = o x < o (37 )  

= 1  x > o  

is the Heaviside step function. With this representation, the 
Fourier coefficients are straightforward to determine. Elementary 
integration gives 

$4 sin(k,b,) sin(k,,b,,) 

AkXk, 
d” 

This functional form is the same for both surfaces, j = L, R. The 
k = 0 term of the expansion now includes a sum of two terms-a 
contribution from the uniform background source yo, and an 
area-weighted contribution according to the relative areas of the 
unit cell, A, and the area of the patch area, B, which arises from 
the patch distribution 

(39 )  

In most of the numerical case studies, we focus on conditions in 
which this uniform value is zero, that is, tJo = 0, which corresponds 
to a net neutral patchy surface. This can be achieved by 
manipulating the six parameters, a,, a,, b,, by, $,, and d,  
implicitly present in (39),  in a variety of interdependent 
combinations. Although of intrinsic interest, we do not consider 

-20 Y 
-25 ‘ I 

0 50 IO0 150 200 250 
Separation (A) 

Figure 2. Pressure vs surface separation for constant potential surfaces, 
plotted on natural logarithmic scale. The underlying surface potential 
was kept fixed at -50 mV or 2 kT/e.  The potential on the square patches 
were adjusted together with the size of the patch, 462, to satisfy the 
constraint UO = 0. In order of increasing attraction, the potential values 
are 2.22, 2.77, 3.56, and 8 kT/e .  The unit cell parameters are ax = a, 
= 100 A and cos(k.d) = -1. The salt concentration was kept fixed at 
2.5 X M. The van der Waals interaction using a Hamaker constant 
of 2.2 X J is given by the dotted line. 

the asymmetric case where both surfaces are neutral but with 
a different combination of these parameters. 

We shall mainly present results for the disjoining pressure, 
P(h).  For the most part, the disjoining pressure, P(h),  and the 
interaction free energy per init area, V(h), are very similar in 
their quantitative dependence on separation, and only where there 
are noticeable differences do we present both. The disjoining 
pressure is found by taking the negative derivative of Vor F with 
respect to separation. This is straightforward to do using eqs 30 
and 31. To within a factor of 27r, P(h) represents the gradient 
of the force between crossed cylinders (normalized by their average 
radius) in surface force experimentsg and is therefore also of 
experimental interest. 

To get an idea of the magnitudes of the attractive forces one 
can obtain, we include in Figure 2 the van der Waals force per 
unit area, -A/67rh3. Where we have used a Hamaker constant 
of A = 2.2 X 1 O - Z o  J which is appropriate for two mica surfaces 
interacting across water. With this we compare the exponentially 
decaying attractive forces between constant potential surfaces, 
each given a uniform background value of -50 mV, with the 
distributed potential regions adjusted in area and strength to 
ensure that the surface is net neutral, that is, UO = 0, at  infinite 
separation. The unit cell is kept fixed with a, = a, = 100 A, and 
the two lattices are displaced relative to one another by half a 
unit cell so that cos(kd) = - 1 .  The different curves in Figure 
2, in order of diminishing magnitude, refer to increasing size of 
the charged patches. It is clear from the force curves shown, 
with patch potentials starting at  about 70 mV, that these attractive 
double layer forces can be large compared with the van der Waals 
force over a substantial separation range. Because these double 
layer forces are exponentially decaying, the van der Waals power 
law dominate at  sufficiently large separations. It is obvious from 
the electroneutrality condition, UO = 0, together with the fact 
that these forces are determined by the magnitude of the patch 
strength, that the greater the background potential, the more will 
these forces exceed van der Waals. It is interesting to compare 
these curves with, say, the experimental results of Pashley et al.,3 
on forces between adsorbed CTAB surfaces. 

A clear feature of the curves is that two functional dependences 
on separation are evident, namely exponential a t  large distances 
and a power law a t  small separations. However, on a logarithmic 
plot, one may be tempted to fit the observed behavior with two 
exponential functions of different decay lengths. This is in fact 
routinely done on measured “hydration” force curves. We may 
determine graphically that the slopes of these lines correspond 
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Figure 3. Pressure vs surface separation for constant potential surfaces, 
plotted on natural logarithmic scale. The underlying surface potential 
was kept fixed at -75 mV or 3 k T / e  and the potential on the patches was 
5.33 kT/e .  The lattice parameters are a, = a, = 100 A and ccw(k.d) = 
-1. Three salt concentrations are shown in order of increasing attraction 
0.25,2.5 X 10-3, and 2.5 X 10-5 M. The van der Waals interaction using 
a Hamaker constant of 2.2 X 10-20 J is given by the dotted line. 

-5 , I 

-25 ' I 
0 50 100 150 200 250 

Separation (A) 

Figure 4. Pressure vs surface separation for constant potential surfaces 
(solid line), constant charge with no dielectricdiscontinuities (long dashed 
line), and constant charge with dielectric discontinuities, €1 = €3 = 2 
(short dashed line). The underlying surface potential was kept fixed at 
-50 mV or 2kT/e  and the potential on the patches was 3.56 k T / e .  The 
unit cell parameters are ux = a, = 100 A while the patch has dimensions 
b, = by = 75 A and cos(k.d) = -1. The van der Waals interaction using 
a Hamaker constant of 2.2 X 10-20 J is given by the dotted line. 

to a decay length of 30.5 A which is definitely not the Debye 
length r1 (=640.7 A), but is very close to kmin-l = a/. = 31.8 
A, indicating that an approximation by the asymptotic form that 
can be obtained from eq 32 would appear to be adequate when 
the separation exceeds about 75 A for our choice of parameters. 

In Figure 3 we demonstrate the dependence of the decay length 
on the salt concentration, with square lattices and square patch 
parameters of a = 100 A, b = 75 A, d = (100,100), \k,-, = -75 
mV, and \kp = 133 mV. Increasing the salt concentration by 2 
orders of magnitude from r1 = 640.7 A to r1 = 64.1 A has little 
overall effect on the observed decay length. Not until the 
concentration is such that 1 c 1  is smaller that the smallest nonzero 
k1 does the value of the decay length become close to the Debye 
length. With an increaseof another 2 orders of magnitude in the 
salt concentration, to K - ~  = 6.4 A, we finally see the decay length 
being determined by K-1. 

In Figure 4 we show a comparison of the forces between constant 
potential and between constant charge surfaces, under identical 
geometrical parameters. It is important to note that a rectangular 
patch of potential strength, qp, as described by eq 36, does not 
produce a rectangular patch of charge strength, up = a2u\kp/4u, 
that can also be described by eq 36. In order to get the charge 
distribution corresponding to a given distribution of potential 
strength, one must use eq 15 appropriate to an isolated surface 

-5 , I '  
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Figure 5. A comparison of equations of state for different potential 
strengths: the pressure vs surface separation for constant potential 
surfaces, constant charge with no dielectric discontinuities, and constant 
charge with dielectric discontinuities, €1 = €3 = 2. The underlying surface 
potentials were set at -25 mV (dashed lines) and -75 mV (solid lines) 
or -1 and -3 k T / e  and the potential on the patches was set according1 
at 3.56 and 5.33 k T / e .  The unit cell parameters are a, = a, = 100 1 
while the patch has dimensions b, = by = 75 A and cos(k-d) = -1. The 
van der Waals interaction using a Hamaker constant of 2.2 X 10-20 J, 
is given by the dotted line. 

to calculate the resulting charge distribution. This gives rise to 
another Fourier expansion for a spatially varying surface charge 
density which is different to the one described by eq 36. Thus 
when we speak of a constant charge interaction, we refer to that 
case in which the two-dimensional charge distribution is derived 
from the given potential distribution on an isolated surface and 
then this charge distribution is held constant as the two surfaces 
are brought together. In this manner, the constant charge and 
constant potential interactions will coincide at  large separations. 
A comparison of a constant potential interaction and a constant 
charge interaction as described here is shown in Figure 4. The 
two upward turning curves represent constant charge results, 
with (i) t 2  = 78.5, € 1  = €3 = 2 or (ii) t l  = €3 = €2 = 78S,respectively, 
for the most and least repulsive of the curves. In the absence of 
dielectric discontinuities, case (ii), the repulsive image effects 
will be smaller and thedisjoining pressure turns repulsive at  smaller 
separations. But at  large enough separations the results of both 
cases merge in with the constant potential case as expected. The 
effect of the strength of the potential and corresponding surface 
charge on the forces for these three cases is shown in Figure 5. 
Note that all these curves have been calculated with the two 
lattices displaced by d = (100,100), so that cos(k.d) = -1. 

With Figure 6 we focus again on constant potential surfaces. 
This time we consider asymmetric systems where one surface has 
a periodic distribution, with the zero UO constraint, while the 
other surface had a uniform surface (nonpatchy) potential 
distribution (independent of p ) ,  that is, there are no patches. The 
curve shown in Figure 4 is reproduced here for comparison. When 
the potential on the patches on the right surface is set to zero, 
the surface retains, in this case, a uniform net negative potential 
of -50 mV. At large separations, this corresponds to eq 34a as 
the appropriate asymptotic form, with kmin = 0 and qmin = K .  In 
the full expression, eq 30, the terms proportional to the phase 
factor, cos(k-d), do not appear, nor do all the higher order terms 
involving the (zero) Fourier coefficients of the right surface. It 
is quite clear that what remains of the contribution from k # 0 
terms are small compared with the k = 0, large separation, 
asymptotic form, until very small separations. The fact that the 
force for the asymmetric problem is more attractive than the 
symmetric case may seem astounding at  first, but that double 
layer attractions do arise for asymmetric surfaces behaving at  
constant potential has been seen before. It just so happens that 
with the Debye length being so large in this case, compared to 
a/* = 31.8 A, the uniform term has not had a chance to decay 
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Figure 6. A comparison of the symmetric problem with two asymmetric 
problems for constant potential surfaces: thepressurevs surfaceseparation 
for two nonuniform but overall neutral surfaces (solid line), one nonuniform 
overall neutral surface interacting a uniform charged surface with potential 
of -50 mV (long dashed line), and a nonuniform surface interacting with 
a uniform neutral surface (short dashed line). The parameters for the 
nonuniform neutral surfaces are an underlying surface potential of -50 
mV or -2 kT/e ,  a patch potential of 3.56 kT/e;  unit cell parameters are 
a, = a, = 100 8, while the patch has dimensions b, = b, = 75 A. The 
van der Waals interaction using a Hamaker constant of 2.2 X 1WZo J is 
given by the dotted line. 

significantly. We should point out that the ordinate of the plot 
extends only out to about one Debye length, K-* = 640.1 A. 
Consequently, although this force decays, according to (34a), 
exponentially over a distance of one-half this value, its true 
exponential form is not yet evident, and the force still shows some 
residual curvature. 

If now theuniform potential on theuniform (nonpatchy) surface 
is also set to zero, we have the situation of one genuinely neutral 
surface interacting with a surface which is net neutral. Equation 
34b is representative of this case with kmin = r / a ,  and magnitude 
governed by the potential strength on the patches on the left 
surface which carries a periodic charge distribution. The change 
in the slope of the curve from l/qmin to 1/2qmi, is quite evident 
here. Incidentally, it is precisely this full profile which represents 
the difference between the uniform asymptotic result of the last 
case (*OR = -50 mV) and the corresponding complete solution. 

In Figure 7, we show the effects of increasing the unit cell size 
from a square of size 200 A X 200 A to a square of size 400 A 
X 400 A; the patch size is increased proportionally to maintain 
the same value of potentials everywhere. Naturally, the most 
significant effect is to double the decay length of the asymptotic 
exponential force. Comparisons of constant potential with 
constant charge, both with and without dielectric discontinuities, 
show that the curves begin to diverge a t  larger separations as the 
cell size is increased. The forces a t  constant charge also change 
from attractive to repulsive a t  larger separations. We should 
add two remarks here about calculations which we have performed 
but not presented. Firstly, instead of increasing the size of the 
patch, keeping the potentials constant, we could have kept the 
same patch size as before and either increased the patch potential 
by an appropriate amount, or lowered the value of the uniform 
background. The former process produces much larger forces 
than the result shown here, heading in the direction demonstrated 
in Figures 2 and 5. The latter process produces a force which 
is slightly less in magnitude than the one shown here. The second 
remark is that with square lattices, there are actually four 
contributions to the value of kdn; these come from the two 
combinations(f1,O) and(O,fl),fortheintegersnandmdefined 
in the paragraphs preceding eq 36. Consequently, four terms, 
equivalent to eqs 32-35, contribute, a situation which does not 
arise for rectangular systems. For example, if we were to instead 
increase the size of the square unit cell to a rectangular cell of 
dimensions 200 A X 400 A, the patch changing proportionally, 
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Figure 7. A comparison of equations of state for two unit cell sizes. The 
underlying surface potential was kept fixed at -50 mV or -2 kT/e  and 
the potential on the patches was 3.56 kT/e .  The pressures for surfaces 
of constant potential, constant charge with no dielectric discontinuities, 
andconstantchargewithdielectricdiscontinuities, €11 €3 = 2, aregrouped. 
For the upper grou ing of forces (solid lines), the unit cell parameters 
are a, = a, = 100 1 with patches of dimensions b, = b, = 75 A. For 
the lower grouping (dashed lines), the parameters are a, = a, = 200 A 
and b, = by = 150 A. The salt concentration is 2.5 X lW5 M. The van 
der Waals interaction using a Hamaker constant of 2.2 X J is given 
by the dotted line. In both cases, cos(k.d) = -1. 

the force would have the same decay as the one shown in the 
figure, -200/7r A, but with magnitude reduced by a factor of 
2. 

Finally, it is necessary to discuss some of the implications of 
the phase factor, 4 = cos(k.d), which arise in situations involving 
two interacting lattices. Firstly, we show in Figures 8 results for 
the extreme cases where the lattices are in register (4 = 1) or are 
exactly out of register (4 = -1), for symmetric neutral surfaces 
and for two square unit cell sizes. Both disjoining pressure (Figure 
8a) and interaction potential (Figure 8b) are shown. There is 
little need for additional comment, except to say that despite the 
similar effects on both the pressure and the free energy, the 
pressure appears most sensitive to variations of either 4 or cell 
size. In the next section, we consider the correct approach of 
obtaining a physically meaningful average with respect to this 
phase factor. 

V. Average over Transverse Displacements 

In terms of physically realistic experiments employing, for 
example, the surface force apparatus, the results quoted above 
for a well-defined latticedisplacement could beconsidered relevant 
to the interaction of two rigid mica surfaces chemically modified 
with, say, ionizing radiation. For systems involving species 
adsorption, with which we are mostly concerned and which are 
most common experimentally, further considerations arise. We 
assume that on each surface the inhomogeneities retain their size 
and periodic distribution, but are otherwise allowed to migrate 
collectively on the surface. All other things being equal, the 
minimum energy configuration a t  any fixed separation occurs 
when the surface distributions migrateout of register. Intuitively, 
we would believe that the surfaces, initially uncorrelated and 
therefore in random relative displacement at  infinite separation, 
would become correlated on approach in order for the system to 
minimize the free energy. This could conceivably occur provided 
that the time for the approach of the surfaces is sufficiently slow 
compared with the migration time on the surface. For this 
situation it is appropriate to then average, at  a given h, over all 
possible relative displacements. As Richmond understood$ the 
probability of the surfaces being aligned in high-energy con- 
figurations, relative to the probability of being in the low-energy 
configurations will be small. The behavior of a system would 
favor the low-energy configurations. Actually, the task which 
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Figure 8. A comparison of relative displacement of surfaces at constant 
potential. The force and the interaction free energy per unit area are 
plotted on an arcsinh vertical scale. Two sets of unit cell parameters are 
used; these are a, = a, = 100 A with atches of dimensions b, = by = 
75 A (solid lines) and a, = a, = 200 1 with patches of dimensions b, 
= by = 150 A (dashed lines). The underlying surface potential was kept 
fixed at -50 mV or -2 k T / e  and the potential on the patches was 3.56 
k T / e ;  the surfaces are overall neutral. Part a (top) shows the disjoining 
pressure while part b (bottom) shows the interaction free energy per unit 
area. The interaction is most repulsive when and cos(k-d) = 1 and is most 
attractive when and cos(k.d) = -1. 

should be considered is to calculate a partition function for the 
system, summing over all probabilities weighted by the free energy, 
V(h; d), of either form (30) or (31), associated with a given value 
of the relative lattice displacement, d, on the two surfaces. In 
fact, we shall measure the probability in terms of the surfaces 
tangentially displaced with vector, d, relative to the surfaces in 
the minimum energy configuration: 
6V(h; d) = V(h; d) - V(h; cos(k*d) -l), 

exp(-BA 6G(h))  = JJA exp(-PA GV(h;d)) dd (40) A 

whereAGG(h) = A[G(h) - V(h;cos(k.d) =-l)]  is theappropriate 
thermodynamic potential for a unit cellof surface area, A, relative 
to the minimum energy configuration. We point out that this 
procedure is nor equivalent to simply averaging the interaction 
free energy given by eqs 30 and 31 over d. Indeed such a step 
would be incorrect in that it eliminates all the contributions from 
the dominant asymptotic terms given by eqs 32 and 33. 

Rregrettably, it is not possible to perform the integration 
indicated in eq 40 analytically, using the full V(h; d). We have 
some reprieve from this dilemma, though, if we only wish to 
consider the behavior of 6G(h) at large separations. That is, if 
wereplace thecomplete expression for V(h) with its corresponding 
asymptotic form, eqs 32 or 33; for these cases the integral in eq 
40 is tractable. Note that terms independent of d in V(h; d) can 
be removed from under the integral sign. 

Recall first that for rectangular lattices there are two terms 
contributing to leading order, each with a twofold degeneracy. 

Let us write the reciprocal wave vectors for these cases as klo = 
(r/a,,O) and hl = (O,r/a,). Both eqs 32 and 33 can then be 
written in the reduced form 

V(h) = Qlo(h) cos(k,o.d) + Qol(h) cos(b,*d) (41) 

where the meaning of the coefficients should be obvious from eqs 
32 and 33, apart from an implicit factor of 2 which accounts for 
the twofold degeneracy. Since the function V(h; cos(k.d) = -1) 
is independent of d, we only need to consider the terms G(h)  and 
V(h; d) in eq 40. The integration can be written explicitly as 

exp(-@AG(h)) = A S J d s  exp(-j3(AQ,o(h) cos(~x/a , ) )  + 
AQ,,(h) cos(Tr/ay)) (42) 

1 = -f”’dx A - ~ r ,  exp(-j3AQlo(h) cos(rx/a,))Jaydy -QY x 

exP(-j3AQ,, 0)  cOs(TY/ay)) 

However, these are just integral representations of the modified 
Bessel function of the first kind with order zero given by ZO(U)~O 

with u = j3AQlo or j3AQol. Consequently, we arrive at  the 
asymptotic form for the free energy per unit area, G(h) ,  that had 
been averaged over all transverse displacements 

Since the modified Bessel function, ZO, is always positive and is 
a monotonically increasing function, this displacement-averaged 
free energy is always negative. That is, the average interaction 
free energy of surfaces arising from the presence of charged 
patches on the surfaces is always attractive. This is independent 
of whether the surfaces are held at  constant charge or constant 
potential. It is also independent of whether we have a symmetric 
system or an antisymmetric potential system (when the potential 
on the patches on one surface is opposite to that on the other). 
We should also add that the arguments leading to eq 44 are valid 
for any lattice. In the case where the lattice is rectangular, only 
one of the Bessel functions should appear corresponding to the 
larger of a, or a,, although both can be included without additional 
effort. Although it is incidental to our interest, we remark that 
one can repeat the above analysis to evaluate the average energy 
(see the Appendix). 

Further information can be gleaned from the asymptotic form 
of displacement-averaged interaction free energy, G(h),  as a 
function of separation. At very large separations, the arguments 
of the modified Bessel functions are exponentially small, and we 
can consider a small argument expansion of the l i s .  Multiplying 
the two ZO terms and expanding the natural logarithm leads to 
the following asymptotic dependence on separation, for square 
lattices (a, = ay = a)  

where qmin = [ ( r /a ) *  + K2I1/’  and the constant s2 can be found 
from eqs 41 and either eq 32 for constant potential or eqs 33 for 
constant charge. A number of important features of G should 
be emphasized. The attractive force between correlated net 
neutral surfacesdecays exponentially withdecay length, (2qm&l, 
which is one-half that found for surfaces held in the optimal 
configuration. Given the above asymptotic form of G, we can see 
that when the salt concentration is low qmin = kmin and the decay 
is again determined by the lattice spacing. Also, from (32) and 



Double Layer Forces between. Heterogeneous Surfaces The Journal of Physical Chemistry, Vol. 98, No. 36, 1994 9031 

10 

0 I00 200 300 400 
Separation (A) 

Figure 9. A comparison of the thermodynamic averaged interaction free 
energy, G(h)  (long dashed line), with the unaveraged contribution, eq 32 
(short dashed line) and the leading, d-independent contribution, eq 46a 
(dot-dashed line). The sum of G and eq 46a (solid line) is given for 
comparison with van der Waals (dotted line). These have been calculated 
assuming a base potential of -75 mV or -3 kT/e and a patch 

patch has dimensions b, = by = 150 A. 

( 3 3 ) ,  the magnitude of the interaction potential, G ,  depends 
inversely on temperature; thaf. is, it decreases linearly as the 
temperature increases. No strong dependence on salt concentra- 
tion is expected. When the salt concentration is high, that is 
when qmin = K ,  the decay is half the inverse Debye length, ( 2 ~ ) - ' .  
For constant potential surfaces the magnitude depends inversely 
on the temperature squared and is proportional to salt concentra- 
tion. For constant charge surfaces with low dielectric half spaces, 
the average interaction potential has no direct dependence on 
temperature and is inversely dependent on concentration. These 
dependences suggest a number of experiments which could be 
performed for confirmation. 

Since the separation dependence of G is, to leading order, 
identical to the first nonvanishing, d-independent term of eqs 30  
and 31,  respectively, they should be included together for 
consistency. That is, to obtain the leading asymptotic form for 
the interaction free energy, C(h)  above should be added to terms 
in eq 46 for each of the degenerate contributions of kmin. For 
constant potential surfaces we add to G the attractive term 

of 5.3 kT/e. The lattice has a unit cell of size a, = a, = 200 irtential and the 

For constant charge surfaces one must add the repulsive term 

In Figure 9 we compare G(h) of (44) alone with the asymptotic 
expression for the interaction potential between net neutral 
surfaces in the minimum energy.configuration, given by eq 32 ,  
and with the expression given by eq 46a. We also include the 
profile for the sum of G(h) and (46a), as well as the familiar van 
der Waals interaction energy. Only the constant potential case 
is considered. 

VI. Conclusions 

The importance effects of heterogeneous surface charges had 
been considered in earlier work. Vreeker et al." had considered 
the effect of a heterogeneous surface modeled as a surface with 
a two-dimensional sinusoidal variation in the surface potential. 
With the simplified treatment of Kuin,6 they showed that with 

reasonable parameter values for the sinusoidal component of the 
surface potential they can fit the observed variations in the 
coagulation stability ratio of nickel hydroxycarbonate particles 
with indifferent electrolyte concentration. Burnham et al.12 also 
suggested that surface heterogeneity can also arise due to work 
function variations along the surface that can give rise to charged 
patches on an otherwise net neutral surface. Estimates of the 
electrostatic interaction of two such surfaces across an air gap 
had been put forward as the explanation of long-ranged attractions 
observed in force microscopy. Therefore, it appears that effects 
due to surface heterogeneities require further study and inves- 
tigation in order for us to evaluate its quantitative impact on the 
theoretical notions of colloidal stability and particle interactions. 
This paper is a first step in this direction. 

We have considered in some detail the interaction between 
surfaces whose sources of charge or potential are nonuniformly 
distributed. Full analytical detail is given for the general case 
of two completely dissimilar surfaces with periodically distributed 
sources. Numerical and asymptotic results are given for the 
special case when the surfaces have identical periodic lattice 
structure. These results show that when the surfaces are net 
neutral there remains a substantial interaction which decays 
exponentially with separation between the surfaces. Both the 
magnitude and sign and the characteristic decay length of the 
interaction are dependent on whether the surface is held a t  constant 
charge or constant potential and on the relative displacement of 
the lattices. The main findings of this paper obtained within the 
Debye-Huckel treatment are as follows: 

1. For net neutral surfaces that contain periodic charge 
distributions, a net interaction exists whose magnitude is governed 
by the strength of the periodic sources, and the underlying uniform 
charge distribution does not play any role apart from providing 
a neutral surface. 

2 .  The interaction decays exponentially with the decay length 
controlled by the periodicity of the charge inhomogeneities and 
the Debye length K-1. If the Debye length is large, Le., low salt 
concentrations, this characteristic decay length is dictated by the 
lattice spacing; at  high salt (small Debye length), the decay is 
determined by K- I .  

3 .  Theextra interaction associated with charge inhomogeneities 
can be attractive or repulsive depending on the relative transverse 
displacement of the periodic charge distribution. 

4. For the case when the surface charge distributions are free 
to migrate to lower the interaction free energy, a full statistical 
mechanical average shows that the leading term is always 
attractive irrespective of the nature of the surface. 

The above results should be taken into account in any attempt 
to interpret measured forces between mica surfaces which have 
been modified with adsorbed or deposited ionic surfactants in 
terms of hydrophobic effects. 

Appendix 

Kuin6 gave results for the thermodynamically averaged 
interaction potential, E(h),  defined as 

From this definition, Kuin derived an approximate functional 
form by using a Taylor series expansion for V(h; d) about its 
minimum value which occurs in our case when the surfaces are 
out of register, that is V(h; cos(k-d) = -1). Since Kuin used the 
superposition approximation to obtain his V, his expression would, 
a t  best, only hold at  large separations. However, this is precisely 
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the regime in which we were able to determine G(h) of eq 40. 
Furthermore, the form given by (41) suggests that it would be 
equally straightforward to perform the integration in the 
numerator of eq A l .  By expressing V as the sum of the 
d-independent terms shown in eqs 46 and eq 41 we can show that 
(Al) simplifies to 

JJAV(h;  d) exp(-BA W ;  a) )  dd 
E ( h )  = + 

JJA exP(-PA V h ) )  dd 

V(h; d-independent) 

Qlo( h )  JO'dx cos( ax/a,) exp(-@AQ,,( h )  cos( axla,)) + - - a x  - 
I,(BAQ,,(h)) 

IO(PAQ,l(h)) 

Qo 1 ( h  1 J uydY cos (TY / aJ exp (-PA f 0 1 ( h )  cos (TY / aJ ) + - a Y  

V(h; d-independent) (A2) 

The remaining integrals are, of course, just the modified Bessel 
functions of first order, Zl(x)."-' The asymptotic form for E(h) 

is then given by 

E ( h )  = Ql,(h)~l(BAQl,(h))  + Q,,(h)I,(PAQo,(h)) + 

I,(BAQ2,,(h)) zo(PAQ,,(h)) 
V(h; d-independent) (A3) 
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