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Abstract 

The observed minimum in the normal stress beneath the highest portion of a ‘sandpile’ (a pile of granular 
material) is a counter-intuitive result that has long remained unexplained. In this paper, we suggest that spatial 
size differentiation, where the larger particles are separated from smaller particles within the pile, creates an 
increase in the internal horizontal stress distribution, which in turn gives rise to a minimum in the normal stress, 
similar to what is observed experimentally. We develop a simple analytic model for the normal stress that 
encapsulates the existence of horizontal contact forces between adjacent colevel particles. We compare this 
analytic model to the results of an n-body simulation code, where we obtain close quantitative agreement for 
small sandpiles. Finally, experimental results from a real sandpile are replicated by an n-body code, but only 
for a distribution of material where the largest particles are at the top of the pile. 

Introduction 

What is the distribution of stress within and beneath 
a pile of granular material? This question, of great 
practical importance in the storage and handling of 
bulk particulate materials, is not without a certain 
charm as a problem in physics. The proverbial man or 
woman on the street (and most scientists polled by the 
authors) would predict that the pressure on the floor 
(more precisely, the normal stress) should be greatest 
beneath the highest point on the pile. This turns out 
not always to be so. In 1979 and 1981 respectively, 
Jotaki and Moriyama [l] and Smid and Novosad [2] 
measured the normal stress beneath conical piles of 
particles and found a dip in the normal stress on the 
floor under the highest part of the pile. 

Various authors [3-91 have attempted to understand 
this phenomenon, but no physical reason for this 
counter-intuitive behaviour has been obtained. In this 
paper, we attempt to replicate the results of Smid and 
Novosad [2] by using a pile of cylinders as a two- 
dimensional analogue of a conical pile of particulate 
material, which we call a sandpile. We study the force 
distribution via simple analytic models and computer 
simulation, thereby obtaining a physical description of 
the force structure within a sandpile. 

*Author to whom correspondence should be addressed. 

Analytic results 

To begin our study, we analyze the force structure 
in a 2D equilateral pile of perfectly hard, identical 
cylinders (which we will refer to as ‘particles’ from 
here on). For this analytic treatment, we let the particles 
lie on a grid as shown in Fig. 1. Unlike the normal 
Cartesian system, the x and y axes are not mutually 
orthogonal. We take on this grid scheme, because the 
basic structural unit is a triangular system of three 
particles (see Fig. 1 and ref. [9]). The static forces will 
propagate through the contact points and so be at an 
angle to the gravitational force g. 

If we analyze the forces acting on a particle at (x, 
y), we find by resolving the forces in the horizontal 
direction that 

L&y-l)+R(x,y)-L(x,y)-R(x-l,y)=O (I) 

where L stands for forces directed along the left diagonal 
and R stands for forces directed along the right diagonal. 
The vertical component of the force satisfies the equa- 
tion 

L(x,y)+R(x,y)-L&y-l)-R(x-l,y)=W (2) 

where W=mg/cos 8, m being the mass of each particle. 
By adding and subtracting eqn. (1) from eqn. (2), 

and setting 

L(x, 0) = R(0, y) = 0 (3) 
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Fig. 1. To obtain an analytic expression for the distribution of 
forces in a sandpile, we have created a coordinate grid where 
every intersection point can contain a particle. The forces prop- 

agate through the particle contact points which lie along the 
coordinate lines. Unlike normal Cartesian coordinates, our grid 
lines are not mutually orthogonal. We are motivated to assume 
this grid system by noting that the basic force unit is a system 

of three particles. 
By labeling the forces propagating down the left and right 

diagonal grid lines by L and R, respectively, it is possible to 

obtain an analytic expression for the force structure within and 
at the base of a 2D equilateral pile of perfectly hard, identical 
particles. The labeling system for a particle in contact with the 
ground is also shown. 

we obtain recurrence relations for L and R, which have 
the solutions 

L(X, y) = WY/2 (4) 

and 

R(x, y) = wx/2 (5) 

So, as expected, the weight force along the diagonal 
grid lines increases as one travels from the top of the 
pile to its base. A particle at the base of a static pile, 
will experience a normal force from the ground plus 
a friction force. If we progressively number the base 
particles from i= 1 to k then the normal (ZV) and 

horizontal Q stresses* at the base of the pile have 
the general form (Fig. 1) 

N=mg+L(k-i+l, i-1) cos B+R(k-i, i) cos 0 (6) 

and 

H=L(k-ifl, i-l) sin 8--R@--& i) sin 8 (7) 

Using eqns. (4) and (5) from our idealized sandpile, 
we have the solutions 

N= (k+ l)mg/2 

and 

(8) 

H=mg tan 8[2i-k- 1112 (9) 

For this ideal case, the normal force is a constant 
for every particle along the base of the pile, while the 
horizontal stress along the base has a minimum absolute 
value under the highest point of the pile, and has two 
maxima at the edges of the sandpile (a result first 
shown by Bagster [3]). 

We now suppose (for reasons that will become clearer 
as we go further into this paper) that an additional 
horizontal force acts upon these particles. This force 
may arise due to a size difference between the particles 
and so there are now additional contact points in the 
horizontal direction as well as along the diagonal lines 
(see Fig. 2). In such a circumstance, our system becomes 
over determined, since we have at least three unknown 
forces - those along the left diagonal, right diagonal 
and horizontal directions, but we can only resolve the 
forces in two directions and thus have only two in- 
dependent force equations. 

One way to resolve this impasse is to allow one of 
the forces to be a free variable, we can then solve for 
the two remaining forces in terms of the unknown 
force. Our original force equation in the horizontal 
direction (eqn. (1)) can now be rewritten to incorporate 
the free variable force. 

L (x, I’ 1) R(?- 1.~1 

R (x. II, ’ L cc Y) 
mg 

Fig. 2. The force structure on a particle that is subjected to an 
additional horizontal force. 

*Note, as a naming convention in this paper, when we refer 
to a particular particle in a pile, we will consider the “forces” 
on that particle. However, when we refer to a large collection 
of particles (i.e. a pile), we will consider the “stresses” that act 
on the pile. 



where the force f(x, y) represents this hypothetical 
contact force from adjacent colevel particles, and it 
has the formf(x, y) = C&y -x)/sin 19, where the factor 
C is an assumed free parameter representing the strength 
of this hypothetical contact force, and sgn(y -x) is the 
assumed direction of the horizontal contact force. When 
C is positive, particles on the left hand side of the 
sandpile (x>y) see an applied horizontal force to the 
left, while particles on the right hand side 0, >x) see 
an applied horizontal force to the right. The direction 
of the forces are reversed when C is negative. The 
vertical component of the force still satisfies eqn. (2), 
and the boundary conditions of eqn. (3) are still true, 
but the recurrence relations now become 

(W- ff)xL?, x<Y 
R(x, y) = 

I 

y w/2 - (Y - l)a/Z x=y (11) 
xW/2+(x-2y+l)cY/2 x>y 

and 

L(x,y)= xw/2-(x-l)d2. 

1 

(W- oL1Y/2, Y<x 

yw/2+0,-2x-I-l) /2 ff ;;“, 
(12) 

with 

ff = Clsin e (13) 

From eqns. (6) and (7), the normal and horizontal 
forces at the base of the pile have a number of different 
formulae, dependent on whether we have an even or 
odd number of particles at the base of the sandpile. 

For the case where k is an even number, then the 
normal and horizontal force have the forms 

N= +zg(k+l)+C(k-4i+2) cot 0) i<k/2 

i 
flmg(k+l)+C(4i-3k-2) cot 0) iak/2+1 

(14) 

and 

H= 

( 

!&@-k-l) tan O-C(k-2i)) igk/2 
@g(2i-k-1) tan O+C(2i-k-2)) iak/2+1 

(15) 

Note that when C>O the normal force N has a 
minimum at the points i= k/2 and k/2 + 1. When C< 0 
the normal force has a maximum at those points. 

For the case where k is an odd number, we have 

&+ng(k+l)+C(k-4i+2) cot 0) i<(k+1)/2 
@ng(k+ l)-C(k- 1) cot 0) i=(k+1)/2 
!&ng(k+l)+C(4i-3k-2) cot 0) i>(k+1)/2 

(16) 

and 

26.5 

H= $nzg(2.i-k-l) tan O-C(k-2i)) i<(k+1)/2 
i=(k+1)/2 

!&zg(2i-k-1) tan O+C(2i--k-2)) i>(k+1)/2 

(17) 

Again, when C> 0 or C <O, the normal force has a 
minimum or a maximum, respectively, at the base of 
the pile. To obtain some intuitive understanding of 
eqns. (14) and (15), we plot, in Fig. 3, the normal and 
horizontal forces for a trial case where k takes on an 
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0.1 

Fig. 3. In Fig. 3(a), we display the behaviour of eqns. (14) and 
(15) for C = f 0.4 and C = 0 where C is expressed as a proportion 
of the weight of one particle (mg). The value C = 0.4 corresponds 

to the case where the horizontal forces, between adjacent colevel 
particles, are pointing away from the centreline of the pile. In 
this case, we obtain a minimum in the normal stress at the base 
of the pile. We also obtain an increase in the horizontal stress 
at the base of the pile (Fig. 3(b)). When C = - 0.4, the horizontal 
forces are now directed towards the centreline of the sandpile, 
and the normal force has a maximum under the highest part of 
the pile, while the horizontal shear stress decreases. Finally, for 
C= 0 we retrieve the behaviour of our ‘perfect sandpile’ as 
expressed by eqns. (8) and (9). 
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even value. In Fig. 3(a), we show the normal force for 
three different values of C, where C is expressed in 
units of the weight (mg) of one particle, and k has a 
value of 6. In all the examples that we will study we 
shall set 8 equal to r/6. 

As expected, when C is positive the horizontal force 
is ‘repulsive’ and points away from the centre of the 
sandpile, with the subsequent formation of a depression 
in the normal force. However, when C is negative and 
the horizontal force is ‘attractive’, i.e. pointing toward 
the centre of the sandpile, then the normal force assumes 
a maximum under the centre of the sandpile, while 
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Fig. 4. In Fig. 4(a), we display the behaviour of eqns. (16) and 
(17) for C= f 0.4 and C = 0, where C is expressed as a proportion 
of the weight of one particle (mg). The value C = 0.4 corresponds 
to the case where the horizontal forces, between adjacent colevel 
particles, are pointing away from the centre of the pile. In this 
case, we obtain a minimum in the normal stress at the base of 
the pile. We also obtain an increase in the horizontal stress at 
the base of the pile (Fig. 4(b)). When C= -0.4, the normal 
force has a maximum under the highest part of the pile, while 
the horizontal shear stress decreases. Finally, for C = 0 we retrieve 
the behaviour of our ‘perfect sandpile’ as expressed by eqns. (8) 
and (9). 
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Fig. 5. A system of 21 particles arranged in the form of an 
equilateral triangle is the initial particle configuration for our 
computer simulation code (Fig. 5(a)). The normal and shear 
stresses obtained from our simulation of this equilateral sandpile 
(Fig. 5(b)) agree extremely well with the analytic results derived 
from eqns. (8) and (9). The stresses have been normalized such 
that the weight of the simulation pile is equal to one. 

I_! Horizontal Stress (simulation) 

Horizontal Stress (theory) 

for C=O we obtain the flat normal force profile that 
one would expect from eqn. (8). In Fig. 3(b), we show 
the horizontal stress (H) for the three different C values. 
For positive C values, the H increases at the base of 
the pile, while H decreases for negative C values, and 
C=O gives the linear horizontal stress profile of eqn. 

(9). 
In Fig. 4, we display the behaviour of eqns. (16) and 

(17), in which k takes on an odd value, in this case 
k= 7. The normal forces obtained for the different 
values of C are displayed in Fig. 4(a). As with the 
results shown in Fig. 3, the normal force is sharply 
peaked for C<O, suffers a depression when C>O and 
is flat for C= 0. The horizontal forces are displayed 
in Fig. 4(b), where C>O gives an increase in the 
horizontal forces, C < 0 causes the horizontal forces to 
decrease, and C =0 gives the linear solution of eqn. 

(9). 
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In summary, eqns. (14) to (17) show that if the 
horizontal forces between the particles are repulsive 
then the shear stress at the base of the pile increases 
and the normal stress develops a minimum above the 
centre of the sandpile. However if the forces are 
attractive, the shear stress decreases and the normal 
stress has a maximum at the centre of the pile. To see 
if these results are in anyway realistic, we use a particle 
simulation code, previously described in ref. [9], to 
compare theory with simulation. 

Simulation versus analytic results 

For our initial study, we simulate a small equilateral 
pile of 21 particles, where each particle has the same 
diameter d (see Fig. 5(a)). An equilateral pile has a 
slope, or angle of repose, of 60” with respect to the 
ground. Equivalently, we simply set f3=rr/6. 

To overcome the possibility of mathematical inde- 
terminacy in the contact forces between hard particles, 

Fig. 6. In Fig. 6(a), we display the normal stress for an inho- 
mogeneous version of the simulation sandpile shown in Fig. 5(a). 
All the particles, except for the base particles, have a diameter 
of l.OOOld, where d is the diameter of the base particles. The 
normal stress has a minimum under the highest point of the 
pile. This agrees approximately with the results of eqn. (14) for 
an assumed nonzero horizontal contact force (C=O.4). These 
‘dips’ in the normal stresses are markedly different from the flat 
normal stress obtained for a sandpile where all the particles are 
the same size (homogeneous sandpile). Figure 6(b) displays the 
horizontal contact forces from the simulation inhomogeneous 
sandpile, expressed in units of mg. The shear stress for the 
different sandpiles is shown in Fig. 6(c). The shear stress for 
the inhomogeneous pile is greater than for the homogeneous 
pile. The normal and shear stresses shown in Figs. 6(a) and 6(c) 
have been normalized such that the weight of each sandpile is 
equal to one. 

we assume that interparticle interactions are modelled 
by using a very stiff, damped spring system, where the 
spring constant (KS) of the particle satisfies the condition 

mg/Z&d = 10m5 (18) 

i.e. a single computer particle will sink into the ground, 
under its own weight, a distance of lo-‘d (see ref. [9] 
for details). 

The forces, from our computer simulation, are found 
to propagate along diagonal lines similar to the grid 
lines of Fig. 1. No horizontal contact forces are found 
to exist between adjacent colevel particles in the pile. 
In Fig. 5(b), we plot the resulting normal and horizontal 
stresses as a function of position along the base of this 
simulated pile and compare them with the results from 
eqns. (8) and (9). As was deduced, the normal stress 
is a constant for all the particles at the base of the 
pile, while the horizontal stress displays the predicted 
linear behaviour. We find the agreement between sim- 
ulation and theory to be good down to a relative 
difference of 5 x 10P5, i.e. 
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Fig. 7. The normal stress for an inhomogeneous equilateral 
sandpile containing 28 particles, with seven particles at the base, 

r3 is shown in Fig. 7(a). All the particles, except for the base 
particles, have a diameter of 1.0001d, where d is the diameter 
of the base particles. The normal stress has a minimum under 
the highest point of the pile. This agrees approximately with the 
results of eqn. (16) for an assumed non-zero horizontal contact 
force (C=O.45). These ‘dips’ in the normal stresses are markedly 
different from the flat normal stress obtained for a sandpile 
where all the particles are the same size (homogeneous sandpile). 
Figure 7(b) displays the horizontal contact forces from the 
simulation inhomogeneous sandpile, expressed in units of mg. 
The shear stress for the different sandpiles is shown in Fig. 7(c). 
The shear stress for the inhomogeneous pile is greater than for 
the homogeneous pile. The normal and shear stresses shown in 
Figs. 7(a) and 7(c) have been normalized such that the weight 
of each sandpile is equal to one. 
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(19) 

where I/simulation is the ‘value’ of the simulation variable 
and similarly with Vtheory. 

Similar results, with the same code, have been found 
for equilateral sandpiles containing thousands of par- 
ticles 191. This provides us with some confidence that 
our simulation code is replicating, to a good approx- 
imation, the behaviour of hard particles. 

In our second example, we again use the simulation 
pile of Fig. 5(a) where particles at the base of the pile 
still have a diameter d, but all other particles in the 
pile are given a slightly enlarged diameter of l.OOOld. 
This slight size variation gives rise to horizontal contact 
forces within this inhomogeneous sandpile, since the 
colevel particles now push against each other. At first 
glance, an increase in the diameter of lop4 should 
produce negligible horizontal contact forces, but if a 

simulation particle were pressed that distance into the 
ground, it would produce a counter-force equal to 10 
times its own weight. Thus, an increase in particle 
diameter of lop4 should produce non-negligible contact 
forces. We note that particles at the base of the pile 
are fixed in position by frictional forces with the ground, 
but all the other particles are free to move. As we 
increase the size of the particles, the pile will expand 
slightly. 

Figure 6(a) displays the normal stress simulation 
results. The small size inhomogeneity gives rise to a 
large depression in the structure of the normal stress. 
We attempt to replicate this result analytically via eqns. 
(14) and (15), where we set C = 0.4mg, and obtain 
general, but not exact, agreement between simulation 
and theory (Fig. 6(a)). The difference between the 
analytic and simulation results is due to our assumption, 
in the analytic model, of a contact force, f(x, y), which 
is constant in magnitude throughout the sandpile. How- 
ever, the simulation results show that f(x, y) decreases 
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Fig. 8. We construct a simulation sandpile, which has the same 
slope as the experimental sandpile of ref. [2]. In this sandpile, 
all the particles, except the particles at the base of the pile, 
have been given a diameter of l.OOOld, where d is the diameter 
of a base particle. These larger particles are denoted by spotted 
circles in Fig. 8(a). The normal and shear stresses for this 
inhomogeneous simulation pile are compared to those observed 
experimentally, and are found to be qualitatively similar, although 
the simulation sandpile has a much broader and deeper normal 
stress minimum than does the experimental sandpile (Fig. S(b)). 
In Fig. S(c), the horizontal stress profiles are computed with the 
same scaling as the normal stress profiles. The horizontal stress 
for the simulation sandpile is seen to have a maximum value 
which is approximately three times the horizontal shear stress 
of the experimental sandpile. The normal stresses have been 
normalized such that the weights of the simulation and exper- 
imental sandpiles are equal to one. 
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Fig. 9. We construct a simulation sandpile, where the larger 
particles (denoted by spotted circles in Fig. 9(a)) are near or 
at the top of a sandpile. The normal and horizontal shear stresses 
for this inhomogeneous simulation pile are compared to those 
observed experimentally (Figs. 9(b) and 9(c)), and are found to 
be similar. The normal stress for the homogeneous sandpile 
(where all the particles now have the same size) does not display 
the depression in the normal stress, while the shear stresses for 
the homogeneous pile are considerably less than the shear stresses 
obtained from the inhomogeneous or experimental sandpiles. 
The stresses have been normalized such that the weights of the 
simulation and experimental sandpiles are equal to one. 

in magnitude as one travels from the base to the top 
of the pile (Fig. 6(b)). Note that our assumption, in 
the analytic model, of horizontal forces pointing away 
from the centre of the pile has been verified by the 
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simulation results. The dip in the normal stress is 
accompanied by an increase in horizontal stress within 
the sandpile. This can be observed by comparing the 
horizontal stress on the base particles in the homo- 
geneous and inhomogeneous sandpiles (Fig. 6(c)). 

Although our analytic solutions (eqns. (16) and (17)) 
suggest that the normal stress distribution will have a 
maximum when C<O, we have found no way of sim- 
ulating this by using only size differences between the 
particles. Instead, we consider an equilateral 2D sand- 
pile containing 28 particles and therefore 7 particles 
at its base, where the particles at the base of the pile 
have a diameter d, and all the other particles are given 
a diameter of l.OOOld. 

The data for the normal stress at the base of this 
k= 7 sandpile is displayed in Fig. 7(a). The normal 
stress as predicted by eqn. (15) is found to approximately 
describe the results obtained from the simulation code. 
The reason for the divergence between the analytic 
and simulation results can be seen in Fig. 7(b), which 
shows the direction and magnitude of the forces between 
the adjacent colevel particles within the pile. In our 
analytic model, we assumed that such forces would be 
constant and diverge away from the centreline of the 
sandpile, and while we obtained the correct force 
direction, the magnitudes of these forces are not constant 
as a function of position within the sandpile. The 
horizontal shear stresses for the different sandpiles are 
shown in Fig. 7(c), where the simulation inhomogeneous 
sandpile is seen to have a greater horizontal shear 
stress than the homogeneous sandpile. 

Simulation versus experimental results 

To compare simulation with experiment, we take the 
experimental results for a particular 3D pile of sand 
[2] which had a height of 60 cm and a 32.6” angle of 
repose. We then compare these data with those obtained 
from our simulation code, where our 2D computer 
sandpile now contains 92 particles in the pile with an 
angle of repose of approximately 33”. All the particles 
in our simulation sandpile have a diameter of l.OOOld, 
except for the particles at the base of the sandpile 
(Fig. 8(a)). 

To enable a quantitatively correct comparison, we 
normalize the normal stress such. that each pile has 
unit weight and a unit base length. Once this is done, 
we find that the dip in the normal stress for the 
simulation pile is deeper and broader than the ex- 
perimental observations (Fig. 8(b)). In Fig. 8(c), the 
horizontal stress profiles are computed with the same 
scaling as the normal stress profiles. The horizontal 
stress for the simulation sandpile is seen to have a 

maximum value which is approximately three times the 
horizontal shear stress of the experimental sandpile. 

A trial and error search was undertaken, to obtain 
comparable experimental and simulation results. The 
optimum configuration of particles within the simulation 
sandpile is shown in Fig. 9(a), where the larger particles 
are located near or at the top of the sandpile. The 
resulting normal stress distributions for the simulation 
pile and experimental piles are shown in Fig. 9(b), 
where we also show the normal stress obtained from 
a simulation pile where the particles all have the same 
size (homogeneous pile). In a homogeneous sandpile 
there is no depression in the normal stress. In Fig. 
9(c), the horizontal stress profiles, obtained without 
further scaling, for both the experimental and simulation 
results are shown. Again we obtain reasonable agree- 
ment between the experimental data and the simulation 
results for an inhomogeneous sandpile. The particle 
size inhomogeneity has produced not only a dip in the 
normal stress, but also an increase in the horizontal 
shear stress under the pile. 

Conclusions 

Our analytic work and computer simulations show 
that a depression in the normal stress at the base of 
a sandpile occurs when additional horizontal shear stress 
exists within the pile. In our computer simulations of 
two dimensional sandpiles, we can generate this extra 
shear stress by making the pile of material out of 
differently sized particles, where the smaller particles 
are at the base of the pile. 

Care should be taken in generalizing these theoretical 
results to real, three dimensional sandpiles. Nonetheless, 
the ‘dipped’ normal stress distribution observed in 
experimental sandpiles may be, in part, due to an 
inhomogeneity in grain sizes. We are not suggesting 
that these sandpiles all have smaller particles at their 
base, but the sandpiles in refs. [l] and [2] were created 
by pouring the granular material onto a measuring 
platform from an overhead bin, and we hypothesize 
that the agitation of the granular material as it settles 
into a conical pile causes size differentiation and a 
subsequent increase in internal shear stress to take 
place. 

It has been shown both experimentally and via com- 
puter simulation [lo], that a mixture of different sized 
particles will suffer spatial size separation when agitated. 
The dip in the normal stress is perhaps symptomatic 
of this size differentiation and increased internal shear 
stress. 
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