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The nonlinear Poisson-Boltzmann theory is used to calculate
the electrical double-layer force and interaction free energy be-
tween dissimilarly charged surfaces. For symmetric electrolytes,
in addition to cases in which both surfaces maintain constant
surface potential or constant surface charge during interaction,
we also consider cases in which one surface maintains constant
surface potential and the other maintains constant surface
charge. We further present a general algorithm for catculating
the double layer force and interaction free energy between sur-
faces with ionizable surface groups across electrolytes of any
valence or composition. These results suggest interesting features
of the double-layer interaction that can be observed by direct
force measurement techniques. © 1995 Academic Press, Inc.

INTRODUCTION

Advances in the direct measurement of colloidal forces
between particles and surfaces using a surface force apparatus
(1)and an atomic force microscope allows the accurate de-
termination of colloidal interactions between a varicty of
identical (2) and dissimilar surfaces { 3). An important com-
ponent of colloidal forces is the double-layer interaction that
arises from the interaction between the charges on the sur-
faces of the particles across an intervening electrolyte solu-
tion. For interpreting experiments, 1t is important to have a
method of calculating such forces with easc and precision.

In this paper, we consider the double-layer interaction be-
tween surfaces that may carry dissimilar charges or potentials
across a symmetric electrolyte. We examine cases where (a)
both surfaces maintain constant surface potentials, (b) both
surfaces maintain constant surface charge densities, and (¢)
one surface maintains constant surface potential and the
other maintains constant surface charge as the surfaces ap-
proach each other. We also advance a general numerical
method for solving the Poisson-Boltzmann to calculate the
interaction between flat plates across a electrolyte of arbitrary
valence and ionic composition. This method can be readily
applied to surfaces with constant surface potential or charge
as well as to surfaces bearing ionozable groups.

' To whom correspondence should be addressed.
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The theoretical basis of our calculations of the double-
layer interaction is the nonlinear Poisson-Boltzmann equa-
tion {4). We shall consider the interaction between parallel
plates from which we can obtain the interaction between
surfaces of different curvatures using the Deryaguin con-
struction {5), provided all radii of curvature are large com-
pared to the characteristic Debye length of the electrolyte.

Verwey and Overbeek (4) had considered in detail the
interaction between identical plates under constant surface
potential, The interaction between identical flat plates at
constant surface potential and constant surface charge under
the nonlinear Poisson-Boltzmann theory has also been
studied by Honig and Mul (6), who provided numerical
tabulations of the force and interaction free energy. There
have also been studies on the effects of constant charge
beundary conditions based on the lincarized version of the
Poisson-Boltzmann equation (7, 8).

The study of the double-layer interaction between dissim-
ilar surfaces is more complicated than the case of identical
surfaces as there is now the possibility of surfaces having
surface potentials and surface charge densities of different
sign and magnitude. Due to this complexity, the result of
Hogg et al. (9) for the interaction between two dissimilar
surfaces at constant potential has been used in many appli-
cations. This theory is based on the Deryaguin construction
of the interaction between parallel plates determined ac-
cording to the linearized versions of the Poisson-Boltzmann
equation that is appropriate for low surface potentials (sece
also (11, 12)). Parsegian and Gingell (13) also used the lin-
earized versions of the Poisson-Boltzmann equation to study
the interaction between dissimilar plates under either con-
stant potential or constant charge conditions and gave a gen-
eral account of how the various combinations of signs and
magnitudes of the surface charge densities and potentials
can affect the variations of the interaction with separation.
This work has recently been extended to boundary conditions
appropriate to the case in which the ionizable surface groups
can dissociate during particle interaction, whereby neither
the surface potentials nor the surface charges remain constant
during interaction (14, 23, 24).
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A clear and detailed account of the interaction between
dissimilarly charged surfaces across a symmetric electrolyte
has been given by Devereux and de Bruyn (15). Their work
is based on the nonlinear Poisson-Boltzmann equation and
extensive numerical tabulations of the force and interaction
free energy per unit area between the flat plates interacting
under constant surface potentials were provided. Unfortu-
nately, some results in these tables at extreme parameter
limits contain large errors. Bell and Peterson (16) and Oh-
shima (17) studied the more general case of dissimilar sur-
faces interacting under constant charge. The interaction be-
tween spheres has also been constructed from these flat plate
results using the Deryvaguin construction (6, 16).

This paper aims to draw together these diverse results into
a coherent whole. A general method for visualizing the qual-
itative forms of the variation of the force per unit area be-
tween flat plates as well as the variation of the surface po-
tentials and surface charges with separation will be also given.
(General physical principles that can be used to explain the
results of our calculations will be discussed. Our numerical
implementations of these calculations are sufficiently re-
sponsive that it is feasible to perform very accurate calcu-
lations of double-layer interactions on desktop computers
s0 that the use of approximate formulae are no longer jus-
tified unless an approximate analytic expression is required.?

In the next section, we set up the Poisson-Boltzmann
problem of interacting parallel plaies for dissimilar surfaces
across a symmetric electrolyte. Next, we introduce a simple
graphical method which can be used to predict the qualitative
features of the force per unit area vs separation curve for
dissimilar interacting surfaces without doing any computa-
tions. Asymptotic formulae for the force per unit area are
also given. Then we list different equivalent expressions for
the double-layer free energy and note that some are more
suited for vielding higher precision numerical results. This
is followed by numerical results for dissimilar surfaces in-
teracting across a symmetric electrolyte. The surfaces can
maintain both constant potential or constant charge or a
mix of constant potential and constant charge. Thereafter,
we present a general method of calculating the interaction
free energy between dissimilar surfaces across a general mul-
tivalent, multicomponent electrolyte. This method can easily
handle surfaces bearing jonizable surface groups which give
rise to nonlinear boundary conditions.

A glossary of symbols 1s included at the end of the paper.

SOLUTION FOR SYMMETRIC ELECTROLYTE

We first summarize the main results that form the basis
of our calculations of double-layer interaction across sym-
metric electrolytes. For easier reference to earlier work, we

2 Details of the numerical implementations of these calculation are avail-
able from the authors. E-mail: dyc@mundoe. maths. mu.oz.au
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shall, where possible, use the notation of Devereux and de
Bruyn (6).

The one-dimensional nonlinear Poisson—Boltzmann
equation for the mean electrostatic potential, ¢ x), valid for
a symmetric »v electrolyte present between two charged
planar surfaces located at a distance o apart can be written
in the nondimensional form

dy(£)
de?

= sinh y(£). (1]

Here y = (evy/kgT) is the potential scaled by the thermal
potential {kgT/ev), with kg being the Boltzmann constant,
T the absolute temperature, and ¢ the protonic charge. The
coordinate, x, normal to the surface is related to the scaled
variable £ = kx by the Debye screening length ¢! =
(8rnvle?/ckaT) '/?, where ¢ is the dielectric constant of
the solvent and # is the number density of ions in the bulk
electrolyte. We place one surface at the origin, £ = (0, while
the other surface is at £ = «d (see Fig. 1),

Since the force and interaction free energies in a symmetric
electrolyte remain unchanged if we negate the signs of the
potential or charge on both surfaces, we can, without loss of
generality, arrange the surface potential at £ = Qand at £ =
«d to be y; and y,, respectively, with y, always positive and
greater than y,; which may have cither sign. Hereafter, we
assume quite generally that

yo> | yat > 0. [2]
We note that y; and v, are simply the values of the potentials
on the surfaces when they are a distance  apart. For constant
potential boundary conditions these will, of course, be in-
dependent of the plate separation. For constant charge sur-
faces these will vary as the separation varies and their values

Yo
¥d
y
&:O E é:Kd

FIG. 1. Schematic representation of the nondimensional portential
profile between two charged plates with a potential minimum j located at
£, The coordinate system is constructed to ensure yy 2 | y4] 2 0, by changing
the signs of both surfaces, if necessary.
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are determined by the electrostatic boundary condition that
relates the derivative of the potential to the surface charge
density o

dy  dwoy

df  dway o
dx € Latx =0 dx €

= ,atx = d.

(3]

In terms of the scaled vanables, these boundary conditions
become

B spate=nd,

—sp, at £ = 0; dt

[4]

where the scaled surface charge density s is defined by

_ dxev
xekpT

6, i=0ord. [5]

The Poisson-Boltzmann Eq. [1] can be integrated once
to give

(@) =+V2coshy+ C, i6]

43

where the constant of integration C is yet to be determined.
However, if we evaluate [6] at £ = 0 or «d and apply the
boundary conditions given by Eq. [4], we have

s =2 cosh yy + C, [7a]

§3=2cosh vy + C. [7b]
These are two relations between the surface potential and
the surface charge on each surface in terms of the integration
constant € which is itself a function of the plate separation,
d. In general, both the potential and the charge may vary as
the plate separation changes, but their values must be related
by [7]. At large separations (d = o) both y and (dv/df)
must vanish, so the constant, by Eq. [6], becomes

C—> -2asd—> w0,

[8]
whereupon we have the result

Soee = 2 sinh (6 /2); [9]

Sde = 2 sinh(ya,/2),
as ¢ — oo. Equation [9] relates the potentials and charge
densities for the plates in isolation, as denoted by the sub-
script oo.

The force per unit area acting between the plates is given
by a sum of a repulsive osmotic term and an attractive Max-
well stress contribution
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2
P = 2nksT] cosh(eny( x)/kT) — 1] — gi(f%g) , [10]

where positive values of P correspond to repulsion between
the plates. This expression for P is also independent of x so
that we can evaluate [10] at x = 0 and x = & to give two
equivalent results,

P = 2nikgT{[cosh(ye) — 1] — %53}

—2nkpT{3(C+2)},x=0

[11a]

il

2nkgT{[cosh(ys) — 1] — Ls3}
—2nksT{I(C+2)}, x = d,

[11b]

where the second equalities in both parts of [11] follow from
Eq. [7]. We see that the force acting between the plates is
directly related to the integration constant  which itself is
a function of the plate separation, 4. For C < =2 (or C >
—2), Eq. [11] will give P> 0 (or P < 0), which corresponds
to a repulsive (atiractive) force per unit area between the
plates.

The result in [11] is important in another respect. In ad-
dition to providing a natural definition of a nondimensional
force per unit area

p=P2nksT = —45(C + 2), [12]

it can be rearranged to give the results

p=—3(C+2)=2sinh?(y/2) — 155 {13a]
= 2 sinh*(ya/2) — 352,

which allow us to visualize the qualitative varnations of the
force, surface charge, and surface potential as the plates ap-
proach each other. As the separation between the plates
changes the potential and charge on each plate must be re-
lated to the integration constant C, or equivalently the force
per unit area, by [13a] or [13b]. Furthermore, the potentials
and charges on both plates must also be interrelated by the
two parts of [13]. We shall return to this point in the next
section.

The form of the second integral of [6] depends on the
sign and magnitude of the integration constant C as well as
the sign of the surface potential y,. There are three distinct
cases: (1} C < =2, (H) 2 < C<2,and (II) C > 2, Case |
corresponds to repulsive interactions, while cases Il and I11
correspond to attractive interactions. The integrals of Eq.
[6] given by Devereux and de Bruyn (15) express the position
in terms of the potential using elliptic integrals. However,
we have also give expressions for the potential as functions
of position in terms of Jacobi elliptic functions, These results
are summarized in Table 1. We briefly comment on the re-
sults of each case separately.
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TABLE 1
Solutions of the Poisson-Boltzmann Equation for Different Values of the Integration Constant C

nC=<x-2

(@) & =2k'2{Ftk, ¢) - Flk, ¢0)}, O0<i<E y(H) <0, Cs -2
(b) £=2K"22K(k) — Fk, ¢) — Ftk, ¢0)}, Est<wd y(E) >0, C<-2.

B = 5 1f ST G0 €K 2) dnli 2) + cos o (1 — ksin’)”? s(k; 2) -
(C) }(é‘) y 2 log( 1 — kz sin2¢0 snz(k‘, Z) ) N C <=2,
(d) C=~2cosh i k=exp(=5); ¢ =sin""exp(l7 — 1/2)) 0 = sin"(exp([F — wl/2)); §=y@) z-= ZkE i
) 2= C<2
(a) £=Fk ¢) - Flk, ¢o), p>0, -2sCsx2,
(b) £ = 2K(k) — Flk, ¢) — Flk, ), p <0, -2=C=2.
- o 1 — & sin’gy sn'i(k; §) Vel
© 20 = 22 0ot 57 cox6u (1~ KSR g) 2CS2
0 k=[226" 4= in“‘(_l o= sin i
@ ( 7 C) P cosh(y/2)) P oS (cosh(yofz)) '

(I C=2
(@) £=(2B){FTk, do) = Flk, )}, yany sign,

C=2,

(b) W& =2 log(% tan(sin'l(

sin gg cn(k; 2) dulk; 2) — cos ¢ (1 — kZsin®gn) 2 sl z)) C»2
I — ic? sin’gq sn(k; 2) )) T

© C=F+b% k=VI-b*bzi; d=tan " (bexply/D): ¢o=tan"'(bexp(1o/2)); z= BEf2.

(V) C= -2

B tanh( yo/4)
(@) €= log(tanh(y/tl)
1+ ¢t tanh(yn,"4)) -3

1 — ¢7* tanh(y/4)

). e

by y(g) =2 log(
(V) C=2
{a) £ = 2(tan~'(exp(1/2)) — 1an™"(exp(¥/2)),

_ exp{ yo/2) — tan{§/2) ~
®) ¥ =2 :og(l o) mn(w)) L c=2.

=12

Note. All results of the inverse trigonometric functions are in the first quadrant. The elliptic integrals F(k, ¢), K{k} and the Jacobi elliptic functions
snik; ), cnlk; ), and dr(k; 1) are defined in Appendix 1. See text for definition of symbols.

() C< -2

In this case, the force between the plates is repulsive and
the curve y(£) has a minimum at £ = £ where the potential
is y(£) = 7 = 0, and we may write

C = —2 cosh . [14]
Depending on the values of 3y, y; and the separation k¢, this
potential minimum may be located outside the plates, i.c.,
£ > xd or located in between the plates, i.e., 0 < E<«d. In
the first case, when £ > xd, the slope of the curve y(£) is
always negative and one should choose the negative square
root in [6]. The resulting integral is entry (Ia) in Table 1.
On the other hand, if the potential minimum is located be-
tween the plates, i.e., 0 < £ < xd, then the entry (Ia) in Table
1 will still be applicable when £ is in the range 0 < £ < §;
but when £ is in the range £ < £ < xd, where the slope of

¥(£) is positive, one should choose the positive square root
in [6] which then leads to entry (Ib) in Table 1. Thus if the
potentials 3, and y,; are known then either (Ia) or (Ib) in
Table 1, where appropriate, should be used to determine the
integration constant C by setting £ = kd and y = y;. If instead
the surface charges are spectfied, the surface potentials may
be determined with the aid of [ 7). Once the constant C is
found, the force between the plates may be determined from
[12]. The explicit expression of the potential y(£) given in
entry (Ic) in Table | applies for C < —2, irrespective of the
sign of dy(£)/dE.

(1) 2<C<2

In this case, the curve p(£) has no minimum so the slope
is always negative and, from Eq. [11], the force between the
plates is attractive. Therefore, Eq. [6], with the choice of
negative square root should then be integrated. The final
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results, depending on whether y(£) is positive or negative,
are given in entries (I1a) and (IIb) in Table 1. The expressions
for y(£) are given in entry (Ilc) of Table 1. The description
on how to find the integration constant C given in Case I
also apply here.

(i) C=2

This case also corresponds to an attractive force, see Eq.
[11]. However, since the curve y(£) has no minimum, Eq.
[6]. with the negative square root, should be integrated. The
result is given in entry (Illa) with the corresponding expres-
sion for p(£) in {11Ib) in Table 1.

Given the plate separation, «d, and values of the surface
potentials )y and y,; as known constants or in terms of the
surface charge via Eq. [7], we can solve the appropriate
equation in Table 1 to determine the integration constant
C and hence the force per unit acting between the plates,
We note that the force at separation g depends only on the
values of the potentials y, and y, at that separation; it does
not depend on whether the surfaces are held at constant
potential or constant charge or how the potentials may
change when the separation changes.

In order to decide which equation in Tabie | to use to
find C, we note that the solutions that are valid on either
side of the values, C = —2 and 2, should match up. The
integral of Eq. [6] at C = —2 and C = 2 are also given in
Table 1. Thus by setting y = y,;we can calculate those critical
values of («d} at which we need to switch from using one
solution to another. For dissimilar surfaces, we also need to
know at what separation the surface potentials may change
sign. We can determine this by a simple graphical method
that we shall discuss next.

GRAPHICAL ANALYSIS OF THE INTERACTION

In this section, we demonstrate how we can obtain general
qualitative information about variations of the force, surface
potentials, and surface charges with separation without solv-
ing any equations. We recall that Eq. [13] relates the non-
dimensional force per unit area, p, to the surface potential
and surface charge. This result forms the basis of a simple
graphical method for determining the variation of the force,
surface potentials, and surface charges with separation. We
can regard the nondimensional surface charge, s, as a func-
tion of the surface potential, y;, which we denote by s(y.)
and plot the curves {2 sinh?(y;/2)} and { $5%()4)} on the
same set of axes as functions of the surface potential y,. As
shown in Fig. 2, a constant potential surface is represented
by a vertical line, while a constant charge surface is repre-
sented by a horizontal line. At any separation, the surface
potential and surface charge must correspond to a point on
the s(v.) curve which we can regard as the “equation of
state™ of the surface in terms of the coordinate (4, s) and
the diagram in Fig. 2 represents the “phase space™ of the
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FIG. 2. Schematic representation of the curve {2 sinh®{y,/2}} as a func-
tion of the surface potential, y,. The vertical line is the curve for the non-
dimensicnal surface charge, s, when a surface is at constant potential, The
horizontal line is the curve for the nondimensional surface charges, 5, when
a surface is at constant charge.

interacting system. Although the axes in Fig. 2 are } 52 and
¥, we can, without any confusion, refer to the state point as
()s. 5) to avoid the cumbersome notation. Whenever the
point (), 5) lies above the curve {2 sinh?(y,/2)}, the non-
dimensional force per unit area, p, will be negative, which
corresponds to an attractive force—this is indicated by the
shaded region in Fig. 2. For points ()5, s} that lie below the
curve {2 sinh?(3,/2)}, the force will be positive which cor-
responds to repulsion. The vertical distance between the
curve {2 sinh?(y,/2)} and the point (y;, 5) is the nondi-
mensional force per unit area, p.

If the surface potentials on the plates are yo,, and Vg,
when the plates are far apart (d — oo ) the force will be zero
so the corresponding surface charges can be found by setting
p = 0in [13], which leads to {9] for the relation between
the surface potentials 1y, and ¥4, and the surface charge
densities sy, and $4,,. In other words, the points (Yo, Soc )
and (Viw, S40) Will be where the curves sg{y) and sz(yg)
intersect the curve {2 sinh?(y;/2)}. Furthermore, the rel-
ative positions of the curves s3(¥p), 54(¥s) and the curve
{2 sinh*(y,/2)} will control how the force, surface potential,
or surface charge will vary as the plate separation changes.
We shall study the cases in which (a) both plates are moved
together at constant potential, (b) both plates are moved
together at constant charge, and (c) one plate is held at con-
stant potential and the other at constant charge.

{a) Both Plates at Constant Potential

The charge—potential curves for this case is given in Fig.
3, where we have the possibility of the surfaces having the
same (Fig. 3a) or different signs (Fig. 3b) at infinite sepa-
ration.

{i} Potentials with Same Signs

When surfaces having unequal potentials of the same sign
at infinite separation are moved together, both surface
charges will fall in magnitude, the (y, 5) coordinate of each
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FI1G. 3. Evolution of the state points {y, 5) for two interacting constant
potential surfaces. The arrows indicate the movement of the state points as
the separation decreases from infinity—(a) surfaces have the same (positive)
sign at infinite separation; (b) surfaces have opposite signs at infinite sepa-
ration.
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surface will move along the s{y) curves in the direction of
the single arrows indicated in Fig. 3a, into the repulsive region
of phase space (see Fig. 2), where the force will be repulsive
{C < —2). The potential will be determined by Eq. [Ib] in
Table 1 as there will a potential minimum with 0 < £ < «d.
This continues until the surface with the smaller potential
reaches zero charge (s; = 0). At this point the nondimen-
sional repulsive force per unit area has reached a maximum
repulsive value of

P = Poax = —(2nkpT) 3 (Coax + 2)

= (2nksT){2 sinh?(y4.,/2)}, [15]
corresponding to a most negative value of O = Cp < —2.
We may use Eqs. [14]-{16] to determine the plate separa-
tion, dya say, at which this will occur. At this point, the
potential minimum v = y,,, and it is located at £ = kd. As
the plate separation is reduced to less than d,,,., the surface
charge on the plates will begin to increase in magnitude
{double arrows in Fig. 3a) and the plate at x = 4 will now
have a surface charge of opposite sign to s;,,—and the force
will become less repulsive. The potential will no longer have
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a minimum in (0, xd) so the potential will now be given by
Eq. [1a] in Table L. When the (y, s} coordinate of each
surface returns to the curve {2 sinh*(3,/2)}, the force will
have decreased to zero (C = —2). The separation at which
this occurs can be found from Eq. [TVa] in Table 1. As the
separation is further reduced, the (y, s) coordinates will move
into the attractive region (see Fig, 2) (—2 = C =< 2, Eq. [IIa]
in Table 1) and remain there as d — 0. The force now be-
comes increasingly more negative. As the separation de-
creases further, the system will then move into the regime
C=2,Eq.[Illa]in Table 1. In the limit d = 0, the attractive
Maxwell stress term in [ 0] dominates and the force per unit
area diverges like

P—

i(—"’“‘”_%)z, d—>0. [16]

 8x d

In the special case of identical surfaces, the force is always
positive and increases with decreasing separation until it
reaches Poa, at zero separation.

(i) Potentials with Opposite Signs

When the surfaces have opposite signs, the force is always
attractive { C' > —2) and the (v, §) coordinates always remain
in the attractive region (Figs. 2 and 3b). The force is a
monotonical decreasing function of separation. At small
separations, the form of the force 1s again given by [16]. The
case ~2 < (<2, Eg.[lla]in Table [, will give the potential
distribution at large separations; but when the separation
reaches the critical value given by [ Va] in Table | with y =
y4. the case C 2= 2 given by Eq. [111a] in Table 1, will apply.

(b) Both Plates at Constant Charge

In this case, we still characterize the surfaces by their po-
tentials at infinite separation ¥y, and y,,,, which are related
to the fixed surface charge densities oy and o, by Eq. [9].
As mentioned earlier, the surfaces are rearranged, without
loss of generality, to ensure yoo, > | ¥aw| > 0. The charge-
potential curves for this case are shown in Fig. 4 for surfaces
having the same (Fig. 4a) or different signs (Fig. 4b) at in-
finite separation.

(i) Charges with Same Signs

When both surfaces have the same sign at large separations,
the interaction is always repulsive {C < —2) and there will
always be a potential minimum y in the range 0 < £<«d.
The movement of the (¥, 5) coordinate of each surface is
illustrated in Fig. 4a. In the limit 4 — 0, the force per unit
area diverges like (25)

P (17]

_“kB—Tv 0’0+O’d
e d

). a=o
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FIG. 4. Evolution of the state points {y, 5) for two interacting constant
charge surfaces. The arrows indicate the movement of the statc points as
the separation decreases from infinity—(a) surfaces have the same (positive)
sign at infinite separation; (b) surfaces have opposite signs at infinite sepa-
ration.

which is the pressure exerted by [( gy + 04)/e] ideal molecules
per unit area confined between the plates at a separation 4
apart.

(ii) Charges with Opposite Signs

With surfaces of opposite sign at large separations, the
movement of the (y, 5) coordinate of each surface is illus-
trated in Fig. 4b. At large separations, the force is attractive
and the potential of both surfaces falis in magnitude with
decreasing separation until the surface potential, y;, on the
originally negative surface reaches zero. At this point the
force per unit area reaches an attractive minimum given by

P=Puin=—2nkpT} (Cin + 2) = —27ecd.  [18]
At the same point, the potential, 1, on the other surface has
also reached a minimum value but remains positive. As the
separation further decreases, v, becomes positive and together
with y, begins to increase in magnitude { indicated by double
arrows in Fig. 4b). The force also becomes less negative and
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will reach zero {corresponding to C = -2) at the points
where the two charge curves intersect with the curve
{2 sinh?(y/2)}, at y, and | y,|. The separation at which
this occurs can be found from Eq. [IVa}in Table 1 by setting
¥ = |yq4|. Thereafter, the (y, 5) coordinates of the surfaces
will move into the repulsive region (see Fig. 2) and the force
will stay positive or repulsive and remain so as d — @. In
this limit, the force per unit area diverges like

P [19]

kBT Ty + [
—_ s | — &
e d

. a0

In the case where the surface charges are exactly equal and
opposite, o9 = —|o,|, the force will be monotonically at-
tractive for all separations with the force attaining the min-
imum value given by Eq. [18] at ¢ = 0. In this case, both
surface potentials will approach zero monotonically as
d—0.

{c) One Plate at Constant Charge and the
Other at Constant Potential

Here we consider the case in which one surface is held at
constant potential and the other at constant charge. Again
the surfaces can be characterized in terms of their surface
potentials at infinite separation: yp,, and y,,, arranged so
that yo., 2 | Vae | 2 0. There are four distinct cases to consider
depending on whether vy, and v, have the same or opposite
signs and also whether )y is at constant potential or constant
charge. The movement of the (y, §) coordinate of each sur-
face for these four cases as the plate separation changes is
shown in Figs. 5a-3d.

(i) Surfaces with Same Signs

(1) Surface with higher potential is at constant charge.
When the surface at £ = 0, arranged to have a higher po-
tential at infinite separation, is held at constant charge the
movements of the (y, 5) coordinates of each surface with
decreasing plate separation is shown in Fig. 5a. As the
separation decreases from infinity, the surface charge on
the constant potential surface will fall, but the surface po-
tential on the constant charge surface will rise. Thus, the
force is repulsive at large separations and has a repulsive
force maximum when the surface charge on the constant
potential plate at £ = xd falls to zero. The magnitude of
this force maximum is

P=P,.= _(2nkBT)%(Cmax + 2)

2rod,

= (2nksT)}{2 sinh?(yy/2)} = {20]

The separation dp,., at which this force maximum occurs
can be found from Eqs. [ 7] and [14] and the equations in
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FIG.5. Evolution of the state points (), 5) for a constant potential surface interacting with a constant charge surfaces. The arrows indicate the movement
of the state points as the separation decreases from infinity—(a, b} surfaces have the same {positive} sign at infinite separation, {c, d) surfaces have opposite
signs at infinite separation. In cases (a) and (d), the surface with the higher potential at infinite separation is at constant charge and in cases (b) and (d),
the surface with the higher potential at infinite separation is at constant potential.

section I of Table 1, with C = Cp,, and y = 0. For d <
@max, the force will decrease and eventually become at-
tractive as shown by the double arrows in Fig. 5a. At d =
0, the potentials on the plates will both be equal to y4,,
while the charge on the surfaces will be equal and opposite
with magnitude ¢y. Therefore at d = 0, the force has a
negative value given by

_ 2rod - _21r(0'[2]— a3)

P = (2nkgT)[2sinh?(y,4,,/2)}] €

= —(2nkpT){2sinh?( Voo /2) — 2 sinh?(ya, /2)}. [21]

(2) Surface with higher potential s at constant poten-
tial.  When the surface at £ = 0, which is arranged to have
a higher potential at infinite separation, is held at constant
potential (Fig. 5b), the force will be repulsive at all sep-
arations. As the separation decreases from infinity, the
surface charge on the constant potential surface will fall,
but the surface potential on the constant charge surface
will rise. Eventually, a separation will be reached when
the two surface potentials are equal—this coincides with

the point at which the potential and charge curves of the
two surfaces intersect. At smaller separations we need to
relocate the origin of the coordinate system to the other
surface as all equations we have derived for the potential
as a function of position assume that the potential at the
origin is higher than the potential at £ = xd. The force has
a repulsive maximum when the surface charge on the con-
stant potential plate falls to zero. The magnitude of this

force maximum is
P=Py,= _(znkBT)%(Cmax + 2)

2
2rog

= (2nkpT){2 sinh?(10,,/2)} = [22]

The corresponding separation, d.., at which this force
maximum occurs can be found by the method outlined
above. For separations smaller then d,, (double arrows in
Fig. 5b), the force will decrease but will remain positive. At
d = 0, the potentials on the plates will both be equal to yy,,
while the charge on the surfaces will be equal and opposite
with magnitude o, so the force approaches the following
limit as & = 0
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2roy 2w o — o)

P = (2nkgT){2 sinh?(Jy.,/2)} —

€

= (2nkgT}{2 sinh?(yo,,/2) — 2 sinh? (¥ /2) } . [23]

(ii} Surfaces with Qpposite Signs

(1) Surface with higher potential is ar constant poten-
tia!. The movements of the ( y, 5) coordinates of each sur-
face with decreasing plate separation is given in Fig. 5¢. As
the plate separation decreases from infinity, the potential on
the negative constant charge surface will move toward zero
while the charge on the positive constant potential surface
will increase (single arrows in Fig. 5¢). The force is attractive
and has an attractive minmimum when the potential on the
constant charge surface reaches zero. This attractive mini-
mum is given by

P = Poin = —~(2nkpT) 3 (Crin T 2) = —2wec. [24]
The location of this mimimum can be found by the method
discussed above. As the separation further decreases, the po-
tential on the constant charge surface will become positive
and the charge on the constant potential surface will fall
{double arrows in Fig. 5¢). The force will become less neg-
ative and return to zero at the point where the constant charge
curve intersect the curve { 2 sinh*(y;/2)} at positive poten-
tials. At even smaller separations, the force will become pos-
itive and approach the same limit as that given by Eq. [23].
At d = (), the potentials on the plates will both be equal to
Yo » while the charge on the surfaces will be equal and op-
posite, with magnitude |o,]|.

(2) Surface with higher potential is at constani charge.
The movements of the (y, 5) coordinates of each surface
with decreasing plate separation is given in Fig, 5d. As the
plate separation decreases from infinity, the potential on the
constant charge surface moves toward zero while the charge
on the constant potential surface increases in magnitude
{(single arrows in Fig. 5¢). The force is attractive and has an
attractive minimum when the potential on the constant
charge surface reaches zero. This attractive minimum is given
by

P = Puin = —(2nkgT)3(Cpin + 2) = 2wecd.  [25]
The location of this minimum can be found by the method
discussed above. As the separation further decreases, the po-
tential on the constant charge surface will become negative
and the magnitude of the charge on the constant potential
surface will fall (double arrows in Fig. 5d)}. The force will
become less negative but remains negative for all separations.
At d = {0, where the charge curves intersect, the potentials
on the plates will be both be equal to y,,,, while the charge
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on the surfaces will be equal and opposite, with magni-
tude 09

This completes the analysis of the variations of the force,
surface charge and/or potentials on each surface as the plate
separation changes. This qualitative understanding of the
variations as well as knowing the precise values of maxima
and minima in the force, potential, and charge is very helpful
in implementing and checking numerical calculations of the
force and interaction energy in such systems.

THE FREE ENERGY

To calculate the interaction free energy between the plates
we require expressions for the free energy change assoctated
with charging up a set of surfaces in contact with a bulk
electrolyte of fixed chemical composition by the transfer an
amount T; per unit area of ions of type j from the bulk so-
lution to the surface. This can be written generally as (18)

F=LdA§LJ(#fS*uf)de [26]

where uf and uf are, respectively, the chemical potentials of
ion type j at the surface and in bulk. The summation is over
all ions that adsorb on the surface and the integration dA is
over all charged surfaces that are in contact with the elec-
trolyte. The chemical potential at the surface can be formally
written as

W= S+ e, [27]
where ¥ is the mean electrostatic potential on the surface.
Combining [26] and [27] we have

F=Felec+Fchem=f dA fﬂd/s(d)da
A Q
T
[ aas [T -wpar, 1281
A j 0

where the surface charge density is given by
o= yel;. [29]

4

The interaction free energy at any given separation is then
obtained by subtracting off the free energy at infinite sepa-
ration.

The first term in [28] s identified as the electrical part of
the free energy, F..., and the second term is the chemical
contribution, Fonem (19). Overbeek has shown that the elec-
trical part of the free energy can be separated into an energetic
part and an entropic part (19),
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Faec = L dA J; Y(o)do = Udee — TASgee,  [30]
which can in turn be expressed as volume integrals
Vo == [ @0rav+ 2 | worav, 1)
8w Jv 87 Jv,

TASu = = fdeV-(V¢)

s [av [ ayw-ow). 32

The function ¢,( ) is the surface potential obtained by solv-
ing the Poisson equation for the potential in the electrolyte
for given surface charge density . The integrals over ¥ are
taken over the volume of the electrolyte solution and the
integral over V), is taken over the volumes of the charged
particles which have dielectric constant ¢,. Equation [31] is
the general expression for the electric field energy expressed
as an integral over the electric field energy density. The con-
tribution from the field energy inside the particle as repre-
sented by the integral over the volume of the particles, was
not considered in the earlier work (19) as this contribution
can be neglected for constant potential boundary conditions
and it makes a small contribution in aqueous systems when
€ » ¢,. In deriving [32] we require the mean potential ¥ to
obey the Poisson equation: V3 = —(4x/¢)p(¥), where the
volume charge density, p{y/), in the electrolyte is a general
function of the mean potential ¥, but otherwise unspecified.
If the Boltzmann distribution is used specifically to relate
the mean potential to the volume charge density, the expres-
sion for the entropic contribution [32] reduces to (19)

TASe]ec = kBTf dV E n,-B{ [(Vie\b/kBT) + 1]
v i

Xexp(—wmey/ksT) — 1}, [33]
where »;g is the bulk number density of ions type i with
valence v;. As we shall see, these expressions for the free
energy in terms of volume integrals are important in the
numerical calculations of the free energy.

Explicit forms for the chemical term

T;
Fchem=LdA zfo (@5 - uhydl,  [34]
i

depend on how the surfaces acquire their charge. For a con-
stant charge surface, this term is independent of separation
since the amount of adsorbed ions on the surface does not
change with separation, and therefore this term can be omit-
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ted when we evaluate the interaction free energy. Thus the
free encrgy at constant charge becomes

F“=J.dAJ Ys(o)do (constant charge). [35]
4 b

For a constant potential surface, we note that at equilib-
rium P = uf, so using [27] we have

(] — W) = —weds [36]
and if ¥ s held constant, we can use [29] to give
Foem = —J. dAa o . [37]
A
Thus the free energy at constant potential becomes
F""=f dAf ybs(a)da—f dA oy, [38a]
A i} A
=F”—fdAa¢s [38b]
A
s
= —f dA f a(¢)d{ (constant potential) [38c]
A 4]

and equation [38b] provides a simple relation between the
free energies under constant potential and under constant
charge.

For surfaces that acquire their charge through the ioniza-
tion of surface groups, explicit expressions for F.n, have
been derived for acidic (18, 20) and amphoteric sur-
faces (21).

For two interacting flat plates, explicit expressions for the
interaction free energy per unit area for constant potential
surfaces had been obtained by Devereux and de Bruyn (15).
The case of constant charge surfaces can be readily obtained
using [38b]. Let F¥( )y, vs|d) denote the free energy per
unit area for constant potential plates. The interaction free
energy per unit area, ¥, for the case in which both plates
are held at constant potential (superscript pp), is then given
by

VPP(yo, Yald)

= F¥( Yo, yald) — F¥(yo, yal o0)
anBT)

K

= F"’(yo,yaldH(

Vd

3
X(J; 2sinh(p/2)dy + 2sinh(y/2)dy)

0

=F*(yo,yd|d)+(
X 4{cosh(ye/2) + cosh(y;/2) ~ 2].

anBT
K

[39]
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The expressions for ¥?°(yy, y4|d) differ for the cases (1) C
<=2, (11} -2 < C< 2, and (III) C > 2 and we summarize
these results in Table 2.

When both surfaces are held at constant charge, the in-
teraction free energy per unit area can be written in terms
of "™ using equation [ 38b]. We denote the interaction free
energy per unit area under constant charge by the superscript
oc: V= (v, vq|d), where y, and y, are the surface potentials
at separation o, which are different from the surface poten-
tials of the plates at infinite separation yy., and y,,, because
the surface charge densities oo and o, are held constant as
the separation changes in this case. The connection between
the interaction free energy per unit area at constant potential,
VPP(yy, vl d), and that at constant charge, V(y,, .| d),
18 s_ 0

(culo
— 4[cosh(yo/2) — cosh(3e/2)] d ~ Y]

—4[cosh{y,/2) — cosh()Idm/2)]}. [40]

ZHkBT

Vvo, vald) = VPP(yo, yald) +

o yOw]

s_d
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If only one surface, the one at £ = 0, say, is held at constant
potential, that is ¥y = J.., the expression for the interaction
free energy per unit area will be s d

{d*

— 4[cosh(ys/2) — cosh{ys,/2)1}.

V®(yo, yald) = V™o, yald) +

2nkBT
« ydoo]

[41]

The results in [40] and [41] hold for all cases: (I) C < =2,
(Il 2 < C<2,(II)C> 2.

RESULTS FOR SYMMETRIC ELECTROLYTES

We now present numerical results for the variations of
the force and interaction free energy per unit area with plate
separation. The plates can interact under constant potential
or constant charge across a symmetric electrolyte. We will
also present results for the variations of the surface potential
and surface charge to quantify the descriptions outlined in
Figs. 3 to 5. Results are given in terms of the following non-
dimensional quantities:

TABLE 2
Interaction Free Energy per Unit Area at Constant Potential

(hH C=-2
(a} FP(yo, yald) = —

2"’\3
K

[— xd{3 exp() — 2 — exp(—¥)] + 2[2 cosh 3, — 2 cosh 3]Y2 — 2[2 cosh y4 — 2 cosh F]'2

+ 4 exp(¥/2)[ E(k, do) — ECk, ¢a)] — 4cosh{yu/2) + cosh(p/2) — 2]] ,C=x=2, t=ud

2nk
(b) ¥y, vald) = :

+ 4 exp(P/2)[Ek, ¢o) + Elk, o) — 2E(k, =/2)] — 4[cosh(¥o/2) + cosh(ys/2) — 2]] ,
oo = sin”(exp([7 — 1o)/2));

(c) ¥ = cosh™(—C/2);
) —2<C<2

k = exp{—7),

[— xd[3 exp(}) — 2 — exp(—¥}] + 2[2 cosh y, — 2 cosh 7]Y? + 2[2 cosh 3; — 2 cosh 7]'?

C<-2, 0<E<«d

éa = sin~'(exp([¥ — ya1/2).

— 172 P \ 2
@) V¥, yald) = 2nkpT [7 1 fd[C + 2] + (S[Cosh Vg — 1][cosh y; + (C/2)]) < (S[Cosh Yo — 1][cosh yp + (C;’Z)])lf
K 2 [cosh y; + 1] [cosh yp + 1]
-4 —(k, do} — Elk. ¢4)] + 4lcosh(yo/2) + cosh{ya/2) - 2]} s 2502,y 0
nley T

I
(B) P30, yild) = [— Lic+ 21~ (

L+ A[2Ek, w2y —
(@ k=32-cps,
(Im C=2
@ V™30, vald) =

E(ka ¢U)
¢ = sin~!{(1/cosh( yo/2));

kBT

b + exp(yd)
b’ + exp }’d)'

Vlfb“

+ 4 exp( yd/Z)

(b) C=#+b7% $a = tan”"

— E(k, )] + 4[cosh( yo/2) + cosh(ya/2) — 21] .
$g = sin~'(1/cosh(v4/2)).

(b exp(—ya/2));

8[cosh y; — 1][cosh y,; + (C/ZZ)])"'2 _ (S[COSh ¥o — 1][cosh ye + (C/2)14'72
[cosh y,y + 1) )

[cosh yo + 1]

-2sC<2, y<0.

2 -1/2
[ kd[2 — C] = 2[2 cosh yg + C]" + 2[2 cosh 3o + CJ? — 4 exp( y0/2)($)‘p((y°))p
XpLYo

Ek, ¢q) — E(k, do)] + 4[cosh(po/2} + cosh{ ya/2) — ]] , C=12, yp;any sign,

¢o = tan” (b exp(—pe/2)).

Note. See text for definition of symbaols.

—1/2
—4b
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P
fo it a = 42
TCE per unit area p kT [42a]
interaction free energy per unit area v Y
1 T. u e ——
&y perum (2nksT/x)
{42b]
. vey
surf: tential =— 42
urface potential y T [42¢]
. drev
surface charge density s= o [42d]
kekpT

We note that for the interaction between colloidal particles
whose radius of curvature a is large compared to the Debye
characteristic length, xa > 1, the Deryaguin construction
can be used to calculate the interaction between the spheres
from a knowledge of the interaction between parallel plates.
In particular, the force, £, between two large spheres of radii
a; and a, with distance of closest approach, 4, is

S(h) =2zanV(h) [43]

where

l 1 1
— ==+
day a, az

[44]

in Fig. 6, we show the variations with separation for the
force and the interaction energy for two plates that have
identical surface potentials when they are at infinite sepa-
ration: Yoo, = 2 = Va4.,. 1he plates are both held at constant
potential (labeled PP), both held at constant charge (CC),
and with one surface at constant potential and the other at
constant charge { PC). We shali hereafter use the notations
CC, PP, and PC to refer to these three types of boundary
conditions. One notable feature of the results in Fig. 6 is that
the force shows a distinct maximum for the mixed PC
boundary conditions at xd ~ 0.5. On the other hand, the
interaction energy does not exhibit a maximum in this case
but attains a maximum at zero separation when the force
vanishes. For large separations, the CC and PP cases form,
respectively, the upper and lower bounds for the force and
€Nnergy.

In Fig. 7, we show results for asymmetric plates that can
have the same or opposite signs at infinite separation where
the surface potentials are (1., Vaw) = (2, £1), For the mixed
constant charge—constant potential boundary condition,
there are now two possibilities distinguished by the two ob-
vious notations: PC{ Voo, Vi) Where the plate at £ = 0 1s at
constant potential and the plate at £ = x4 is at constant
charge; and CP( Vo, Vas) Which corresponds to constant
charge at £ = 0 and at constant potential at £ = xd. Here we
see that when the asymmetry is sufficiently large (see also
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FIG. 6. (a) The nondimensional force and (b) interaction free energy
per unit arca (see Eq. [42]) between two plates with reduced surface potentials
at infinite separation: g, = 2 = V4 a$ a function of the separation, d,
under both surfaces constant potential (PP}, both surfaces constant (CC}),
and one surface at constant potential and the other at constant charge (PC).

18 20

Fig. 6), the CC (both plates constant charge) and PP (both
plates constant potential ) cases form, respectively, the upper
and lower bounds for the force and energy for all separations.
For separations «d ~ 1, the force and energy for the case
PC( V9w, Vdo) 18 similar to the CC case while that of the
CP{ Yo, Vi) 18 similar to the PP results. In other words,
the behavior of the mixed boundary condition interaction—
PC or CP—is largely controlled by the nature of surface
whose surface potential is smaller in magnitude. This be-
havior can be explained by the observation that when two
surfaces are in close proximity, the perturbation to the surface
with a smaller (in magnitude) potential due to the presence
of a high-potential surface is proportionately larger than the
perturbation to the surface with the larger potential due to
the presence of the low-potential surface. As a consequence
the force and energy at large distances are primarily dictated
by the way the small potential surface reacts while the large
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FIG. 7. The force and interaction free energy per unit area between two plates with reduced surface potentials at infinite separation: (a, b) Vo, = 2,
Vioo = 1. and (¢, d) Yoo = 2, Vae = —1 as functions of the separation, «d. Labels: CC, both plates at constant charge; PP, both plates at constant potential;
PC, the plate at £ = ( is at constant potential (yy = yp.,) and the plate at £ = xd is at constant charge: CP, the plate at £ = 0 is at constant charge and the

plate at £ = xd 15 at constant potential (Vs = Vo).

. potential surface remains relatively unperturbed. These re-
marks are also evident when we examine variations of the
surface potential and/or the surface charge with separation
shown in Fig. 8,

An interesting feature about the interaction energy be-
tween asymmetric surfaces is the presence of a maximum
or minimum at separations «d ~ 1. In Fig. 9, we show the
energy for a set of plates with surface potentials at infinite
separation {Vo., Ve ) = {2, +1), (3, 1), {4, 1) under PP
or CC conditions., For the PP case, in particular, we note
that the location of the maximum of interaction energy per
umit area—which Is proportional to the measurable force
between colloidal particles—moves to larger separation as
the asymmetry in potential increases. Since, the maximum
can be located at around x¢ ~ | or bigger, its presence can
be readily detected by direct force measurements. This should
be attempted at low ionic strengths, when the maxima will
be located at a sufficiently large separation where the influ-

ence of attractive van der Waals forces is less important. An
accurate determination of this maximum will also help de-
termine the location of the “origins” of the diffuse layer at
each surface. The location of this “origin” relative to physical
contact between the surfaces may yield additional infor-
mation about the extent of any adsorbed layers that may be
on the interacting surfaces,

GENERAL ELECTROLYTE AND
SURFACE REGULATION

We now consider the interaction between plates that bear
ionizable surface groups interacting across a general electro-
lyte characterized by valencies »; and bulk ion number den-
sity #;g for species /. We define the quantities

, _ 4mwne’

KkBT

A= mpv}, Bi=np/A, x [45]

!
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so that the general Poisson-Boltzmann equation

dYx) _ 4me
dx?

can be written in the nondimensional form

HE) _

d‘fz - ; Bexp(—w; ¥(£))

2 mipviexp{—ev(x)/kpT) [46a]

j46b]

for which a first integral can be found

[

d 2
E_;) =2 ? Biexp(—wp(E)) + C.

[47]

At large separations, xd ~— oo, the condition that both y and
(dy/dE) = 0 as £ = oo, means that

C— 2% 8, as«d—> oo

- (48]
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FIG. 8—Continued

therefore in this limit, the charge density is related to the
surface potential of an isolated surface, y..,, by

kekpT _ _ L2
re sgn(ym){ZZiZB;[exp( ViVsw) — 11117,

a(y) =
kd = o,

[49]

The constant of integration C is related to the force per unit
area by

biii 3
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= HC+228).

The interaction free energy per unit area, (F/ A4}, between
plates can be obtained from Eq. [28]. However, in this case,
we use [30-32] to calculate the electrical contribution be-
cause explicit forms for the free energy are not available for
a general electrolyte when the plates are at an arbitrary finite
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To obtain expressions of the chemical part of the free en-

Energy

ergy, we require specific models of how the surfaces acquire
their charge by the ionization of surface groups. In this case
the boundary conditions need to be modified as neither the
charge or potential nor the potential is held constant, but
rather the ionization of surface groups imposes a relation
between the surface potential and the surface charge at each

separation. The surfaces 1onization reactions may, for In-
stance, be due amphoteric groups characterized by the re-

0.4 1 :
H _ actions:
8- .' Constant Potential
AHf = AH+H* (K.) [54a]
12 — ———————
00 02 04 06 08 10 12 14 16 18 20 AH <= A"+ H* (K.). [54b]
Kd
A mass action treatment of this reaction gives an equation
b for the surface charge density, o,(y;) which can be regarded
2.0 r ) X
[ 4 as a function the surface potential, ¢ {21),
154 :\ Constant Charge
¥ é sinh[e(yy — keT
], & ou() = eN, [e(yn — ¥s)/ kaT) 155
AU 1 + 8 coshfe(fy — ¥5)/ kgT]
5 osy| Ty
@ : |‘
TR Y where
0.5 8 =2(K_/K.)'"?,
1.0 ¥n = log(10)(keT/e)[(pK- + pK4)/2 — pH] [56]
5] and &, is the number of amphoteric surface groups per unit
20 T ——— —————— area. Equation [53] can be transformed to the equation of
¢o 02 04 06 08 10 12 14 16 18 20 state for the charge-potential relation of a surface s(y,) if
Kd we use the scaling given by [42].

FIG.9. Nondimensional interaction free energy per unit area for varying

degrees of asymmetry (a) at constant potential for both plates with (35,
Yawol = (2, 1), (3, 1). and (4. 1) and (b) at constant charge for both plates

With (Yo, Yaw) = (2, —1), (3, —1), and (4, —1).

distance apart. The electrical part of the free energy per unit

If the surface is populated by zwitterionic groups char-
acterized by the reactions
[57a]

[57b]

(Ka)
(KB)a

AH=A"+ H*
BH*< B+ H*

a mass action treatment give the surface charge density,

area 1s
as(¥s),
Fe]ec/A = Uelec/A - TASelec/A ) [51]
_ —ENA
where V) = T (/K exp(— v/ kaT)
e [ eNg
Uetee/ 4 = g;fo (] dxydx [52] T (K Mexp(edlloT) L)
d .
_ ] ' where N, and Ny are the number of sites of each type per
TASecc/A kBTJ; dx Ei nip{[(viey/keT) + 1] unit area. Equations [55] and [58] express, for the model
under consideration, the relationship between the surface
X exp(—viep/ksT) — 1}. [533] charge and the surface potential that must be maintained
because of reactions [54] or [ 57] of the surface groups. We

In general, these integrals will have to be evaluated numer-

ically.

refer 1o such surfaces generically as regulating surfaces or
surface with charge and potential regulation,
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Using Eqgs. [27] and [36], we can write the chemical part
of the free energy per unit area as

Sy Zhrkf—uﬂdf=—Jw¢Wﬁk
chem 7 0 il il i 0 5

‘PS
_Us(ws)\bs-l- f Us(¢)d¢! [59]

‘pre

where the function o,(y) or ¢,(¢) is the charge—potential
relationship due to surface regulation—the equations in [55]
and [ 58] are two specific examples. The lower limit of the
last integral, ¢ is the value of the potential in the charge-
potential relationship for which the surface charge is zero
and this limit follows from the lower limit in the do integral
in the preceding line. For the amphoteric model described
in [55], ¥ = ¥w; for the zwitterionic model, ¥, may be
found by setting o,(¥) in [58] to zero and solving for =
Yoz The free energy under surface regulation, 7, can now
be found from Eqs. [51]-[53] and [59]:

d
FijAa= Faee/A + Fchem/A - = f (d\bl’dx)zdx
87 Jo
d
- J; dx{ 2 nipvie exp(—v,ey/kgT) | ¢
d
- kBTf dx Z n,—B[CXD(_VE‘-’HWkBT) - 1]
0 i

Vs
-%—m%m+£ uww)

surface at £=0

I3
-%—q%m+f os(§) Y [602]

¥pze )surface a1 E=wd

The last two terms in brackets are to be evaluated using the
charge—potential relations for the surface at £ = 0 and «d,
respectively. A peometric interpretation of these results has
been given earlier (18, 21). In [60a], the first three integrals
over the volume of the electrolyte give partially canceling
contributions that result in loss of precision when the inte-
grals are calculated numerically. However, if we use the gen-
cral form of the Poisson-Boltzmann equation [46a] in the
second integral in [60a] and integrate by parts, we obtain
the equivalent expression

';’5
Frra=+ ([ acoa)
¥pzc surface a1 £=0
¥ _ a4 i 2
* (J;’pu JS(‘,{/ )dyb)surface at f=«d J; { 8 (dlpde)

+ kT 2 mplexp(—vef/keT) — 11}dx. [60b]
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This expression for the free energy is numerically more robust
sincethetermin{ }is manifestly positive so that numerical
evaluation of this integral will not incurr loss of significance.
Equation [60b] had been obtained earlier in the context of
deriving a variational formulation of the free energy (22).
This formula will be used for our subsequent calculations,

The second integral of the Poisson-Boltzmann equation
cannot be carried out in general for an electrolyte of arbitrary
composition. We give a numerical scheme which can handle
electrolytes of any composition as well as general nonlinear
boundary conditions which arise from regulating surfaces.
The scheme is based on Newton-Raphson iterations using
Hermite splines to represent the solutions of the Potsson-
Boltzmann equation. In this approach, we represent the so-
lution for the potential y(£)} by a sum of two types of basis
functions: 2} (&) and A7 (£) in the form

WEY = 2 laei s (8) + agpa i (8)1,

J=0

[61]

where the (2n + 2} coefficients (a;, < « + @2,42) are the un-
knowns to be determined. The details of how this is done is
relegated to the Appendix.

This method of solution has the advantage that minimal
assumptions are made about the precise form of the Poisson—
Boltzmann equation or the boundary conditions so that the
method can be used in very general situations. In particular,
this is useful for general cases with multicomponent, mul-
tivalent electrolyte systems with dissimilar regulating
boundary conditions, To test the accuracy of this method,
we have repeated the calculations for the constant potential,
constant charge and mixed boundary condition cases given
in the previous sections. Typically, we can achieve 6 to 7
digits agreement with 10 node points per inverse Debye
length. If we use the less robust formula for the free energy
in [60a] instead of the preferred formula [60b], we lose 1
to 2 significant figures in the interaction free energy.

To give a simple demonstration of the utility of this
method, we present results for the interaction between two
dissimilar amphotenc surfaces interacting across a 1:1 ¢lec-
trolyte. The system chosen is unusual in that the force-sep-
aration curve exhibits a maximum and a minimum which
cannot be observed in any constant charge or constant po-
tential system. The charge—potential curves for our example
are given in Fig. 10 and the variations of the force and in-
teraction free energy per unit area with separation are given
in Fig. 11. The gualitative variations of the force and inter-
action free energy with separation shown in Fig. 11 can be
readily deduced from the charge potential curves in Fig. 10
using the method of graphical analysis outlined in an earlier
section. Due to the very large number of combinations of
different variables involved in the interaction between dis-
similar surfaces across a general multicomponent, multiva-
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FIG. 10. Charge-potential curves for two dissimilar amphoteric surfaces
characterized by the parameters (see Eq. [S6]): (edon/lsT) = 5.0, {edan/
kaT) = 1.5, {edol/kaT) = 4.3, (efun/ksT) = 1.2 and & = 2.0 for both
surfaces,

lent electrolyte, we shall defer detailed consideration of such
system elsewhere.

CONCLUSIONS

We have presented a simple graphical method of analyzing
the double-layer interaction between dissimilarly charged
surfaces. Numerical results are given for the force and in-
teraction free energy per unit area between such surfaces
across a symmetric electrolyte when both surfaces maintain
constant surface charge or constant surface potential or, in
the mixed case in which one surface is at constant charge
and the other at constant potential. In the mixed case, the
surface with the smaller magnitude in the surface potential
in isolation determines whether the behavior of the inter-
action is more constant potential-like or constant charge-
like. The interaction free energy per unit area between dis-
similar planar surfaces exhibits a turming point at «d ~ 1.
This means that under the Deryaguin approximation, the
force between colloidal particles will have a similar turning
point (Fig. 9). Accurate location by direct force measurement
methods may give information about the thickness of any
adsorbed layers on the interacting surfaces.

To handle the interaction across muitivalent, multicom-
ponent electrolytes as well as charge regulation on dissimilar
surfaces due to ionizable groups, we have developed an ac-
curate finite element method of calculating the force and
interaction energy in such general cases. The accuracy of this
method is the same as the results obtained by more direct
methods for interaction across symmetric electrolytes.

APPENDIX

We outline the details of the method of solving the general
Poisson—Boltzmann equation using representation [61]. The

MCCORMACK, CARNIE, AND CHAN

interval from ¢ = 0 to £ = «d is divided into #n intervals of
length o = «xd/n, with {n -+ 1} equally spaced node points:
(51 =0, £2, - - - Euv) = kd). With each node point, &, we
associate two basis functions defined by

&z £c1)? L3z 5571)2

hi(E) = 3 | BesEsk
o [24
_ £y — £)?
B (Ek+la3 £) +3 (E""’az £) s bsEstn
= (), otherwise; [AL]
_ 2
h%(s):(f Ek—;)z(f Ek)’ o <E<k
_ _£y2
_(¢ sk)tzgﬂ £ p<t<tin
= (), otherwise. [A2]

These basis functions are illustrated in Fig. 12. These cubic
basis functions have the property that

m(g) =1, até=¢
=0, atf=4-y, Een [A3]
hi(E) =0, até= &y, i bie [Ad]
and
dhi(£)
o2 =0, atf = £y, B b [AS5]
dt
dhi(§)
—_— = I’ at =
a £= &
= 05 at g = Ek*ls gk-H . [Aé]
4
Dissimilar amphoteric suriaces
3]
. 9] Energy
i 1]
5
8 o
£
-1
Force
A2-
-3*
-4 — —_ — T T
c.0 0.5 1.0 1.5 2.0 25 3.0
Kd
FIG. 11, The nondimensional force and interaction free energy per unit

area for two dissimilar amphoteric surfaces characterized by the charge po-
tential curves given in Fig. 10.
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FIG. 12. Hermite cubic basis functions A'(£) and A%(£) given by Egs.
[A1] and [A2] as used in representing the solution of the Poisson-Boltzmann
equation with the interval « = 1 (solid curves). The two sets of boken curves
represent basis functions centred about the neighboring nodes.

From these properties of the cubic basis functions, we now
see that the odd coefficients, a4, in representation [61]
for the potential y(£) are approximations to the va/ue of the
potential at £ = &, while the even coefficients, a.;, are ap-
proximations to the derivative of the potential at the same
point. This representation is different from a finite difference
scheme in that the both the potential and its first derivative
are calculated to the same order of accuracy. This is impor-
tant because we intend to use Eq. {60] to calculate the free
energy which involves both the potential and its derivative.
The truncation error in this representation in terms of cubic
basis functions is of order «° (where « is the discretization
step size ) for the function and the derivative, whereas a typ-
ical second-order finite difference scheme will have errors of
order o’ in the function and errors order «? in the derivative.
This means that the truncation error is much smaller in our
scheme. Further, function and derivative values in between
grid points can be computed using the cubic basis functions
to the same order of accuracy, while a finite difference scheme
will require further interpolation between the grid points.
This feature is important as we need to evaluate the integrals
in [60] for the free energy as accurately as possible. The
coefficients { ; } can be found by requiring the representation
[61] to satisfy the Poisson-Boltzmann equation plus the
given boundary conditions.

The general nondimensional Poisson-Boltzmann Eg. [46]
can be written in the form

d?y(£)
dg?

= f(»). [A7]

Suppose y(£) is approximated by u(£) so that

y(&) = u() + du(f), [A8]
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where the correction term Su(£) is small {|su(£)| < | v(£)]).
Then combining [ A7] and [ A8] and expanding to first order
in du{£), we have

d*y . 2
& = flw) + (y — u) f'(u) + O(8u)?,

[A9]
so that if #{£) is a known approximation to the solution of
[A7], Eq.[A9] can be solved to give a better estimate, namely
p(£). Call this new estimate u,4 (£) and the previous estimate
1, £), the Newton—Raphson iterations scheme involves dis-
carding the term proportional to (8u)? and solving the fol-
lowing linear differential equation for the new estimate i,

du, .,

d£2 _unﬂff(un) =f(un)_unf’(un) [AIO]

given a previous estimate u,(£).
Similarly, the nonlinear boundary condition at a regulating
surface, which has the general form

dy(€)

p = g(»), on a surface,

[A11]

can be linearized as

dun+l

pra Uni1 8 (Un)

= g(u,) — u,g'(u,), on a surface. [Al2]

Assuming that #,{ £) is known, we can find the coefficients
{ap, k=1, (2n+2)} in[61], by substituting the series
[61] for w4, (£) into [ A10], and requiring this series to satisfy
the linear differential equation at the following collocation
points

(-&)_1 G-&w)_ 1
. 5 - 7 [Al3a]
(E;E")=t%’ fork=2,+++n[Al3b]

This gives 2n equations. Two more equations can be obtained
by applying the boundary condition [A12] on each surface.
This gives (27 + 2) linear equations for the same number
of unknowns. The resultant coefficient matrix is a banded
matrix with bandwidth 4 and can be solved by standard
methods. The iteration based on Eqgs. [Al0] and [A12] is
repeated until convergence is obtained. The Newton-Raph-
son scheme gives quadratic convergence and usually less than
five iterations are required.
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GLOSSARY

C integration constant, {6]

d plate separation

e protonic charge

E{k, ¢) incompilete elliptic integral of the second kind of
modulus k& and amplitide ¢

f free energy

F(k, ) incomplete elliptic integral of the first kind of
modulus & and amplitide ¢

k modulus of elliptic integrals

K(k) complete elliptic integral of the second kind of
modulus &

kg Boltzmann constant

n bulk ion number density

n mean bulk ion number density, [45]

P pressure between plates

D nondimensional pressure, [42]

§ nondimensional surface charge density, [42]

T absolute temperature

v interaction free energy per unit area between par-
allel plates

v nondimensional interaction free energy per unit
area, [42]

X coordinate normal to the plate

(&) nondimensional potential [42]

¥y nondimensional potential at the minimum in the
electrostatic potential curve

B ionic fraction [45]

€ diclectric constant or relative permittivity

¢ amplitude of elliptic integrals

K Debye screening parameter, [45]

¥ ionic valence

o surface charge density

£ nondimensional coordinate normal to the surface,
kX

£y nondimensional plate separation, xd

z location of the minimum in the electrostatic po-
tential curve

¥ ¢clectrostatic potential

B chemical potentials, see [26]

Superscripts

C  at constant charge
P at constant potential

CC
CP

both surfaces at constant
surface at x =

0 is at constant charge; surface at

x = d is at constant potential

PC

surface at x = 0 is at constant potential; surface at

Xx = d is at constant charge

PP

Subscripts

both surfaces at potential

B quantity evaluated in the bulk electrolyte
d quantity evaluated at the surface at x = d

;
0
o0

index for ionic species i

quantity evaluated at the surface at x = 0

quantity pertaining to the large separation limit,
d— w
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