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ABSTRACT 

Recently, various linear and nonlinear emission processes of shape-controlled plasmonic gold nanorods 

have been applied in biolabelling and photothermal cancer therapy. One of the most fundamental 

knowledge required for understanding these processes is the field around the nanorod. Here, we present 

a simple analytical theoretical model for calculating near- and far-fields around prolate spheroidal (PS) 

and hemispherically capped cylindrical (HCC) gold nanorods beyond the quasistatic limit, for rods up to 

200 nm in length (ka ~ 1.13, corresponding to a wavelength ~ 500 nm) and aspect ratio 5, which 

encompasses the parameter range of most of the biolabelling applications. We achieve this by solving 

the field directly from classical electrostatic model for ellipsoids, and then by introducing correction 

factors for different size beyond quasistatic limit and then for the shape of HCC nanorods. We validate 

the model with numerical simulations and correlated single particle scattering cross-section 

measurements using confocal laser scanning microscopy (CLSM) and transmission electron microscopy 

(TEM). The simple and accurate expressions will be useful in determining efficiency in any linear or 

nonlinear emission processes for biolabelling application that require accurate knowledge of the field 

around these nanorods. 
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Plasmonic gold nanorods have emerged as an attractive linear and nonlinear photoluminescent probes 

for life sciences 1-9. Low cytotoxicity, no blinking or bleaching and high nonlinear cross-sections make 

them ideal biolabelling agent in the infra-red wavelength range, at which in-vivo deep tissue imaging can 

be achieved 10.  

Wet-chemically synthesised plasmonic gold nanorods exist in various shapes but one of the most popular 

shape is hemispherically capped cylinders (HCCs). Recent studies demonstrated that the shape 

engineering of these rods can enhance the nonlinear photoluminescence performance up to 3 ~ 4 times 

than the blunt tipped rods 4, 5. Theoretical efforts in trying to understand field around these shapes have 

mainly been based on numerical techniques such as finite element method 4, finite difference time domain 

method11 , discrete dipole approximation11, or boundary element methods12, but at heavy cost of 

computational power. Simple analytical formulation for these shapes is desirable but currently only that 

of prolate spheroidal geometry is available13.  

Previously, Gerstan and Nitzan14, 15 solved electric field of a molecule near a metallic spheroidal boss in 

a quasistatic limit for surface enhanced Raman scattering (SERS) and introduced a lightning rod factor 

as a universal field enhancement factor at the tip. This factor was also interpreted as the local field 

depolarization factors for ellipsoidal particles, which were originally introduced by Stratton16-18 and 

Gans13. The lightning rod factor was later used by Chen et al19, Boyd et al20, 21,  and Mohamed et al6 to 

qualitatively explain second harmonic generation, two-photon luminescence, and single photon 

luminescence, respectively, around spheroidal geometries. However, the quasistatic solutions put severe 

size limitation on the nanorods being approximated, and the boundary of their validity has been rather 

unclear. The full electrodynamic study on the ellipsoidal particles was conducted using T-matrix 

method22, 23 or by solving directly Maxwell’s equations in ellipsoidal coordinate system24, 25, but due to 

the complexity of the solutions, it is not widely utilised. It is therefore highly desirable to formulate a 
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simple analytical solution to the problem without too much restrictions on the size of the particles being 

studied. Fitted functions are continually developed26 to provide corrections to the real geometries.  

Here in this paper, we report an analytical fitting model that is capable of predicting field at any point on 

the surface of prolate spheroids and hemispherically capped cylinders with the size up to 200 nm in 

length (ka ~ 1.13, corresponding to a wavelength l = 2p/k ~ 500 nm), and aspect ratio up to 5. Most of 

the plasmonic gold nanorods used in biolabelling and photothermal application fall within these size 

limits. In doing so, we calculate the field-enhancement factors responsible for enhancement in linear and 

nonlinear emission processes around these nanorods, such as far-field scattering, single-photon 

luminescence, two-photon luminescence, and SERS.  We also present the new enhancement factors that 

can account for emission from the entire surface of these nanorods, not just at the tip.  

We achieve this by firstly solving complete field expression around prolate spheroid geometry, starting 

from the classic expression for electric potential around an ellipsoid in quasistatic limit16, 27 and then 

extending it outside of quasistatic limit by introducing size correction factors. We then extend the method 

to HCC nanorods and provide heuristically fitted analytical expressions for field on the surface as well 

as in the far-field. These expressions are validated to numerical results and to correlated single nanorod 

scattering cross-section measurements using confocal laser scanning microscopy (CLSM) and 

transmission electron microscopy (TEM). This model is simple in expression, and will be useful in 

determining efficiency in any linear or nonlinear emission processes that require accurate knowledge of 

the field around these nanorods. 
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THEORY OF ELECTROSTATIC FIELD AROUND PROLATE SPHEROID 

 

Following Stratton16 and also the details in the Supporting Information, we derived the external field of 

a prolate spheroidal dielectric particle, 1)( 22222 =++ czyax  where ca ³ , with dielectric constant, ei  

in an external medium of dielectric constant, ee polarised by an incident constant electrostatic field 

kjiE ozoyox
inc EEE ++=  where ),,( kji  are the unit vectors in the Cartesian system. It is most 

convenient to express the field in the prolate spheroid coordinate system ),,( fqx  with the following 

transformation equations   

qx 222 cos)( ax += , qx 22 cos)( ax +±= ;  (1)
 

fqx 2222 cossin)( cy += ,
 

fqx 222 cossin)( cy +±= ;
  (2) 

fqx 2222 sinsin)( cz += , fqx 222 sinsin)( cz +±= .
   (3) 

The surface of the ellipsoid is given by x = 0, with x < 0 being the interior and x > 0 the exterior. With 

22 cah -= , the external field perpendicular, eE ^ ),,( fqx  and parallel, ||eE  to the surface of the 

ellipsoid can be expressed as (see Fig. 1) 
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A full derivation of these expressions can be found in the Supporting Information. Eqs. 4 and 5 express 

the field at any point in the space, either on the rod or away from the rod, which can be calculated from 

any arbitrary incident constant field Einc.  The factors L1(x), L2(x), and L1(0), L2(0) are given by  
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As it is always possible to set 1|| =incE  without loss of generality, we define the field enhancement factor 

( , , )x q jL  at any point around a prolate spheroid by   

,    (10) 

and the integrated field enhancement factor Ls over the entire surface of a nanorod is 

.     (11) 

The quantity LS in Eq. 11 can be used to gauge the signal enhancement in SERS, single- or two-photon 

luminescence enhancement. Far-field scattering cross section can be calculated by  

4
2| |

6sca
ks a
p

= ,      (12) 

where k = 2p /l, and a is the polarizability of the particle, given by 
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SIZE AND DAMPING CORRECTIONS TO THE ELECTROSTATIC MODEL 

It is clear that as the size of particle becomes comparable or larger than the wavelength these expressions 

are no longer valid and electrodynamic calculations are needed to account the variations in the incident 

field over the size of the particle and associated scattering. As the size increases, phase-retardation effects 

red-shift the surface plasmon resonance position and the radiation damping broadens the peak. In order 

to account for both of these deviations around ka ~ 1, we use the following expression to account for 

damping in the L factor, 

[ ]1 ( ) ( )dampL L D a i V= - - G .     (14) 

Here L is the electrostatic depolarization factor in Eqs. 8-9, D(a) is the retardation correction and G(V) is 

a radiation damping correction up to 3rd order. In comparison to previous attempts, this expression 

effectively decouples the two effects and corrects with high order terms. The explicit expressions for the 

correction factors are  
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where bj and cj are fitting coefficients, and a is longitudinal length and V is volume of the rod.  

 

 

SHAPE CORRECTION TO THE ELECTROSTATIC MODEL 

The above correction expressions for Ldamp can be extended to other shapes such as HCC nanorods, which 

are the most common form of gold nanorods produced by wet-chemical synthesis28, 29. The light 

scattering properties of these nanorods are often approximated by the electrostatic model for prolate 

spheroidal nanorods30, but these approximations do not give accurate peak positions and scattering 

strengths26. Attempts were made to account the inaccuracies in ensemble spectra, by correcting 

depolarization L factors in the polarizability of the nanorod. However, applying this factor in Eqs. 10-12 

had limited success in correcting near-field and far-field scattering strengths. In order to accurately 

account for these deficiencies, Eq. 10 is multiplied by an angular correction function f(q, AR). This 

correction function is a heuristically fitted function, which can be found by numerical simulation result 

for HCC nanorod at quasistatic limit (i.e., ka < 0.04). For HCC we found   

2 2
1 2( ) ( )

0 1 1

1( , )
cos (e e )

f AR
g q g q

q
a a b q - -

=
+ +

,     (17) 

with the fitted coefficients: a0 = 0.91, a1 = 0.31 AR – 0.06,  b1 = 2.24 AR – 2.11,  g1 = 1.62 AR – 1.84, 

and  g2 = 6.70 AR – 11.72 (AR is aspect ratio of rod). Note that this function is unique to HCC shape only 
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and other shapes such as bipyramids or dumbbells require new fitting expressions. The size and damping 

effect can be applied by using Eq. 14-16 in the same manner as prolate spheroids. 

 

COMPARISON WITH NUMERICAL SIMULATION 

In order to test the range of validity of the electrostatic expressions in Eqs. 4-5 (henceforth referred to as 

ES model) at ka > 0 for the electric field around a prolate spheroidal gold nanorod subjected to an 

oscillating field, we show a comparison between the ES model and a numerical FEM simulation 

(COMSOL Multiphysics). In the simulation, we used gold nanorods of fixed aspect ratios of 2.5, 3.5 and 

4.5, but varied the dimensions of the rods in vacuum (ee = 1). We used dielectric function of gold from 

Rakic et al.31 for the nanorods. 

In Fig. 2, the field enhancement factor at the entire surface LS , and far-field scattering cross sections 

ssca are shown at different volumes using the ES model (black dotted line) and numerically simulated 

electrodynamic model (red lines). One can see that only for smaller rods the ES model matches with the 

numerical simulations, with significant quantitative deviations from the ES model for the larger rod. For 

prolate ellipsoids at an aspect ratio (AR) of 2.5, deviations are evident at ka as small as 0.08 (a ~ 15 nm) 

(Fig. 2a), which is in line with the previous observations by Barber et al22, 23, where the deviation of 

electrodynamic model from electrostatic model started at a/l ~ 0.02.  As the nanorod size increases, the 

deviation involves strong red-shift in resonance position, as well as initial increase in enhancement with 

the volume increase followed by a decrease with further increase in volume. Far-field results (Fig. 2b) 

are also similar to the field enhancement results in Fig. 2a.  
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Interestingly, for ka between 0.08 ~ 0.2 there is an increase in the enhancement before the decrease. This 

increase is partly due to the red-shift of the resonance associated with phase retardation. Barber et al 22, 

23 previously observed this increase, but was ignored in their first order correction to the radiation 

damping. However, it can be seen from other aspect ratio plots that such increase is only prominent in 

short aspect ratio rods. Fig. 2c, d show the result for AR = 3.5 and Figs. 2e, f for AR = 4.5. All of them 

show minimal initial increase in field enhancement and more radiative damping takes over. The damping 

effect is characterised by the decrease in enhancement strength, broadening of the peak and the red-shift.   

The radiative damping is caused by increase in radiation from dipole resonance of plasmon, which scales 

with the number of electrons in the rods. First order correction to this damping was discussed by both 

Wokaun et al18 and Barber et al23, who added an imaginary term proportional to the volume of the rod in 

the L factors. This was later amended by Boyd et al20 to account for the dielectric function of the 

surrounding medium. Based on this framework, both Sonnichsen et al 32, Novo et al 33 experimentally 

accounted for the radiative damping with respect to the width of the resonance, but did not fully account 

for the magnitude of the field enhancement or the cross sections. Again the damping term was the first 

order correction to the volume and applied to small population of the hemispherically-capped cylindrical 

nanorods.    

Fig. 3 shows the results by the corrected ES model (blue dotted line) in Eqs. 10 - 11 with 3rd order 

damping correction for 𝐿"
#$%& using Eqs. 14-16.  This model accurately predicts the redshift, the increase 

in magnitude followed by decrease and broadening of the resonance as seen in comparison with FEM 

results. This is valid up to half lengths of 80 nm, which is equivalent to ka ~ 0.72 at the resonance peak, 

and up to ka ~ 1.13 in the blue side of the resonance. We have repeated the correction for the other aspect 

ratio of the rods, and the damping coefficients bj and cj in Eqs. 31 and 32 are tabulated in the Table 1. 

Other aspect ratio results (AR = 3.5 and 4.5) are shown in Fig. 3, which show very good agreement. 
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APPLICATION TO HEMISPHERICALLY CAPPED CYLINDRICAL NANORODS 

With the successful account of large prolate spheroidal nanorods with the corrected ES model, it can be 

extended to other shapes such as HCC nanorods.  

Using the correction function Eq. 17, field magnitude on various nanorod surfaces with respect to the 

radial angle q at quasistatic limit is plotted for selected aspect ratios (Fig. 4). The plots show good 

agreement between the corrected field and numerically simulated field (FEM) for HCC surface.  

Based on this corrected quasistatic E field at the surface of HCC, the total surface enhancement factor 

Ls can now be calculated by surface integration. Again, in order to correct for the size up to ka ~ 1.13, 

correction coefficients for D(a) and G(a) are determined by the comparison with numerical simulation. 

The resulting spectra are shown in Fig. 5 together with the numerical simulation results. Far-field 

scattering are also shown, which all demonstrate good agreements. In comparison to prolate spheroids, 

the HCC shows slightly more red-shifted SPR peaks but the trend is generally similar. Larger rods have 

red-shifted and broader peaks than at quasistatic limit. 	
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EXPERIMENTAL VALIDATION 

In order to validate the model, we measured far-field scattering cross sections (𝜎()$) of single HCC gold 

nanorods by confocally detecting back scattered photons using a home-built laser confocal scanning 

microscopy (CLSM) setup.  

 We also performed correlated optical and transmission electron microscopy (TEM) on the same 

particles. This brings accurate morphological information about nanoparticles shape and size, and allows 

us to investigate size effect on 𝜎()$ at single particle level. We used TEM coordinated grid on substrate 

which allows us to identify the same areas in optical and electron microscopes.   

Gold nanorods with HCC shape were purchased from Nanoseedz. The TEM analysis of 30 individual 

nanorods showed that the nanorods are mostly HCC in shape, with average width 25.5 ± 3.7 nm, length 

78.6 ± 8.0 nm, and aspect ratio 3.2 ± 0.4.   

 

Fig. 6 shows the measured peak scattering cross-sections of nanorods with respect to their aspect ratio. 

Overlaid lines are the analytical model (corrected ES for HCC) lines for an average length and variation 

in width. 67% of experimental points lies within the standard deviation of volume (dashed green lines), 

showing good agreement.    

In summary, we have presented a simple analytical model for calculating near- and far-field strengths 

around prolate spheroidal and HCC gold nanorods beyond the quasistatic limit, up to 200 nm in length 

(ka ~ 1.13, corresponding to a wavelength ~ 500 nm) and aspect ratio 5, which are generally the size 

limits of most of the biolabelling and photothermal application. We achieved this by solving the field 
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explicitly from quasistatic model for ellipsoids, and then by introducing correction factors for other 

shapes (HCC) and size. We validated the theory with numerical simulations and correlated single particle 

scattering cross-section measurements using confocal laser scanning microscopy (CLSM) and 

transmission electron microscopy (TEM). The corrected ES model is easy to use, accurately calculates 

near-fields around nanorods and far-field scattering. It also can be easily extended to other cylindrically 

symmetric shapes, such as bipyramids, or dumbbells. It will be extremely useful in determining 

efficiency in any linear or nonlinear emission processes for biolabelling application that require accurate 

knowledge of the field around these nanorods. 
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METHODS 

Gold nanorods with HCC shape were purchased from Nanoseedz and London finder (LF400 Cu mesh) 

TEM grids were used for electron microscopy. TEM grids were taped on the top of glass substrates, and 

then the nanorods were mixed with 1% PVA solution and then spin coated on the top of the TEM grids 

for single particle measurements. The TEM analysis of 30 individual nanorods showed that the nanorods 

are mostly HCC in shape, with average width 25.5 ± 3.7 nm, length 78.6 ± 8.0 nm, and aspect ratio 3.2 

± 0.4.   
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Single particle scattering measurements were performed on our homebuilt CLSM setup. We used 

circularly polarized laser beam (Tsunami, Spectra-Physics) to excite longitudinal plasmon mode of the 

nanoparticles. We sequentially recorded scattering images of the same particles for a range of 

wavelengths between 700 nm to 900 nm in 10 nm increments which allows for the wavelength dependent 

excitation response for a number of single nanoparticles to be determined simultaneously, and ensures 

the scattering intensity is measured at the peak LSPR wavelength (𝜆+,-. ) for each particle. Each 

spectrum at different excitation wavelength was continuously monitored by a spectrometer (Ocean 

Optics). The laser beam was then focused onto the sample through a 1.4 NA oil immersion objective. 

Sample was mounted on a computer controlled 3D high resolution scanning stage (Physik Instrument 

stage, 200µm × 200µm × 200µm). Same objective was used to collect the back scattered signal. Then 

𝜎()$ of individual particles were measured from these confocally detected back-scattered photons using 

a photomultiplier tube (PMT, Oriel). The scattering intensity of individual particle was obtained by 

integrating the photomultiplier tube voltage over the individual spots. The number of scattered photons 

collected per unit time (𝐹()$) can be expressed as 

𝐹()$ =
"
1
𝜎()$𝜑()$𝐼,       (27) 

where 𝜑()$ is the collection efficiency of the setup, I is the incident photon flux (in photons/s/cm2), and 

𝜎()$ is the scattering cross-section (in m2). The factor (1/2) is used because of the circular polarization 

of the excitation beam. More details of the experiment can be found elsewhere34. The measured cross 

sections are corrected for the carbon grid substrate damping based on FEM simulations. TEM carbon 

grid is made up of thin (4 ~ 5 nm) carbon film, which causes significant reduction in plasmon resonance35, 

36. We have corrected the cross-sections by simulating the damping using FEM for individual size and 
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shape of the HCC nanorods. Up to 80% reduction in scattering strength, depending on the aspect ratio 

and peak SPR wavelength, was observed, which were accounted for in the final values.  

 

 

 

 

 

 

 

 

 

FIGURES 
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Fig. 1 Sketch of the geometry and coordinate system of a prolate spheroid. (a) Cartesian 
coordinate system on the prolate spheroid with longitudinal length a and transverse length 
c. Field Einc = (E0x, E0y, E0z) is the arbitrary incident field. (b) x-y plane projection of the 
prolate spheroid. Vectors 𝑒x, 𝑒z, 𝑒h  are the unit vectors that are perpendicular to the surface, 
parallel to the surface in x-y plane, and parallel to the surface in y-z plane, respectively. 
Angle q is shown, also with spheroid surface given by x = 0. 
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Fig. 2 (a) Surface integrated field enhancement factor Ls given by Eq. 11 for aspect ratio 2.5 prolate 

spheroidal gold nanorods (black dotted line). Numerically simulated electrodynamic field enhancement 

using FEM (red lines). (b) Far-field scattering cross sections (ssca) calculated using Eq. 12 are shown for 

aspect ratio 2.5 prolate spheroidal gold nanorods. (c) Ls , (d) ssca plots for aspect ratio 3.5 rods, (e), Ls 

, (f) ssca for aspect ratio 4.5 rods. Half length of the rod a are specified in the figures. The ES model is 

only accurate for ka  < 0.08. 
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Fig. 3 (a) Surface integrated field enhancement factor Ls for aspect ratio 2.5 prolate spheroidal gold 

nanorods. Calculated with damping corrected ES model for prolate spheroids (Eq. 11, 14-16, blue dotted 

lines), and compared with numerically simulated electrodynamic field enhancement using FEM (red 

lines). (b) Damping corrected far-field scattering cross sections (ssca) calculated using Eqs. 12, 14-16 
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are for the same rods in (a). (c) Ls , (d) ssca plots for aspect ratio 3.5 rods, (e), Ls , (f) ssca for aspect 

ratio 4.5 rods. Half length of the rod a are specified in the figures. Note that the corrected ES model 

matches perfectly the electrodynamic simulation up to ka ~ 1.13. 

 

 

 

 

 

Fig. 4 Comparison of surface fields for prolate spheroid calculated using ES model (Eqs. 10, 

black line) and corrected ES model (Eq. 10, 14-16 for HCC, blue line) for aspect ratio 2.5, 

3.5, and 4.5. Overlaid is the FEM result for HCC (red line) showing good agreement between 

the corrected ES model and the numerical simulation results.  
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Fig. 5 (a) Surface integrated field enhancement factor Ls for aspect ratio 2.5 HCC gold nanorods. 

Calculated with damping corrected ES model for HCCs (Eq. 11, 14-17, blue dotted lines), and compared 

with numerically simulated electrodynamic field enhancement using FEM (red lines). (b) Damping 

corrected far-field scattering cross sections calculated using Eqs. 12, 14-17 are shown for the same rods 
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in (a). (c) Ls , (d) ssca plots for aspect ratio 3.5 HCC rods, (e), Ls , (f) ssca for aspect ratio 4.5 HCC 

rods. Half length of the rod a are specified in the figures. Note that the corrected ES model for HCC 

shows good agreement with electrodynamic simulation up to ka ~ 1.13. 

 

Fig. 6 Experimental scattering cross-section measurements of single HCC nanorods (red 

squares) overlaid with corrected ES model for HCC (green solid line). The corrected ES 

model line was calculated based on the average HCC nanorod size (25 nm width, 78 nm 

length). The green dashed lines are the theoretical cross sections at standard deviation of the 

volumes.  
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 D(a) G(V) 

b0 b1 b2 b3 c1 c2 

Prolate Spheroids 0 0.2 ± 0.0 17.5 ± 0.5 25 ± 0.0 27 ± 3.0 -0.15 ± 0.0 

HCCs -0.07 ± 0.00 0.1 ± 0.0 23.4 ± 0.7 20 ± 0.0 0.26 ± 0.05 -0.18 ± 0.04 

 

Table 1. Coefficients used in ES model damping correction functions (Eqs. 14-16) for prolate 

spheroids (Fig. 3 plots) and HCCs (Fig. 5 plots).  
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