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Communication
Efficient Field-Only Surface Integral Equations for Electromagnetics

Derek Y. C. Chan, Alex J. Yuffa, Member, IEEE, Evert Klaseboer and Qiang Sun

Abstract—In a recent paper, Klaseboer et al. (IEEE Trans.
Antennas Propag., vol. 65, no. 2, pp. 972-977, Feb. 2017) devel-
oped a surface integral formulation of electromagnetics that does
not require working with integral equations that have singular
kernels. Instead of solving for the induced surface currents,
the method involves surface integral solutions for 4 coupled
Helmholtz equations: 3 for each Cartesian component of the
electric E field plus 1 for the scalar function (r·E) on the surface
of scatterers. Here we improve on this approach by advancing a
formulation due to Yuffa et al. (IEEE Trans.Antennas Propag.,
vol. 66, no. 10, pp. 5274-5281, Oct. 2018) that solves for E and
its normal derivative. Apart from a 25% reduction in problem
size, the normal derivative of the field is often of interest in
micro-photonic applications.

Index Terms—Maxwell equations, boundary element methods,
boundary integral equations, electric and magnetic field integral
equation, electromagnetic propagation and scattering, alternative
electromagnetic theory, Helmholtz equations, vector wave equa-
tion.

I. INTRODUCTION

There have been two recent independent developments
in formulating computational electromagnetics in terms of
surface integral equations that are conceptually very different
from the venerable theoretical framework of Stratton–Chu that
was established almost 80 years ago [1], [2]. Whereas the
Stratton–Chu approach is based on solving for surface currents
at boundaries, the recent works are based on solving directly
for components of the E and H fields. One of these field-only
formulations had its genesis in the study of scattering from
rough surfaces [3] some 25 years ago but has been generalized
recently with extensive use of tensorial formalism [4], [5].
An independently developed field-only formulation focused
on the use of non-singular surface integral equations for the
field components and was motivated by the fact that theoretical
representations of physical phenomena that are finite and well-
behaved physically on boundaries should not require the use of
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theoretical models that contain mathematical singularities [6],
[7].

The aim of this communication is to harmonize these field-
only formulations by using accessible Gibbsian vector notation
to reveal the physical basis of the model. This approach turns
out to be conceptually simple, provides direct access to values
of field amplitude and field gradients at boundaries, is able
to be implemented numerically using simple, efficient and
accurate algorithms and reduced the problem size by 25%
compared to earlier work [6], [7].

The detailed formulation is followed by a discussion of the
computational advantages and applications and supported by
numerical illustrations.

II. FORMULATION

We illustrate our electromagnetics formulation with the
scattering of an incident plane wave by 3D perfect electri-
cal conductors (PECs). In the frequency domain with time
dependence exp(jωt), the propagating scattered electric field
E is given by the wave equation (in a source free region)
(k2 = ω2ε0εrµ0µr ≡ ω2εµ)

∇2E + k2E = 0 with ∇ ·E = 0. (1)

These equations hold for the incident, Einc, and total Etot =
Einc + E fields. Since ∇ · E = 0, there are only two
independent components of E in (1) and they are found
by specifying the incident wave, for example a plane wave
Einc = E0 exp(−jk · r), where r = (x, y, z) is the position
vector and imposing the boundary condition that the two
independent tangential components of Etot must vanish on the
surface, S of the PEC.

In earlier work [6], [7] the condition ∇·E = 0 was replaced
using a vector identity by a Helmholtz equation for (r ·E):

2(∇ ·E) ≡ ∇2(r ·E) + k2(r ·E) = 0. (2)

This means the solution of (1) can be cast as the solution of 4
scalar Helmholtz equations: one for each of the 3 components
of E and one for the function (r ·E).

The solution of the vector Helmholtz equation for E in
(1) can be expressed as the solution of the surface integral
equation for each Cartesian component of E (i = x, y, z)

c0Ei(r0) +

∫
S

Ei(r)
∂G(r, r0)

∂n
dS(r)

=

∫
S

∂Ei(r)

∂n
G(r, r0) dS(r) (3)

where G(r, r0) = exp(−jk|r − r0|)/|r − r0| is the Green’s
function and ∂/∂n ≡ n ·∇ with n being the unit normal that



2

points out of the 3D domain into the scatterer. The integration
point r is on the surface, S of the scatterer. If r0 is located
outside the scatterer in the 3D domain, c0 = 4π but if r0 is on
the surface, S, then c0 represents the solid angle subtended at
r0 and is 2π provided that the tangent plane is continuous at
r0.

Any derivative of each Cartesian component of E is also a
solution of the Helmholtz equation, therefore it immediately
follows that ∇ ·E also satisfies: ∇2(∇ ·E) + k2(∇ ·E) = 0.
Thus a similar surface integral equation as (3) is valid for
(∇ ·E) as

c0(∇ ·E(r0)) +

∫
S

(∇ ·E(r))
∂G(r, r0)

∂n
dS(r)

=

∫
S

∂(∇ ·E(r))

∂n
G(r, r0) dS(r).

(4)

Since (∇·E) vanishes on the surface, the left hand side of (4)
is zero. Therefore ∂(∇ ·E)/∂n is zero as well. Applying (4)
off the surface (by setting r0 in the domain) will then ensure
that ∇ · E(r) = 0 in the entire 3D domain. The incoming
undisturbed wave automatically satisfies ∇ ·Einc = 0.

The value of (∇ · E) on the surface, or rather its limiting
value as one approaches the surface with surface normal, n
and surface tangent t can be found by first projecting Etot onto
the normal, (Etot · n) and tangential, (Etot · t) components,
and noting that the latter (Etot · t) = 0 on the PEC surface.
This gives

∇ ·Etot = ∇ ·
[
n · (Etot · n)

]
(5a)

= (∇ · n)(Etot · n) + [(n · ∇)Etot] · n
+ Etot · [(n · ∇)n] (5b)

From Appendix A, we see that the term (∇·n) = −κ, where
κ is the sum of the principal curvatures of the scatterer and the
normal derivative of the surface normal vector in the last term
in (5b) is a zero vector: (n·∇)n = 0. The condition ∇·Etot =
0 gives the following condition on the PEC surface [5]:

κ(Etot · n) = [(n · ∇)Etot] · n (6a)

=
∂Etot

∂n
· n (6b)

that is also a boundary condition on the scattered field:
E = Etot − Einc involving the normal component of E
and the normal component of the normal derivative of E
on the surface of the PEC. This relation will also ensure
that E is divergence free in the 3D domain as demonstrated
above. The result (6) has a simple physical interpretation. From
elementary electrostatics, the field emanating from a charged
planar PEC is constant, that is ∂Etot/∂n = 0 and is directed
normal to the surface. In (6), (Etot ·n) is the induced charged
density at the PEC surface and so (∂Etot/∂n) ·n can only be
non-zero if the PEC has a non-zero curvature, κ.

In summary, the electric field due to scattering by PEC scat-
terers can be found by solving the 3 surface integral equation
(3) for each of the Cartesian components of the scattered field,
E and imposing the boundary condition (6) together with
the requirement that the two tangential components of Etot

disappear on the boundary. These constitute the necessary and

sufficient conditions to determine the scattered field, E and
also ensure that E is divergence free as required.

Similarly, the magnetic field can be found by solving the
surface integral equation corresponding to (3) for the scattered
H field with the boundary condition (H tot ·n) = 0 at the PEC
surface. The boundary condition on the tangential components
of Etot was applied by choosing two orthogonal unit tangential
vectors t1 and t2 on S, and using Ampere’s law to express the
component of Etot parallel to say, t1, namely, Etot

t1 ≡ Etot·t1 =
Etot · (t2 × n), in terms of H tot [6]

Etot
t1 = t2 · (n×Etot) =

1

jωε
{t2 · (n×∇×H tot)} (7a)

=
1

jωε
{n · (t2 · ∇)H tot − t2 · (n · ∇)H tot} = 0 (7b)

with a similar expression for Etot
2 ≡ Etot · t2 obtained by

interchanging subscripts t1 and t2 in (7).
Before presenting illustrative numerical results we consider

the computational advantages and applications of the present
formulation.

III. COMPUTATIONAL ADVANTAGES AND APPLICATIONS

The Stratton–Chu [1], [2] surface integral was developed
by the classic works of Poggio & Miller [8], Chang &
Harrington [9] and Wu & Tsai [10] (PMCHWT) and is now
one of the standard approaches to calculate frequency domain
electromagnetics. In the PMCHWT formulation, the electric
and magnetic fields, E and H , are given in terms of electric
and magnetic surface currents (or scalar and vector poten-
tials [11]). The fields E and H can be then obtained by post-
processing the surface current values. Many numerical meth-
ods have been developed to solve the surface current integral
equations. An often used scheme employs the Rao-Wilton-
Glisson (RWG) [12] basis functions which conserve charge
(flat triangular surface elements are used to represent surface
currents). This approach still has a lot of challenges [13].

Although it is also possible to develop vector surface
integral equations for E and H , such equations will involve
hypersingular dyadic Green’s functions as kernels [14] and
introduce numerical difficulties in the zero frequency (long
wavelength) limit [14], [15]. The strong singularities of the
kernel that are inherent in this approach mean that it is
challenging to obtain numerically accurate field values [16],
let alone field gradient values near boundaries.

In contrast, the boundary integral solution of (3) for com-
ponents of the field is conceptually straightforward. It is based
on Green’s Second Identity which provides a relation between
p(r) and its normal derivative ∂p/∂n at points r and r0
on the boundary, S. All singularities of the Green’s function
G(r, r0), can in fact be removed analytically to give [17], [18]∫

S

[p(r)− p(r0)g(r)− ∂p(r0)

∂n
f(r)]

∂G

∂n
dS(r) =∫

S

G[
∂p(r)

∂n
− p(r0)

∂g(r)

∂n
− ∂p(r0)

∂n

∂f(r)

∂n
]dS(r). (8)

The functions f(r) and g(r) must satisfy the Helmholtz
equation and the following requirements at r = r0 on the
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Fig. 1. A graphical confirmation of the boundary condition (6) that relates
(Etot ·n) and (∂Etot/∂n) ·n that follows from enforcing ∇ ·Etot = 0 on
the boundary. The values are obtained from the Mie series solution for the
scattering of a plane wave by a PEC sphere with ka = 0.1 (open symbols)
and 5 (solid symbols).

surface, S: f(r) = 0,n ·∇f(r) = 1, g(r) = 1,n ·∇g(r) = 0.
Possible choices for f(r) and g(r) can be found in [17], [18].
Thus if p (or ∂p/∂n) is given, then (8) can be solved for
∂p/∂n (or p) in a straightforward manner. The reason is that
for f(r) and g(r) that obey the above mentioned conditions,
the terms that multiply with G and ∂G/∂n vanish at the same
rate as G or ∂G/∂n diverge when r → r0. Thus both integrals
become non-singular and can thus be evaluated accurately by
standard Gauss quadrature [17], [18]. The solid angle, c0 at
r0 has conveniently been eliminated in (8) as well.

In applications ranging from antenna metrology in which
near field values are used to predict far field performance to
micro-photonics in which accurate knowledge of values of the
field and field gradients near surface is used to quantify effects
due to surface enhanced Raman spectroscopy it is particularly
advantageous to be able to work directly with values of the
field and field gradient as in the present formulation. In our
implementation, these quantities are unknowns to be solved
at chosen nodes on the surface. In the evaluation of surface
integrals, the surface shapes are taken as quadratic elements
interpolated from the surface nodes and variations of function
values within these elements are interpolated from the nodal
values. Since the integrals do not have divergent kernels, the
integration can be evaluated to high accuracy using standard
Gauss quadrature. This facilitates the reduction of the number
of degrees of freedom while increasing numerical precision.
Also with high order surface elements, surface geometries
can be represented more faithfully than with planar elements.
Finally, with the help of (6), a matrix system is constructed,
where the unknowns are (E · n), and the two tangential
components of ∂E/∂n for each node. Further details of our
implementation are given in [6].

Fig. 2. Comparisons of the field gradient (∂Etot/∂n)·n obtained from using
the present surface integral implementation - SIE (solid symbols) and from
the Mie series solution (open symbols) of scattering of an incident plane wave
by a PEC sphere. A non-singular boundary integral method with 642 degrees
of freedom being the unknowns on 642 nodes connecting 320 quadratic area
elements that span the PEC sphere surface.

IV. ILLUSTRATIVE NUMERICAL RESULTS

We provide illustrative numerical results of the present
surface integral method for the scattering of an incident
plane wave by a PEC sphere. The incident plane wave:
Einc = E0 exp(−jkz) is x-polarized and propagates along
the z-direction. For a sphere of radius, a, the total curvature
is κ = 2/a. We compare our results with the well-known
analytical series solution for Mie scattering [19].

The results in Fig. 1 serve as graphical confirmations of the
validity of the boundary condition (6) that is the consequence
of enforcing ∇ ·Etot = 0 on the PEC boundary. The equality
of the two sides of (6) for ka = 0.1 and 5, a 50-fold variation
in ka at various points on the sphere is clearly evident,
verifying (6) using a well-known analytical result. Note that
the sphere with a smaller radius of curvature has larger range
of magnitudes for the field gradient and surface charge.

To illustrate the ability of the present method to calculate
accurately the field gradient (∂Etot/∂n) · n we compare in
Fig. 2, results obtained from the present surface integral
method and that obtained from the Mie series solution for
ka = 0.1 and 5. For visual clarity, the data presented in
Fig. 2 have been ordered in increasing order of the value of
(∂Etot/∂n) · n. When the value of (∂Etot/∂n) · n is around
1, the relative difference between the result by the Mie series
solution and that by the surface integral method is less than
1.6%. We note that the field gradient is one of the unknowns
to be solved in the present surface integral formulation but
in other surface integral implementations, it can only be
obtained by post-processing, an additional computational step
that might reduce numerical accuracy.
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V. CONCLUSIONS

The field-only formulation of computational electromagnet-
ics developed here has a number of meritorious features:

1) The formulation is simple conceptually and only en-
compasses the key physical tasks of computational elec-
tromagnetics, namely, solving the vector wave equation
with the divergence free constraint without complication.

2) Physically important values of the field and its derivative
at the surface are obtained directly without the need to
work with intermediate quantities such as the surface
current.

3) Only solutions of scalar Helmholtz equations are re-
quired and an accurate non-singular surface integral
method is readily available. The absence of singular
kernels facilitates the use of high order area elements
that provides a more precise representation of surface
geometries. The reliance on only finding solution of
scalar Helmholtz equations may also be advantageous
in solving time-domain scattering problems using an
inverse Fourier Transform [20].

4) Numerical challenges such as singular or hypersingular
integrals [14] and the zero frequency catastrophe [15]
that preclude the accurate evaluation of field quantities at
or near a surface are consequences of the mathematical
formulation. The present approach is not affected by
such issues.

APPENDIX A
RESULTS FROM DIFFERENTIAL GEOMETRY

We present a simple derivation of the results from differ-
ential geometry used in (5) and (6). Erect a local Cartesian
system with the origin at the point r0 on the surface, S and
constant unit vectors: i, j, k. The normal at r0 is chosen to
be the k direction with surface tangents along the i and j
directions. We assume quite generally that the surface around
r0 is locally quadratic so that the coordinates of points
r = (ξ1, ξ2, ζ) that lie on the surface near r0 obey the relation

Φ(ξ1, ξ2, ζ) ≡ ζ − 1
2κ1ξ

2
1 − 1

2κ2ξ
2
2 = 0 (9)

with constants κ1 and κ2 being the principal curvatures at r0.
With the gradient operator in local coordinates given by

∇ = i
∂

∂ξ1
+ j

∂

∂ξ2
+ k

∂

∂ζ
(10)

the unit normal at r is

n =
∇Φ

|∇Φ|
=

(−κ1ξ1,−κ2ξ2, 1)

[1 + (κ1ξ1)2 + (κ2ξ2)2]1/2
. (11)

Thus it follows from the above that at r = r0 = (0, 0, 0)

∇ · n = −(κ1 + κ2) ≡ −κ, (12)

and

(n · ∇)n = 0. (13)
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