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Abstract

This paper expresses the different theories of statistical inference in
terms of the competition between scientific paradigms as described in
Kuhn (1996). The conflict among the major schools is examined in Kuhn’s
terms, with extensive quotes, which helps to illuminate the discussion.
Critical issues among the schools are evaluated with canonical examples.
The scientific and social implications of conflicting conclusions from the
same data by different schools are considered, and proposals are made
for extending the current Bayesian paradigm, through both reformulating
model comparisons, and incorporating sample survey analysis.

1 Introduction

We use the term paradigm in the sense of Kuhn (1996): “universally recognized
scientific achievements that, for a time, provide model problems and solutions
for a community of researchers.” (The term has more than one meaning, but our
use will be clear from the context.) Our concern is for the relevance of Kuhn’s
description of the evolution, and revolutionary change, of scientific paradigms
to the current state of theories of statistical inference.

In quoting Kuhn at length, we are not endorsing his view of the evolution of
paradigms over the views of other philosophers of science; we find his approach
and views apposite for the current state of statistics and its theories of inference.

The term paradigm has come to be commonly used in statistics in the
Bayesian paradigm, and less frequently, in the frequentist paradigm. These mul-
tiple usages of the term imply, in the Kuhnian sense, that there are separate
communities of researchers following these paradigms, since the paradigms are
inconsistent in their principles (axioms) for the analysis of data. We will call
these separate communities schools. This might not matter if these schools at-
tended to different problems in the applications of statistics, but it does matter
since the applications of the schools overlap very substantially, and the Bayesian
and frequentist schools at least claim universality in the breadth of their appli-
cations.

There are other paradigms (the likelihood paradigm for example), and other
approaches to data analysis, which will not be discussed in this paper, as they do
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not have, or claim, the generality of the Bayesian and frequentist schools. The
survey sampling design-based theory is not usually called a paradigm, though
there are exceptions – the “total survey error paradigm” for example (Groves
and Lyberg 2010). The survey sampling school had in the past a much narrower
focus, and sometimes seemed to be obsessively fixed on the estimation of the
population mean alone. This has changed considerably in recent years, and
the claims made for the generality of its theory have widened; we will call this
approach the survey sampling paradigm.

There are many practising statisticians who would not regard themselves as
members of only one, or any, school. Many statistical scientists are agnostic
about theories/paradigms: “I’m not a Bayesian, but I use what works. I’m an
empiricist – if MCMC works I use it.” (Without a paradigm, how can one tell if
anything works?) Statements like these make plain that statistics does not have
a single paradigm, and the conflict among the major schools is a clear example
of what Kuhn calls the pre-paradigm state of theories:

(p. 177) There are schools in the sciences, communities, that is,
which approach the same subject from incompatible viewpoints. But
they are far rarer there than in other [non-science] fields; they are al-
ways in competition, and their competition is usually quickly ended.

(p. 47) Normal science can proceed without rules only so long as the
relevant scientific community accepts without question the particular
problem-solutions already achieved. Rules should therefore become
important and the characteristic unconcern about them should van-
ish whenever paradigms or models are felt to be insecure.... The
pre-paradigm period, in particular, is regularly marked by frequent
and deep debates over legitimate methods, problems, and standards
of solution, though these serve rather to define schools than to pro-
duce agreement.

(p. 178) Probably the most striking [issue of scientific community
structure] ... is the transition from the pre- to the post-paradigm
period in the development of the scientific field. Before it occurs,
a number of schools compete for the domination of a given field.
Afterward, in the wake of some notable scientific achievement, the
number of schools is greatly reduced, ordinarily to one, and a more
efficient mode of scientific practice begins.

The aim of this paper is to contribute to a general framework for statistical
theory – a single extended Bayesian paradigm. We believe it is fair to say that
several notable (statistical) scientific achievements have led to the possibility of a
single paradigm. These achievements are due originally to H.O. Hartley, J.N.S.
Rao and W.A. Ericson, and to A.P. Dempster. In a situation familiar from
Kuhn’s book, these achievements were either not recognised for their impor-
tance, lacked the necessary computing technology for practical implementation
(Kuhn’s “instrumentation”), or were ignored.
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We will not give the histories of the current schools in any detail; these are
well-documented at length elsewhere (for example, Barnett 1999, Welsh 1996).
A very concise exposition can be found in Chapter 1 of Aitkin (2010). Instead
we will focus sharply on fundamental points of conflict, and make proposals to
resolve the conflict in a single paradigm framework. We take these points of
conflict in a particular order reflecting the structure of the single paradigm.

We first describe very briefly in Section 2 the evolution of paradigms for
statistical theory. We discuss the Bayesian/survey sampling conflict in Section
3 and the frequentist/Bayesian conflict in Section 4. The Bayes factor puzzle, or
anomaly (there is a critical difference in Kuhn’s use of these terms) is discussed
in Section 4, and its resolution in Section 5. General discussion is given in
Section 6. The resolutions of these conflicts have considered at some length in
Aitkin (2010), and we refer to this source frequently.

2 The evolution of paradigms

In Kuhn’s view a current paradigm does not evolve into a new paradigm – there
is a revolutionary change from the old to the new paradigm – but once adopted
the paradigm is developed and articulated steadily, and defines the structure of
“normal science” in the scientific field:

(pp. 35-6) To scientists, at least, the results gained in normal re-
search are significant because they add to the scope and precision
with which the paradigm can be applied. ... Bringing a normal re-
search problem to a conclusion is achieving the anticipated in a new
way, and it requires the solution of all sorts of complex instrumen-
tal, conceptual, and mathematical puzzles. The man who succeeds
proves himself an expert puzzle-solver, and the challenge of the puz-
zle is an important part of what usually drives him on.

(p. 38) The scientific enterprise as a whole does from time to time
prove useful, open up new territory, display order, and test long-
accepted belief. Nevertheless, the individual engaged on a normal
research problem is almost never doing any of these things. Once
engaged, his motivation is of a rather different sort. What then
challenges him is the conviction that, if only he is skilful enough,
he will succeed in solving a puzzle that no one before has solved or
solved so well. Many of the greatest scientific minds have devoted all
of their professional attention to demanding puzzles of this sort. On
most occasions any particular field of specialization offers nothing
else to do, a fact that makes it no less fascinating to the proper sort
of addict. (author’s emphasis)

As the paradigm is articulated further, difficulties begin to arise – the prob-
lems become more difficult to solve, and for some problems it is not clear that
a solution can be found:
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(p. 83) The early attacks on the resistant problem will have followed
the paradigm rules quite closely. But with continuing resistance,
more and more of the attacks upon it will have involved some mi-
nor or not so minor articulations of the paradigm ... Through this
proliferation of divergent articulations, (...more and more frequently
described as ad hoc adjustments), the rules of normal science be-
come increasingly blurred. Though there is still a paradigm, few
practitioners prove to be entirely agreed about what it is.

2.1 The frequentist paradigm

Bayesian theory began as the theory of inverse probability, proposed by Thomas
Bayes (posthumously) in 1763. Remarkably, Bayes’s theorem remains the cen-
trepiece of the current Bayesian paradigm – its extreme simplicity, as the simple
inversion of conditional probability, is unshakeable. What became shakeable was
Bayes’s postulate of the uniform prior for a parameter as a general principle, in
the absence of information to the contrary. By itself this was not a sufficient
criterion for opposition to the theory – there was no other.

Fisher’s definition of the likelihood (though not by that name) in his first
1912 paper gave a firm basis for an alternative paradigm, though it was not
till his 1922 paper that an explicit theory was put forward, with some of its
properties, extended in his 1925 paper. The 1928-33 work on hypothesis testing
by Neyman and Pearson extended the Fisher paradigm in a different direction,
inconsistent with Fisher’s own views, and the current version of the paradigm
is sometimes called the Fisher-Neyman-Pearson, or generally the frequentist
paradigm.

This was a truly revolutionary paradigm, in the Kuhnian sense. It provided
a theoretical foundation for statistical analysis that did not depend on a prior
specification for the model parameter, yet obtained exact or asymptotically ex-
act results (in the sense of random variables with exact sampling distributions)
for a very wide range of important probability and statistical models. The
benefits of this paradigm have been enormous, and it is still taught as the stan-
dard paradigm in most statistics departments, though the Bayesian paradigm is
taught increasingly as an alternative, or (much less commonly) as the paradigm.

In his 1934 paper, Neyman overthrew the then-current theory of purposive
sampling and established the theory of random stratified cluster sampling, the
foundation of the survey sampling paradigm. This led to a very substantial
development of the paradigm.

Its principles were different from those of the frequentist school: though re-
peated sampling gave the probabilistic argument, as in the frequentist school, its
basis was the repeated sampling of the indicator variables which define whether a
population member was included in the sample or not. As there was no popula-
tion model for the variable of interest, there was no likelihood in the parameters
of the population. The principal question of interest was how to estimate the
population mean or total of a variable taking into account the design of the
survey.
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To repeat Kuhn, “... [the paradigms,] for a time, provide model problems
and solutions for a community of researchers.” We argue below that both the
frequentist and the survey sampling paradigms have stalled. They no longer
provide the solutions to their problems – they have exhausted their scientific
contributions – and need to be replaced by a Bayesian paradigm which does
provide the solutions to its, and their, problems. This paradigm however has a
major unsolved puzzle, or anomaly, which endangers its scientific contribution,
and its practitioners have not been able to provide the solution to this critical
problem.

We discuss these claims below, and give a resolution of the puzzle/anomaly
which provides an extended Bayesian paradigm which includes the survey sam-
pling field and is free of the anomaly.

3 Bayesian and survey sampling paradigms

In his review of the foundations of survey sampling, Smith (1976) concluded (p.
193):

The basic question to ask is why should finite population inference
be different from inferences made in the rest of statistics? I have yet
to find a satisfactory answer. My view is that survey statisticians
should accept their responsibility for providing stochastic models for
finite populations in the same way as statisticians in the experimen-
tal sciences. These models can then be treated within the framework
of conventional theories of inference. The problems with the Ney-
man approach then disappear to be replaced by disputes between
frequentists, Bayesians, empirical Bayesians, fiducialists and so on.
But at least these disputes are common to all braches of statistics
and sample surveys are no longer seen as an outlier.

Survey sampling, in its recent formulation (see for example Särndal, Swens-
son and Wretman 1992), makes use of model-based estimators of population
parameters, but without reliance on the correctness of the model, and therefore
on the model likelihood. (The usage of the term “model” in “model-guided” or
“model-assisted” analysis varies; in Särndal, Swensson and Wretman it is used
for the structural part of a stochastic model, that is the mean and variance, and
any independence, specification. They explicitly dismiss the complete specifica-
tion of a stochastic model, which is mentioned in only four pages in their §14.5,
where analysis based on this use of a model is called model-dependent.)

Without a formal model, inference is based on the repeated sampling dis-
tribution of the sample selection indicators, not of the population values them-
selves. From the viewpoint of model-based likelihood or Bayesian theory, this
approach is unsatisfactory. The argument is clear if we construct the likelihood
as the probability of all observed data. We denote by I the population index
number, by Y ∗

I the I-th population value of the response variable Y , and by
ZI the indicator variable which denotes selection into the sample (ZI = 1) or
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not (ZI = 0). The data are both the sample selection indicators ZI and the
observed response variables y∗i for the selected population members, so we need
a population model for the Y ∗

I as well.
The fundamental probability relation is

Pr[Y ∗

I , ZI ] = Pr[ZI | Y ∗

I ] Pr[Y
∗

I ]

= Pr[Y ∗

I | ZI ] Pr[ZI ].

where Pr[ZI | Y ∗

I ] is the sample selection model for Z, which specifies how
the selection probability of population member I depends on the value of the
response Y ∗

I for that member – and Pr[Y ∗

I ] is the population model for Y . For
simple random sampling with rate π,

Pr[ZI | Y ∗

I ] = Pr[ZI ] = πZI (1− π)1−ZI .

Correspondingly,
Pr[Y ∗

I | ZI ] = Pr[Y ∗

I ]

– the model for the selected population values is the same as that for the unse-
lected values. So

Pr[Y ∗

I , ZI ] = Pr[Y ∗

I ] Pr[ZI ],

and the likelihood is

L = Pr[y∗1 , . . . , y
∗

n] · Pr[Z1, ..., ZN ]

= Pr[y∗1 , . . . , y
∗

n] ·
1

(

N
n

)

= Pr[y∗1 , . . . , y
∗

n] ·
n

N

n− 1

N − 1
. . .

1

N − n+ 1
.

The last term in the selection probabilities is completely known from the design
– it is just a constant. In inferential statements about the parameters based on
ratios of likelihoods, these constant terms cancel. Thus, regardless of the kind of
model we might have for the Y ∗

I , any inference through likelihood ratios does not
depend on the sample design, if this is non-informative, in the sense described
above – that Pr[ZI | Y ∗

I ] = Pr[ZI ] – membership of the I-th population member
in the sample does not depend on the value of the response Y ∗

I .
In the survey sampling paradigm, this difficulty is countered by the difficulty

of the dependence of model-based inference, whether frequentist or Bayesian,
on the correctness of the model – if this is incorrect, the conclusions from the
analysis could be wrong. Since every model is by definition wrong as it is a
simplification, the risk of wrong conclusions from the model-based approach is
inherent in the approach. Survey samplers are frequently working to a time line
for analysis, so they cannot spend much time on investigating and validating
suitable models for the response Y . Also, if the sample design is informative,
likelihood-based inference becomes much more difficult because the form of de-
pendence in Pr[ZI | YI ] needs to be specified and included in the likelihood.

These arguments and positions have been stable for many years. As Kuhn
notes (pp. 94 and 109):
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When paradigms enter, as they must, into a debate about paradigm
choice, their role is necessarily circular. Each group uses its own
paradigm to argue in that paradigm’s defense .... To the extent
... that two scientific schools disgree about what is a problem and
what is a solution, they will invariably talk through each other when
debating the relative merits of their respective paradigms. In the
partially circular arguments that regularly result, each paradigm
will be shown to satisfy more or less the criteria that it dictates for
itself and to fall short of a few of those dictated by its opponent.

[Wh]atever its force, the status of the circular argument is only that
of persuasion. It cannot be made logically or even probabilistically
compelling for those who refuse to step into the circle. The premises
and values shared by the two parties to a debate over paradigms are
not sufficiently extensive for that. ... [In] paradigm choice there is
no standard higher than the assent of the relevant community.

Aitkin (2008), extended in Chapter 4 of Aitkin (2010), revisited the multi-
nomial model of Hartley and Rao (1968) for the population frequencies pJ of a
variable Y defined on the distinct support values YJ in the population. (They
can always be taken as a finite discrete set because of the finite measurement
precision of any recorded variable). He extended the Bayesian analysis given
by Hartley and Rao, Ericson (1968) and Hoadley (1969) with a non-informative
Dirichlet prior, to deal with clustering and stratification with differential sam-
pling rates, and gave a complex Labor Force Survey example from Valliant,
Dorfman and Royall (2000). The analysis used very simple draws to provide
the marginal posterior distributions of any functions of the population propor-
tions, including means, variances, percentiles, regression coefficients, variance
components and small-area random effects. (A full book-length exposition of
this approach is in progress.)

This paper and its analysis led to some striking conclusions:

• the analysis is impregnably robust to arbitrary population structures be-
cause the multinomial distribution is an exact representation of the pop-
ulation (of any population) and is not a simplification or approximation:
the analysis is thus (population) distribution-free;

• the analysis is fully efficient since it uses the multinomial likelihood for
inferential statements, and despite the apparently heavy parametriza-
tion, gives comparable precision to standard model-and design-based ap-
proaches in simulation studies from simple populations;

• the analysis handles differential strata sampling rates by simple weight-
ing of the posterior draws across strata for inference at the population
aggregate level: no formal weighting procedure is needed in the analysis;

• the analysis provides precision measures of the population estimates au-
tomatically, from the variation in their posterior draws: no standard error
calculations are needed;
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• the posterior simulation procedure in many cases reduces to an iterative
weighted maximum likelihood procedure with posterior Dirichlet weights;

• the role of the “guiding model” remains important as providing a definition
of the population parameters of interest, with the fully nonparametric
analysis providing protection against both distribution and variance mis-
specification.

Thus the principal criticism of the model-based approach by the survey
sampling school is negated by the multinomial model. (This model, and the
non-informative Dirichlet prior, have been proposed recently by Gutiérrez-Pena
and Walker 2005 and Walker and Gutiérrez-Pena 2007 as a general model for
statistical inference.) At the same time the advantages of the model-based
approach are gained: given the specific population parameters of interest, the
multinomial/Dirichlet model and prior provide a full Bayesian analysis.

This approach offers a dramatic reduction in the complexity of current survey
analysis, which has to develop ad hoc methods for standard errors in complex
designs by bootstrapping, jackknifing or the explicit design of the PSUs to allow
for balanced half-sampling. These ad hoc procedures lie outside the paradigm,
and have to be bootstrapped or jackknifed into it. The posterior distributions
obtained by Dirichlet sampling provide the variation assessment automatically,
and importantly, do not require the large-sample normality of the estimates for
their calibration and interpretation.

4 Bayesian and frequentist paradigms

4.1 Priors

Prior distributions have always been a sticking-point for some frequentists, and
the insistence by the subjective Bayesian sub-school on prior elicitation as an
essential part of a principled Bayesian analysis has certainly not encouraged
them to convert. The struggle of “objective Bayesians” (from Jeffreys onwards)
to develop rules for the unique specification of non-informative priors has had
some successes.

Frequentists still widely quote Fisher’s criticism, from 1925 onwards, of
the non-invariance of priors under monotone transformation, despite Geisser’s
(1988) note pointing out that if the parameter space for θ is finite and discrete,
a monotone transformation φ = f(θ) of a flat discrete prior on θ gives a flat
discrete prior on φ – it is only the spacing on the φ scale which is transformed
– the probabilities at the transformed values remain uniform. It is the transfer
to a continuous parameter space which introduces the differential element ∂φ

∂θ

which represents the change in measure; in the continuous space the different
“packing density” of points has to be accounted for by an ordinate correction.

In the discrete finite space a uniform prior is a natural representation of
equal support, and it is easy to see that for population means and proportions
which are linear functions of the population values, the uniform prior is a natural
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choice. Non-linear functions of the population values do not fit this pattern, but
in the usual case where the information provided by the sample is large compared
with that provided by the prior, the insensitivity of the posterior to the prior,
and the aim of a reference analysis to determine “what the data say” make the
uniform prior a reasonable choice, as it leaves the likelihood unchanged.

However an important difficulty in current Bayesian theory is a common
confusion between aleatory and epistemic views of prior distributions. Proba-
bility models for observed data, or future data which might be observed, are
representations of the outcomes of some random – “aleatory” – physical phe-
nomenon. Epistemic probability represents our uncertainty, our degree of belief
about uncertain events.

These have fundamentally important roles in Bayesian analysis, but these
roles are different. Given enough observed data, a specific probability model can
be assessed for goodness of fit to the data, and amended if it shows substantial
discrepancies. This procedure is a standard part of statistical analysis, whether
Bayesian or frequentist, and does not depend on a prior specification for the
model parameters – it is the shape of the distribution which is being assessed,
through a probability or QQ plot for example.

A prior distribution for the model parameter is not a stochastic model for
a random act of a statistician, Nature, in drawing the one parameter value
from some unknown probability distribution – it is simply a representation of
our initial belief about the parameter values, prior to seeing the data. It is an
essential part of Bayesian analysis, for without it we have only the likelihood,
but its specification is not a critical model assumption for the Bayesian theory,
as noted above: it does not have the same status as the probability model for
the observed data. In particular, the prior cannot be invalidated by the data,
unless it is very informative relative to the likelihood, and very different from
it. This would imply that the data came from a different model family from
the one implied by the highly informative prior. (If we observed a sample of
one observation from a known parametric distribution, how could the single
observation invalidate the distribution? What if the observation is drawn but
not observed?)

This confusion is sometimes extended even further, to the model specification
for the data, which is also treated by some Bayesians as an unknown infinite-
dimensional parameter F requiring a prior, which is “got right” by embedding it
in a nonparametric family like the Polya tree or Dirichlet process, or a mixture
of Dirichlet processes. Draper asked, in the discussion of Walker et al (1999):

Suppose that you take as your prior on F ... p(F ) = point mass
on N(µ, σ2) (with a prior on µ and σ) ... Now the data arrive and
are strongly bimodal. What do you do? If you retain your original
prior, then p(bimodal|data) = 0, which may be silly, but if you go
back and change your prior (naively) you are cheating (using the
data twice), and you risk poor calibration....

This difficulty is created by ignoring the finite measurement precision, which
when recognised provides the finite-dimensional multinomial as the always true
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model, with the Dirichlet prior on its parameters as described above. No larger
“prior” family of arbitrary distributions is needed.

So the emphasis in many Bayesian discussions on getting the prior right is
misplaced, apart from the logical contradiction of this argument with that of
the subjective Bayesian sub-school, that it is critical for the prior to reasonably
represent one’s true belief, determined by elicitation if necessary. So one’s prior
beliefs cannot be recalibrated by getting them right from the data – that is the
role of the posterior distribution. The example mentioned above, of prior and
likelihood being inconsistent, can occur only with a highly informative prior.
Even then to re-jig the prior to make it conform to the data likelihood would
really be using the data twice. This important point is raised again in the
following section.

However, we should not overstate the importance of these differences of view
about priors; as Kuhn notes (p.44):

[Scientists] can ... agree in their identification of a paradigm without
agreeing on, or even attempting to produce, a full interpretation
or rationalization of it. Lack of a standard interpretation or of an
agreed reduction to rules will not prevent a paradigm from guiding
research. (author’s emphasis)

4.2 The Bayes factor anomaly

The major objection which frequentists (and others) can raise against the Bayesian
paradigm as it is currently implemented is the Bayes factor anomaly, to use
Kuhn’s expression (pp. 5-6):

Sometimes a normal problem, one that ought to be solved by known
rules and procedures, resists the reiterated onslaught of the ablest
members of the groups within whose competence it falls.... revealing
an anomaly that cannot, despite repeated effort, be aligned with
professional expectation.

The anomaly arises in the current Bayesian approach to testing point null hy-
potheses. In the frequentist theory, point null hypothesis testing about a pa-
rameter and confidence interval estimation for the parameter are consistent pro-
cedures – they are two sides of the same coin. In the current Bayesian theory,
testing a point null hypothesis about a parameter through the Bayes factor –
a form of generalized likelihood ratio – gives results which may be inconsistent
with the credible interval for the parameter: the null value may lie well outside
the credible interval, yet the Bayes factor may strongly accept the null value, or
find no convincing evidence against it. So Bayes factors and credible intervals
are two sides of different coins – their conclusions are incommensurate, as Kass
and Raftery (1995, pp. 781-2) point out:

In frequentist theory, estimation and testing are complementary, but
in the Bayesian approach, the problems are completely different....
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It may happen that conclusions based on estimation [posterior dis-
tribution] seem to contradict those from a Bayes factor. In this case
the data seem unlikely under H0, but if the Bayes factor turns out
to be in favor of H0, then the data are even more unlikely under H1

than they would have been under H0. [authors’ emphasis].

This creates a major difficulty for Bayesian statisticians, since they have in
principle to decide whether their problem is one of inference about a model
parameter through a credible interval, or whether it is a comparison of a null
parameter value model with a general model. Having made this decision, the
Bayesian presumably should not look at the other possible analysis – (s)he is
not a frequentist.

(A further difficulty, which is not commonly mentioned, is that for regular
models with large samples, the 100α% credible interval for the parameter agrees
very well with the frequentist 100α% confidence interval, while the Bayes factor
conclusion may differ substantially from the frequentist test conclusion.)

How do Bayesians deal with this anomaly? Kuhn describes the framework
(p. 37):

... [O]ne of the things a scientific community acquires with a paradigm
is a criterion for choosing problems that, while the paradigm can be
taken for granted, can be assumed to have solutions. To a great ex-
tent these are the only problems that the community will admit as
scientific or encourage its members to undertake. Other problems,
including many that had previously been standard, are rejected as
metaphysical, as the concern of another discipline, or sometimes just
too problematic to be worth the time.

The Bayesian response is multi-dimensional:

• Adjust the prior: “... to avoid this difficulty, priors on parameters being
tested [under the null hypothesis] generally must be proper and not have
too big a spread ...” (Kass and Raftery p. 782, emphasis added – how big
is too big?).

• It is the frequentist theory that is wrong: the P -value from the hypothesis
test overstates the strength of evidence against the null model.

• The test of a precise null hypothesis is pointless, as we already know the
hypothesis is false.

• Problems which are of scientific interest involve well-specified models in
which we want to know the parameter ranges, we do not want to compare
this model with another model or with a specialised form of this model.

• Model-checking can be done by posterior predictive checks, which compare
features of the observed data with those of simulated data sets from the
posterior predictive distribution.
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These dismissals of hypothesis testing, or model comparison, do not fit easily
with the major advantage claimed over the frequentist theory, of being able
to compare non-nested models in the same way as nested models, which the
frequentist theory cannot.

These responses are reflected in Bayesian textbook treatments of the two-
sample and multi-sample normal mean problems, for which the t-test and anal-
ysis of variance are the standard tools of the frequentist theory. Almost all these
textbooks are silent on the two-sample problem, except for the posterior distri-
bution of the mean difference; there may be references to the overstatement of
evidence by the P -value, clearly demonstrated by Berger and Delampady (1987)
and Berger and Morters (1991) for example. There is no Bayesian equivalent of
the t-test mentioned.

(There is a good reason for this – there was no published Bayesian version
of the t-test until 2005. Now there are four: Aitkin, Boys and Chadwick 2005;
Gönen, Johnson, Lu and Westfall 2005; Rouder, Speckman, Sun, Morey, and
Iverson 2009; Wetzels, Raaijmakers, Jakab and Wagenmakers 2009.) Analysis of
variance receives little attention, since this cannot easily be expressed in terms
of the posterior distributions of mean differences.

Some textbooks give a full treatment of the Bayes factor approach, but
have to ignore, or struggle with, its fundamental difficulty, discussed below.
Others dismiss it on the scientific irrelevance grounds mentioned above. Gelman,
Carlin, Stern and Rubin (2004) write:

... Bayes factors are rarely relevant in our approach to Bayesian
statistics... (p. 192)

... this book has little role for the non-Bayesian concept of hypothesis
tests, especially where these relate to point null hypotheses of the
form θ = θ0 .... most of the difficulties in interpreting hypothesis
tests arise from the artificial dichotomy that is required between
θ = θ0 and θ 6= θ0. (p. 250)

The key to the anomaly is the integration of the likelihood over the prior, and
we discuss this at length, as it can severely affect the interpretation of Markov
chain Monte Carlo (MCMC) analyses, a central contribution of the Bayesian
school.

4.3 The integrated likelihood

The difficulty with point null hypothesis testing comes from the convention in
current Bayesian theorey that when different models with unspecified parame-
ters are being compared, this is to be done by integrating the likelihood, given
these unknown parameters, with respect to the prior distribution of the param-
eters. The argument justifying this approach is taken from standard distribu-
tion theory: that a marginal distribution of one variable in a multivariate joint
distribution is obtained by integrating out the other variables. This standard
argument is applied to the product of likelihood and prior, with the likelihood
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as the conditional distribution of the data given the parameter, and the prior
distribution of the parameter, defining the joint distribution of data and pa-
rameter. The marginal distribution of the data is then obtained by integrating
out the parameter, giving the integrated likelihood, often confusingly called the
marginal likelihood; the same term is also commonly used for the likelihood from
a two-level model integrated over the random effects.

The problem with this convention is immediate: in applying Bayes’s theo-
rem, the prior reflects our uncertainty about the parameter, often in a diffuse
way with a flat prior. With an infinite parameter space the flat prior is im-
proper, but this does not affect the posterior if the likelihood is informative:
the posterior is the scaled likelihood.

However integrating the likelihood is a completely different matter: the prior
cannot be improper, or the integrated likelihood will be undefined. So it must be
proper, depending in general on (hyper-) parameters, which appear explicitly in
the integrated likelihood, and determine its value. This effect does not disappear
with increasing sample size; on the contrary, it is accentuated: as the likelihood
becomes more precise with increasing sample size and the prior stays fixed, the
integrated likelihood tends to zero.

The effect of this is that if this model with some unspecified parameters is to
be compared with a completely specified model with no unknown parameters,
the Bayes factor – the ratio of the likehood for the fully specified model to
the integrated likelihood – will tend to infinity, giving heavy weight to the
fully specified model, whatever it is. A consequence of these difficulties is that
sensitivity analyses are essential (Kass and Raftery p. 782), in which the prior
is varied over some appropriate range to determine the effect on the integrated
likelihood. This has to be carried out for each competing model, and if both
integrated likelihoods are affected by these variations, it may be difficult to
draw a soundly-based conclusion. The definition of the “appropriate range”
again causes difficulty.

Aitkin (2010 pp. 47-52) gives a long discussion of these difficulties, first
pointed out by Bartlett (1957) in correcting an error in Lindley (1957). Here
we simply note that the prior distribution is being given the status of a data
model as in a two-level model, with the corresponding requirement of getting
the prior right, a phrase which recurs in the insistence of some Bayesians that
the “model” is the data model and the prior “model”, which have equal status.
As noted above, this conflicts with the view that the prior should represent the
analyst’s true opinion about the parameter, and is not to be set to achieve some
data-based end.

4.4 MCMC and tuning the priors to the data

The serious consequences of this approach have been illustrated in several dis-
cussions of the recession velocity “galaxy” data set of Roeder (1990). Aitkin
(2001) compared several Bayesian analyses of this data set. These analyses
diverged widely in their conclusions about the number of components in the
fitted normal mixture distribution needed to represent the velocity data. He
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asked rhetorically why these analyses were so diverse, and concluded:

The complexity of the prior structures needed for Bayesian anal-
ysis, the obscurity of their interaction with the likelihood, and the
widely different conclusions they lead to over different specifications,
leave the user completely unclear about ‘what the data say’ from a
Bayesian point of view about the number of components in the mix-
ture. For this mixture parameter at least, the Bayesian approach
seems unsatisfactory in its present state of development.

Bayesians who were asked this question directly have generally responded,
as did some of the authors of these papers: “The results are different, because
of the different priors used.” This restatement of the problem does not throw
light on its solution. Aitkin (2011) revisited the issue and concluded that the
diversity is caused, not specifically by the different priors used, but by the
settings of the hyper-parameters of these priors. In the galaxy data set these
settings lead to positive posterior probability being assigned to unbelievable
numbers of components in several of the analyses.

The issue is quite straightforward to understand. Most of the analyses used
some form of MCMC with normal priors on the component means, inverse
gamma priors on the variances, and a Dirichlet prior on the component propor-
tions. Each number of components K was treated separately and an integrated
likelihood obtained for it; the integrated likelihoods were converted to poste-
rior component probabilities. (Several analyses used reversible jump MCMC
in which K was included in the parameter space, and the posterior for K was
obtained directly.)

Gibbs sampling is straightforward to implement with the component mem-
bership as a latent variable. However, random draws from proper but diffuse
priors may leave the chain stuck in an area of flat likelihood far from the maxi-
mum, and to prevent this, informative priors are used which match – are tuned
to – the data so that initial draws from these priors will avoid regions of flat
likelihood and improve the rate of convergence.

As a method for speeding convergence, this is unexceptionable. We note
for later reference that convergence could be very much accelerated by initial
draws from a “prior” implied by the maximum likelihood estimates and their
covariance matrix – convergence would be almost immediate! This seems ab-
surd – at convergence the likelihood would then be effectively integrated with
respect to the posterior! But the same problem afflicts the integration with
the informative and tuned data-based priors to provide a single-number inte-
grated likelihood for comparison across the number K of components. As is
immediately obvious from the previous discussion, the integrated likelihoods
will be explicit functions of the hyper-parameters in the various priors. Differ-
ent settings of these hyperparameters, even with the same priors and MCMC
structure, by different analysts will thus give different integrated likelihoods.
With different priors, this difference in conclusions will be exacerbated.

Table 1 from Aitkin (2011), shows the posteriors from different analyses,
scaled to reflect a common uniform prior on K (the authors’ initials are decoded
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in Aitkin 2001 and 2011). Tail probabilities marked by ? cannot be calculated
from the published data, but are all decreasing with increasingK. (Probabilities
given in the table are scaled to sum to 1, ignoring the unknown tail values.)
The remarkable differences in posteriors are due to the settings of the hyper-
parameters in the common priors, and to other prior differences.

K 3 4 5 6 7 8 9 10 11 12 13

EW .01 .03 .07 .13 .18 .30 .28 ? ? ?
PS .00 .10 .21 .43 .26 ? ? ?
S .10 .25 .35 .29 ? ? ? ? ? ? ?

RW >.999 <.001 - - - - - - - -
RG .06 .13 .18 .20 .16 .11 .07 .04 .02 .01 .01

Table 1: Posterior distributions for K (flat prior)

This difficulty is endemic in the comparison of models by integrated likelihoods
(a second example is given below in §6.1), and Aitkin (2011) showed that an
alternative approach using the full posterior distributions of the likelihoods un-
der each model (described below) does not suffer from this difficulty, and leads
to a reasonable conclusion about the number of components.

4.5 Frequentist difficulties

The frequentist difficulties are familiar; for our purposes it is sufficient to point
to the major successes of MCMC in complex unbalanced crossed and nested
multilevel GLMMS, and the widespread adoption of multiple imputation, with
its steady development towards a fully Bayesian analysis with incomplete data.

While maximum likelihood analyses are available for some of these struc-
tures, standard errors for the parameter estimates in the ML approach become
decreasingly reliable with increasing complexity, and better non-Bayesian pre-
cision expressions are almost impossible to obtain.

On the foundational side, the arguments over the reference set for conditional
analyses, and those over conditional versus unconditional analyses remain un-
resolved, and can lead to a wide variety of P -values, as in the ECMO example
(Bartlett et al 1985), where the adaptive randomization used to assign babies
to treatments led to a remarkable table of outcomes (Table 2):

Table 2: Babies surviving or dying under CMT and ECMO

Response
Treat Survived Died Total
CMT 0 1 1
ECMO 11 0 11
TOTAL 11 1 12

Many P -values were given for this table (Ware 1989, Begg 1990) by different
conditional and unconditional frequentist arguments: from 0.001 to 0.62.
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It is fair to say that the frequentist paradigm is coming to the end of its
useful life; one sign of a dying paradigm is the proliferation of new “flexible”
methods untrammelled by the paradigm: regression trees, with their recipes for
growing and pruning, and the grandiose claims once made for neural networks,
now made for support vector machines.

This is not a criticism of the frequentist paradigm – it has made a profound
contribution to the development of statistical theory and data analysis – but this
contribution has nearly stalled, and to continue to develop complex analyses, in
a much simpler theoretical framework, requires a fully Bayesian approach. The
outstanding problem is how to resolve the Bayesian anomaly.

5 Resolving the anomaly

The foundation of the resolution was laid by Dempster (1974) for simple null and
composite alternative hypotheses in a conference paper, subsequently published
formally (Dempster 1997) together with Aitkin’s extension of it to composite
null hypotheses (Aitkin 1997). A book-length exposition of the approach is in
Aitkin (2010).

The idea is simple, and completely within the Bayesian paradigm. A great
strength of this paradigm over the frequentist paradigm is that, given the model
p(y | θ), data y, likelihood L(θ) and prior π(θ), the posterior distribution of any
function of the parameters and the data, g(θ,y) say, follows immediately by
standard distribution theory, and where this is difficult it can be obtained prac-
tically by mapping random draws θ[m] from the posterior of θ into random draws
g[m] = g(θ[m],y) from the posterior distribution of g. This is particularly valu-
able for non-linear functions of the model parameters, for which the frequentist
theory has to apply approximate linearisation through Taylor expansions to ob-
tain approximate standard errors, from the already approximate standard errors
from the information matrix.

Dempster’s 1974 innovation was to take g as the likelihood, and obtain the
posterior distribution of the likelihood. In practice it is much simpler to use the
posterior distribution of the deviance (−2 log likelihood), from which that of
the likelihood may be directly obtained. For two non-nested models which we
want to compare, this process is repeated using independent draws from each
posterior, which are then randomly paired to generate the posterior distribution
of the likelihood ratio between the models.

With many models, we plot the cumulative distributions of the deviances for
each model to determine whether the distributions are stochastically ordered, so
that a random draw from the Model 1 likelihood is stochastically larger than a
random draw from the Model 2 likelihood. If so, then Model 1 is preferred, and
the strength of preference is assessed from the proportion of draws in which the
likelihood ratio for Model 1 to Model 2 is greater than 1 (or another value like 3
or 10). This calibration is the same as that used for Bayes factors or likelihood
ratios between fully specified models.

This approach is illustrated for the galaxy example in Figure 1, based on
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10,000 draws from the posterior for each number of components, using diffuse
normal, inverse gamma and Dirichlet priors for the means, variances and pro-
portions respectively. The draws were kindly provided by Christian Robert,
and are used in the paper by Celeux et al (2006) on the properties of the DIC.
Aitkin (2010 pp. 211-221) discusses this example at length, and the figure below
is used in Aitkin (2011) also.
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Figure 1: Deviances for 1-7 components

The interpretation of this figure can be simply summarised:

• The deviance distribution for K = 2 greatly improves on that for the
single normal.

• The improvement continues for K = 3.

• As the number of components increases beyond three the deviance distri-
butions move steadily to the right, to larger values (lower likelihoods).

• They also become more diffuse, with increasing slope.

So the deviance distribution for K = 3 is stochastically smaller than any of
the others – this model is the most preferred, but that for K = 4 is not much
less preferred. A simple parallel to the posterior model probabilities can be
obtained by using the median deviances as “representative” values from the
deviance distributions, and transferring these to likelihoods and then model
probabilities, giving Table 3:
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K 1 2 3 4 5 6 7
dev 482.2 448.9 431.0 433.9 436.2 438.3 440.8
prob 0 0 0.745 0.175 0.055 0.019 0.006

Table 3: Posterior median deviances and model probabilities

Three and four components are well-supported, but five or more have probability
only 0.08. This contrasts very sharply with the Bayesian analyses reported in
Table 1.

An important indirect contribution of this approach is that it frees MCMC
from the constraint of tuning priors and its effect on the integrated likelihood.
Since this approach does not use integration over the full parameter space,
the chain can be initialised, and greatly accelerated, with draws from a normal
distribution with mean the MLEs and covariance matrix the inverse information
matrix, suitably expanded to allow for the greater variation in the posterior
distribution. This gives maximum likelihood estimation, when it can be applied,
an important role in MCMC.

For nested models which have the same parameter space, it is the likelihood
ratio between the models (in practice the deviance difference between them)
whose posterior distribution is directly simulated, as in Dempster’s original bi-
nomial null hypothesis example. This gives a more precise result, as the posterior
distribution of only the alternative model parameters is needed for that of the
likelihood ratio.

It also gives in general, in nested models with normal likelihoods and flat
priors, Dempster’s remarkable result that the P -value from the frequentist like-
lihood ratio test is numerically equal to the posterior probability that the likeli-
hood ratio, of null to alternative model, is greater than 1. So a P -value of 0.05
means only that the posterior probability that the null hypothesis has lower
likelihood than the alternative is 0.95. While 0.95 is an impressive probability,
a likelihood ratio of only less than 1 is not compelling evidence against the null
hypothesis – we would want a likelihood ratio of something like 10 in favour of
the alternative, for a probability of 0.95 of this event to be persuasive evidence
against the null. So, independently of the demonstrations by Berger and others,
the posterior likelihood approach shows that the P -value is indeed an overstate-
ment of strength of evidence against the null hypothesis, and it also can be used
to give a re-calibration of the P -value (Aitkin 1997) to provide a more reliable
measure of strength of evidence.

Aitkin (2010) applies the posterior likelihood approach across a wide range
of models, giving in particular new Bayesian versions of the t-test (first given by
Aitkin, Boys and Chadwick 2005) and other standard frequentist procedures.
A particular strength of this approach is that conclusions from the posterior
likelihood model comparison or hypothesis test are consistent with the posterior
distribution of the model parameter being tested; that is, this approach does
not suffer from the Bayes factor anomaly.

In addition, the approach provides Bayesian alternatives to the common
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“distribution-free ” tests like the Wilcoxon-Mann-Whitney; these have the same
advantage as in the survey sampling application, of a full model specification
and a multinomial likelihood analysis.

A further benefit of the approach is that it provides a general procedure
for assessing the probability model assumption, by comparing the specific para-
metric model with the nonparametric multinomial/Dirichlet model described
earlier. Simulation studies reported in Aitkin (2010, pp. 188-194) show that
for single sample problems the correct generating model for the data can be
identified consistently from a candidate list as the sample size increases, though
discrimination (for example between the lognormal and gamma) may require
large samples.

Thus this approach removes the anomaly, and provides a consistent Bayesian
paradigm for parameter inference and model comparisons which requires only
standard non-informative priors, while at the same time extending the scope of
Bayesian model comparison procedures into model validation and diagnostics.

6 Discussion

6.1 The need for a new paradigm

Bayes’s theorem is the central plank of Bayesian theory. Its remarkable simplic-
ity, and the immediate provision of the posterior distribution from the likelihood
and the prior, make it an outstanding candidate for a paradigm. The rapid de-
velopment of MCMC methods since 1990 shows how powerful the computational
Bayesian approach is, relative to the severe difficulties of the frequentist school in
dealing with the very complex models which have become tractable by MCMC
methods. The Bayesian theory was the (only!) paradigm for a century and a
half, and was replaced by the frequentist theory, but as Kuhn notes, that is not
a barrier:

(p. 108) [Paradigm] change [in the explanation of gravity] has been
reversed, and could be again.

(p. 76) So long as the tools a paradigm provides continue to prove
capable of solving the problems it defines, science moves fastest and
penetrates most deeply through confident employment of those tools.
The reason is clear. As in manufacturing so in science – retooling
is an extravagance to be reserved for the occasion that demands
it. The significance of crises is the indication they provide that an
occasion for retooling has arrived.

Why is a change needed in the current paradigm? My concern is twofold:

• The continuation of multiple inconsistent paradigms is damaging to the
profession, and is holding back changes which could dramatically improve
analyses, especially in the survey sampling school.
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• The current Bayesian paradigm is unable to deal effectively with model
comparisons, and is in serious danger of coming to misleading conclusions
from the use of Bayes factors.

In support of the first point, I have already described the benefits to the survey
sampling school of adopting the multinomial/Dirichlet approach. On damage to
the profession, I have personally been involved as an expert witness in a court
case (Aitkin 1992) in which statisticians advised both the prosecution and de-
fense on the statistical interpretation of evidence for a change in the standard
risk of brain damage from MMR vaccination. The statisticians presented fre-
quentist and Bayesian analyses from which the conclusions were inconsistent.
The three-judge panel later criticised the statisticians for their inability to agree
on the meaning of the evidence – the statisticians contributed nothing to the
evaluation of the case. We cannot be “expert” witnesses in the presence of
conflicting paradigms.

One might argue that the statisticians should have met before the hearing
and thrashed out their differences. While this would be beneficial, and could
be workable for agnostic statisticians, Kuhn’s comments about the arguments
between paradigms are relevant – the statisticians’ paradigms may prevent them
from coming to an agreement.

On the second point, the galaxy data example leads to no consistent con-
clusions across the Bayes factor approaches discussed above, so there is little
danger of misleading conclusions from them, rather, there is no conclusion. For
a specific example of misleading conclusions, we refer to the recent papers by Lee
(2004) and Liu and Aitkin (2008) in the Journal of Mathematical Psychology.

These papers discuss a data set on memory recall and its decay over time.
The data set is made up of 15 annual re-tests of subjects for television pro-
gramme recall, aggregated across subjects and modelled by five different normal
distribution generalized linear models, with response linear regressions on time
and different link functions, different transformations of the time scale, and
a fixed standard deviation of 0.25. These are labelled as linear, exponential,
hyperbolic, logarithmic and power.

Lee integrated the likelihoods for the five models over a common flat prior
for the slope and intercept on the (0,2) square, which covered the areas of
high likelihood under all the models; this was aimed to ensure “fairness” in the
comparison. The preference ordering of models by their integrated likelihoods
– hyperbolic, exponential, linear, power and logarithmic – was quite different
from that by their maximized likelihoods – logarithmic, power, hyperbolic, ex-
ponential and linear – as Lee noted, explaining that the models with the highest
maximized likelihoods had very concentrated contours and so had lower inte-
grated likelihoods than those with diffuse contours.

Liu and Aitkin examined a range of other Bayesian and frequentist model
comparison methods for the recall data. All except the Bayes factor approach
gave the same ordering as that from the maximized likelihoods. Figure 2 shows
the posterior deviance distributions with Lee’s priors for the five models from
10,000 draws.
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Figure 2: Posterior deviances, memory recall data

The distributions are stochastically ordered, and follow very closely their
asymptotic form for regular models with flat priors (Aitkin 2010 p. 53):

−2 logL(θ) ∼ −2 logL(θ̂) + χ2
p,

where p is the model parameter dimension, 2 for all the models. Thus the cdfs of
the models in this example are essentially exponential cdfs with the frequentist
deviances as origins.

A critically important aspect of this result is that it depends on the data
only through the maximized likelihood and the parameter dimension: there is
no specific penalty for model complexity, other than the parameter dimension.
For regular models with flat priors and the same dimensionality, the asymp-
totic ordering of the models is by their maximized likelihoods. This approach
gives conclusions consistent with those of all the other Bayesian and frequentist
criteria for model comparisons, except Bayes factors.

Lee gives a counter-argument supporting the models with diffuse likelihood
contours (p. 314):

It is also clear, however, that the good fits of the logarithmic and
power functions occur at a very narrow set of parameter values, while
the hyperbolic function fits reasonably well at a large number of
parameterizations. These differences in complexity are even clearer
in [his] Fig. 2, which shows contour plots of the same information.
[These plots are also given in Liu and Aitkin and in Aitkin (2010).] It
can be seen that the hyperbolic function fits across a broader range
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of parameter values than the exponential function, which in turn has
a broader range than the linear, power and logarithmic functions. ...

In terms of the balance between goodness-of-fit and complexity, these
results indicate that the power and logarithmic models are capable
of achieving better fit to the data, but are more complicated than
the hyperbolic and exponential functions, because their fit is less
robust across parametric variation.

This curious argument suggests that a model with a flat likelihood – unidentified
– would be preferred to one with very narrow likelihood contours – very well
identified – if it would integrate to a larger value, across the full parameter space
over which it has constant likelihood, than the precise likelihood, which would
be zero over much of the same parameter space.

This is precisely the anomaly caused by the integrated likelihood. Lee con-
cludes (p.315)

... at the estimated level of data precision, the hyperbolic model
constitutes the best balance between fit and inherent complexity,
and is most strongly supported by [the] data.

We argue that these conclusions are unsound, and Lee’s conviction is unsafe;
what is of great concern is that this may be a widespread but latent phenomenon.

6.2 Reactions to the paradigm

Kuhn has discussed the reaction to new paradigms in detail:

(pp. 77 and 81) ... what scientists never do when confronted by
even severe and prolonged anomalies. ...[T]hey do not renounce the
paradigm that has led them into crisis. They do not, that is, treat the
anomalies as counter-instances... They will devise numerous articu-
lations and ad hoc modifications of their theory in order to eliminate
any apparent conflict. ...[E]ven a discrepancy unaccountably larger
than that experienced in other applications of the theory need not
draw any profound response. There are always some discrepancies.
Even the most stubborn ones usually respond at last to normal prac-
tice. Very often scientists are willing to wait, particularly if there
are many problems available in other parts of the field.

(p. 7) The invention of ... new theories regularly, and appropriately,
evokes the same response [of resistance] from some of the specialists
on whose areas of special competence they impinge. For these men
the new theory implies a change in the rules governing the prior
practice of normal science. Inevitably, therefore, it reflects upon
much scientific work they have already successfully completed. That
is why a new theory, however special its range of applications, is
seldom or never just an increment to what is already known. Its
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assimilation requires the reconstruction of prior theory and the re-
evaluation of prior fact, an intrinsically revolutionary process that
is seldom completed by a single man and never overnight.

(p. 151) The transfer of allegiance from paradigm to paradigm is
a conversion experience that cannot be forced. Lifelong resistance,
particularly from those whose productive careers have committed
them to an older tradition of normal science, is not a violation
of scientific standards but an index of the nature of scientific re-
search itself. The source of resistance is the assurance that the older
paradigm will ultimately solve all its problems, that nature can be
shoved into the box the paradigm provides. ... [This] assurance is
what makes normal or puzzle-solving science possible.

(p. 151 quoting Max Planck) A new scientific truth does not triumph
by convincing its opponents and making them see the light, but
rather because its opponents eventually die, and a new generation
grows up that is familiar with it.

It has been argued that the approach to Bayesian model comparisons de-
scribed here is a new paradigm, and is not Bayesian. My view is that it not a
new paradigm, but a new articulation of the Bayesian paradigm following the
solution of a puzzle, not a true anomaly (in Kuhn’s terms). However these are
largely matters of definition.

There have been two reviews of Aitkin (2010) of quite different natures. In
the discussion to be added, I will refer to these and any other reviews then
available, in addition to responding to the discussants.
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