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Chapter 1

Sample surveys - should we
believe what we read?

1.1 Women and Love

A major survey of sexual relationships of 4,500 US women was reported in
the book Women and Love - A Cultural Revolution in Progress, by Shere Hite
(1987).

Some of the statistics reported were staggering. For example:

• 95% of women reported emotional or psychological harassment from their
husband or lover;

• 84% of women were not emotionally satisfied by their relationships;

• 70% of women married five years or more were having sex outside the
marriage;

• 39% of women married 25 years or more had been struck or beaten by a
husband or lover;

• 39% of women never married had been struck or beaten by a husband or
lover.

What are we to make of these statistics?

That depends on how they were obtained. We will look at the sampling
method used in this study, and in other studies. The sampling method has
a critical effect on what we think about the study, and we will discuss the
fundamental concept of “randomness” and its use to achieve a representative
sample. This requires an understanding of simple probability concepts.
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1.2 Would you have children?

The book Statistics: Concepts and Controversies, by David S. Moore, gives
a simpler survey example. Newsday, a Long Island (NY) newspaper, runs an
advice column by Ann Landers. Readers were asked to answer this question:

• If you had your life to live over again, would you have children?

Readers were asked to send a postcard, with a Yes or No answer. Newsday

received nearly 10,000 responses, of which almost 70% said No. What should
we conclude?

Newsday decided to commission a professional nationwide random sample of
parents to ask the same question. The sample polled 1373 parents, and found
that 91% said Yes. What should we conclude?

How can we be sure that a sample is “representative” of the pop-

ulation we aim to investigate?

“Representative” sampling requires that every member of the population has

a known chance of being included in the sample, and that this chance does not

depend on the response being measured. A sampling method that satisfies these
requirements is called unbiased; one that does not is called biased.

How is unbiasedness achieved? In the most formal way, by constructing a list
of all the members of the population, and then drawing the required sample size
using a random mechanism to guarantee the known (frequently equal) chance
of inclusion.

What do we conclude about the two sampling methods used? The second
nationwide survey closely approximates this requirement. Survey organisations
maintain population lists of families and residences based on the Census or
on voter registration, and have standard random mechanisms for selecting the
sample from the list.

The Newsday poll fails this requirement because

• we do not know what population is being sampled (readers of Newsday?)

• we do not know the chance of inclusion of each population member in the
(voluntary) sample.

This is a characteristic feature of voluntary response in general.
On emotional issues, it is common to find that the chance of inclusion in the

sample depends on the strength of feeling on the issue, and may be different for
those with different views on the issue.

1.2.1 Bias in the Newsday sample

Suppose that the population size is 2,000,000. This assumption is not necessary
– we would get the same result with any other population size assumption – but
it makes the calculation simple. Suppose there are really 90% Yes parents and
10% No parents in the population – 1.8 million and 200,000 respectively.
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Suppose our sample of exactly 10,000 contained 3,000 Yes and 7,000 No

parents. Then the chance of being included in the sample was 3,000/1.8 million
= 1/600 for the Yes parents, but 7,000/200,000 = 1/30 approximately for the
No parents.

So a No parent had 20 times the chance of a Yes parent of being included
in the sample – we have oversampled the No responders by a huge factor.

The sample is grossly biased towards No responders.

1.2.2 Bias in the Women and Love sample

What sampling method was used for Women and Love? Hite sent out question-
naires to

• “church groups in 34 states,

• “women’s voting and political groups in nine states,

• “women’s rights organisations in 39 states,

• “professional women’s groups in 22 states,

• “counselling and walk-in centres for women or families in 43 states,

“and a wide range of other organisations, such as senior citizen’s homes and
disabled people’s organisations, in various states.

“In addition, individual women wrote for copies of the questionnaire...”
(p.777) “All in all, 100,000 questionnaires were distributed, and 4,500 returned...”
(p.777)

This is a response rate of 4.5%. What should we conclude? What population
is being sampled?

The implication of the book is that the target population is the US female
population. But the sampling method is very likely to oversample groups with
higher proportions of women with relational difficulties. Since the questionnaires
were sent to groups, we have no idea who actually answered them (they were
anonymous).

The sample is clearly biased because we cannot give the chance of any woman
in the US population being included in the sample.

If the sample is biased, what conclusions can we draw? Since the sampled
population is undefined, we can only regard the sample AS the population.
Hite has information from 4,500 women, and the percentages reported are the
percentages in her sample, which IS the population.

These results have no knowable connection with percentages of the US female
population, and cannot be used to refer to this population. To make such a
connection, we would need a probability sample, in which every woman would
be included with a known probability.
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1.2.3 Difficulties with incomplete data

Hite’s questionnaire introduced a further difficulty. The questionnaire directed
respondents:

”It is not necessary to answer every question! There are seven headings; feel
free to skip around and answer only those sections or questions you choose...”
(p. 787) So the sample size may be different for different questions – even the
percentages responding on different questions may not be comparable within
the study:

• 95% reported emotional or psychological harassment from their husband
or lover; but

• 84% of women were not emotionally satisfied by their relationships;

So it appears that between 11% and 16% of women were harassed by their
husbands or lovers but were nevertheless emotionally satisfied!

These numbers surely are a consequence of non-response to one or other
question. We gain a misleading impression even within the survey by comparing
percentages based on different subsets of respondents.



Chapter 2

Data bases and sampling

2.1 Data bases

Data bases are large collections of data on populations, or important sub-
populations, which can be used to inform policy on social, economic and political
questions. Many administrative data bases (data collected as part of govern-
ment or other official requirements) are now being used for this purpose, and
very extensive data bases are being assembled by companies to assess the char-
acteristics of people buying their products.

Since the data bases are often very extensive, samples are taken from the
data bases, and conclusions about properties of the population in the data base
are to be drawn from these samples. Statistical theory is the theory of how
to relate sample properties to the population properties of interest. Statistical
theory is based fundamentally on probability theory, and in this short course
we will develop a small part of probability theory, and of statistical theory, to
address the relation of sample to population in the simplest case.

For this purpose we will use the StatLab data base, from the book Stat-

Lab: An Empirical Introduction to Statistics, by Hodges, Krech and Crutchfield
(1975). This book was one of the first to use a database to teach probability
and statistical theory, and we will use its sampling method and (public access)
database, though our approach to probability and statistical theory is rather
different.

2.2 The StatLab database

The following description of the data base comes from pp. 318-319 of the Stat-
Lab book.

The StatLab database [called Census in the book] covers 1296 member fam-
ilies of the Kaiser Foundation Health Plan (a prepaid medical care programme)
living in the San Francisco Bay area during the years 1961-72. These fami-
lies were participating members of the Child Health and Development Study
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conceived and directed by Professor Jacob Yerushalmy, in the School of Public
Health at the University of California, Berkeley.

On her first visit to the Oakland hospital of the Health Plan after pregnancy
was diagnosed, each woman was interviewed intensively on a wide range of
medical and socioeconomic matters relating both to herself and to her husband.
In addition, various physical and physiological measures were made. When her
child was born, further data about her and her newborn baby were recorded.
Approximately 10 years later the child and mother were called in for follow-up
testing, interviewing and measurement. In some instances, the husband was
also interviewed and measured.

The 1296 families of the Census are divided into two equal subpopulations:
648 families consisting of a mother, father and female child; and 648 families
of a mother, father and male child. The children were all born in the Kaiser
Foundation Hospital, Oakland California, between 1 April 1961 and 15 April
1963. The Census does not cover any other children who may have existed in
these families.

From the available data, 32 variables were selected for the Census. The 36
pages of the Census list each of these 32 variables for each of the 1296 families.
The first 18 pages cover the families with girls; the second 18 pages cover the
families with boys. Within each of these two sets of pages the families are listed
in order of mother’s age, with the youngest mothers first and the oldest last.

The Census consists of printouts numbered in consecutive dice numbers (i.e.
the Census pages are numbered 11, 12, 13, 14, 15, 16, 21, 22, 23,...,65, 66). Sim-
ilarly, the 36 families on each page are designated in consecutive dice numbers
from 11 to 66. The identification number (ID no.) for any given family consists
of two pairs of dice numbers, the first pair indicating the page and the second
pair indicating the family on the page. To select a family purely at random
from the population of 1296, it is necessary to throw a pair of dice twice. [The
book was sold with a pair of dice, one red, one green.] If, for example, the first
throw gives a red 2 and a green 6, this selects page 26. If the second throw gives
a red 5 and a green 4, this selects family 54 on that page. Thus the ID number
for this family is 26-54.

The 32 variables for each family are grouped by child, mother, father, and
family. Part of the data were collected at the time of birth (1961-63) and the
other data at the time of test (1971-72). The description and codes for each of
the variables are given on the handout.

2.3 Your StatLab samples

We will be generating samples of different sizes from the data base to examine a
number of questions about the population. In this short course we will restrict
ourselves to three questions:

• Do mothers who were smoking at the diagnosis of pregnancy have babies
with lower birthweight than mothers who were not smoking at diagnosis?
[Low birth weight increases risk for babies.]
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• Do mothers who were smoking at pregnancy diagnosis tend to have hus-
bands who were also smokers?

• Do babies with low birth weight tend to have lower intelligence, when
measured as children at age 10?

There are many other social/economic/medical questions which could be
addressed using this data base - that is one of the values of such data bases.

The answers to these questions will be given at the end of the course, from
the full population. But you will be trying to answer these questions from
the random samples you have drawn. The sampling process is to generate a
random sample of 40 families from the database, using the dice-throwing process
described above. The family ID number, and the variables which we are going
to use, are to be filled in on the data sheet supplied. This is set up to provide
two sets of 10 families on the front and back of the data sheet. We will be using
this structure to provide four samples of size 10, two samples of size 20, and one
sample of size 40. The multiple samples of sizes 10 and 20 will show the extent of
the variation between samples for each student, and will also show the variation
among students in the results they obtain: this is a critically important issue in
statistical theory.



10 CHAPTER 2. DATA BASES AND SAMPLING



Chapter 3

Probability

3.1 Representative sampling

Many students are surprised to find that, in their four samples of 10 families,
they did not get exactly five boys and five girls. Since we know that the popu-
lation contains equal numbers of boy- and girl-families, it seems reasonable that
a “representative” sample should also have equal numbers of boys and girls.

However, our “representative” guarantee of “equal chnce” for each family to
be included in the sample does not guarantee an exact match in proportions of
boys and girls between the sample and the population.

In my own four samples of 10 families, I found 4,3,5 and 6 boys. In the
pooled samples of 20 families, there were 7 and 11 boys, with 18 boys in the
complete sample of 40 families. This kind of random variation is constantly
encountered in dealing with random samples from populations. To describe this
variation, we need to develop probability models.

We consider the sampling process step by step. We need some notation. We
denote by B the event of drawing a boy family in the throw of the two dice.
(It is actually only the first die that matters, since the girl families are 11-36
and the boys 41-66.) Since all pages in the data base are equally likely to be
selected, the probability p that a boy family is selected is 18/36 = 1/2.

Formally, if there are N equally likely possible outcomes, and R of these
correspond to the event A of interest, then the probability p of the event A,
written Pr[A] is p = R/N . It follows immediately that:

• if Pr[A] = 0, then A cannot occur, or A is impossible;

• if Pr[A] = 1, then A is certain to occur.

Less formally,

• if Pr[A] is small, say Pr[A] < 0.05, then we say that A is very unlikely to
occur.

• If Pr[A] is large, say Pr[A] > 0.95, then A is very likely to occur.
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However, there is a circularity in this “equally likely” definition of proba-
bility, because we have to know what “equally likely” means to use it. The
assumption of “equally likely” outcoms when throwing a die is a model as-
sumption that the die is perfectly symmetrical and balanced, so that no face is
favoured to show more than any other face. We make this assumption in the
absence of any evidence to the contrary, but if we carry out very large-scale
studies of dice, by throwing them a very large number of times, we may be able
to identify small departures from equal frequency of the six faces.

So the probability of the event B1, that we draw a boy family at the first
throw of the dice, is

p = Pr[B1] = 1/2,

and correspondingly

Pr[G1] = 1 − p = 1/2.

Now we throw the dice again to draw a second family. The family we chose at
the first draw remains in the population and could be drawn again, though that
would be very unlikely – its probability, by the same argument, would be 1/1296.
Sampling the population in this way is called sampling with replacement. (What
would happen if we did draw the same family again? We would set it aside and
draw another one. Practical surveys are always drawn without replacment, but
the two methods have very similar properties if the population is large compared
to the sample.)

Since the population has not changed, and we assume that the outcome of
the second throw is independent of that at the first throw, the probability of a
boy family at the second throw is again p = 1/2 = Pr[B2], and Pr[G2] = 1−p =
1/2. What possible samples of 2 families could we have? We denote them by
B1B2, B1G2, G1B2, G1G2.

What are the probabilities of these possible outcomes? Because of the inde-

pendence assumption, we can multiply together the probabilities of the separate
events:

Pr[B1B2] p.p = p2 two boys
Pr[B1G2] p.(1 − p) one boy, one girl
Pr[G1B2] (1 − p).p one boy, one girl
Pr[G1G2] (1 − p).(1 − p) = (1 − p)2 two girls

In terms of the number r of boy families in the sample, we have:

Number of boys r 0 1 2
Probability (1 − p)2 2p(1 − p) p2

At p = 1/2 1/4 1/2 1/4

This array of the number of boy families and their probabilities is called a
probability distribution, of the number R of boy families in a sample of n = 2
families from the STATLAB population.
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Event Probabilities r Boys Probability of r boys
B1B2B3 p3 3 p3

B1B2G3 B1G2B3 G1B2B3 p2(1 − p) 2 3p2(1 − p)
B1G2G3 G1B2G3 G1G2B3 p(1 − p)2 1 3p(1 − p)2

G1G2G3 (1 − p)3 0 (1 − p)3

We can extend this by direct enumeration to any sample size, though this
quickly becomes tedious. For n = 3, we have possible samples:

At p = 1/2, the probabilities of 3, 2, 1, 0 boys are 1/8, 3/8, 3/8, 1/8.
These probability distributions are particular cases of a general family, the

binomial distribution (binomial = two names). For a general n and p, this gives
the probability of r “success” events in n “trials” with “succes”s probability p,
as

Pr[r successes | n, p] =

(

n

r

)

pr(1 − p)n−r,

where
(

n

r

)

is the binomial coefficient representing the number of arrangements

of the r “successes” and n − r “failure”s.
For the sample sizes n = 10, 20 and 40, and p = 1/2, the binomial distribu-

tions are:

Table 3.1: binomial distribution, n = 10, p = 1/2
r 0 1 2 3 4 5 6 7 8 9 10

Pr[r] .001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001

Table 3.2: binomial distribution, n = 20, p = 1/2
r 3 4 5 6 7 8 9 10

Pr[r] .001 .005 .015 .037 .074 .120 .160 .176
r 11 12 13 14 15 16 17

Pr[r] .160 .120 .074 .037 .015 .005 .001

3.2 Properties of these distributions

• The probability of an exactly equal split of the sample between boy and
girl families decreases with the sample size n, from 0.246 – almost 1/4 –
at n = 10 to 0.125 – 1/8 at n = 40. Most samples will not have equal
numbers of boy and girl families.

• The probability of having between 40% and 60% of the sample as boy
families increases with n.

A sample of 160 (well beyond our sample sizes) is almost certain to have
between 40% and 60% boy families in the sample.
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Table 3.3: binomial distribution, n = 40, p = 1/2
r 12 13 14 15 16 17 18 19 20

Pr[r] .005 .011 .021 .037 .057 .081 .103 .119 .125
r 21 22 23 24 25 26 27 28

Pr[r] .119 .103 .081 .057 .037 .021 .011 .005

n r values Probability
10 4– 6 0.656
20 8–12 0.736
40 16–24 0.845
80 32–48 0.943

160 64–96 0.991

• Large samples provide more precise information than small samples : as
the sample size increases, we obtain more precise information about the
population.



Chapter 4

Statistical inference

In sampling boy families, we know the proportion of boy families in the popula-
tion, and we can therefore give the probability of any particular number of boy
families in the sample.

But the point of sampling is to obtain information about populations and
their properties that we don’t know. For example:

• What proportion of mothers in the STATLAB population were smoking
when their pregnancy was diagnosed?

Check your samples of 10, 20 and 40. What are we able to say about the
population proportion from these sample results?

The theory of probability deals with the properties of (unobserved) samples

which can be drawn from known populations.

The theory of statistical inference deals with the properties of unknown pop-

ulations from the (observed) samples which have been drawn from them.

4.1 Simple approaches

In my samples of 10, I found 4, 3, 5 and 6 boys. It seems obvious that we should
estimate the proportion of boy families in the population by the proportion in
the sample, the sample proportion of boy families.

In my samples of 10, this proportion is 0.4, 0.3, 0.5 and 0.6. In the combined
samples of 20, it is 0.35 and 0.55. In the full sample of 40, it is 0.45. We know
the true proportion is 0.5. Our sample estimates vary around the true value –
this is an inherent feature of random sampling.

For the mothers in my sample of 40, 13 were smoking at the pregnancy
diagnosis, a sample proportion of 0.325. Of the fathers, 22 were smoking, a
sample proportion of 0.55. What can we say about the population proportions
of mothers and fathers who were smoking?
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4.2 Binomial distribution tables

The tables of the binomial distribution for n = 10 and n = 20 which I have
given you allow us to get some feeling for what our population and samples
could be like. (The table for n = 40 is too extensive for one page.)

The tables are read downwards to find the probabilities of each number of
“successes”, given the success probability p. So for p = 0.5, reading down the col-
umn gives the probabilities of 0, 1, 2, ..., 9, 10 “successes”, as .001, .010, ..., .010, .001
as we previously described. In the population the proportion of boy families
is 0.5, so the probabilities of 3, 4, 5 or 6 boy families in the sample of 10 is
.117, .205, .246 and .205. Drawing a sample of n = 10 with r = 1 or 9 boy
families is very unlikely (probability 0.010) relative to the probability of 3, 4, 5,
6 or 7. No-one in the last class drew such a sample but it can happen, though
rarely, in a large class.

In a sample of n = 20 from p = 0.5, 5 or fewer boy families, or 15 or more,
have correspondingly low probabilities. Again no-one in the class had such a
sample -- most people had between 7 and 13 boy families.

So in random sampling from a population, the observed sample proportion
of “successes” varies (across different random samples) around the true popula-
tion proportion, with a variability which decreases with increasing sample size.
An “estimate” of the population proportion is the sample proportion, but its
variability has to be quantified – expressed through probability.

Now we consider the proportion of the mothers smoking at pregnancy diag-
nosis. My samples of n = 10 had 4, 3, 3 and 4 smoking mothers. How do we
use the sample value to draw conclusions about the population proportion?

We use the binomial tables again, but now p is unknown - we know only the
number of successes r. For r = 4, we read across the table – we can find the
probability of 4 successes for each tabled value of p.

The first entry on this line is .001 at p = .05. If the true proportion of
smoking mothers was .05 = 1/20, it would be very unlikely to find 4 smoking
mothers in a sample of 10, a sample proportion of 40%. At the other end of
the range, if p = 0.85 the probability of 4 smoking mothers is again .001 – very
unlikely.

The maximum probability of 4 smoking mothers occurs at p = 0.4 – it is
0.251. Not surprisingly, what we observe in the sample has the highest probability
when the population proportion is the same as the sample proportion!

However other values of p also give high probability – near the maximum –
to r = 4. At p = 0.35 or 0.45, the probability of r = 4 is 0.238, so these values
of p are also very plausible.

4.3 Confidence intervals

How do we decide what values of p could have led to our observed sample
proportion, and which could not? In statistical theory we use the ratio, denoted
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by RL, of the probability at p to its maximum possible value; small values of
this ratio make implausible the corresponding value of p.

How small a value of the ratio RL corresponds to an implausible value of p?
This is a partly arbitrary decision; again in statistical theory it is conventional
to consider the value of p to be implausible if the ratio RL is less than 0.15 –
we would be unlikely to obtain the sample if this value of p were the population
value.

At r = 4, the maximum probability is 0.251 at p = 0.4. For what values of
p is the ratio RL = Pr[r = 4 | p]/ Pr[r = 4 | 0.4] less than 0.15? If we divide the
row entries for r = 4 by the maximum probability 0.251, we have

p .05 .10 .15 .20 .25 .30 .35 .40
RL .004 .044 .160 .351 .582 .798 .948 1.0

p .45 .50 .55 .60 .65 .70 .75 .80 .85
RL .950 .818 .636 .444 .275 .147 .065 .022 .005

Values of p less than 0.15 or more than 0.7 (approximately) have relative
probabilities of 4 successes of less than 0.15. A finer tabulation in steps of 0.001
in p shows that values of p of 0.147 and 0.698 give relative probability 0.15. So
values of p in the range (0.147, 0.698) have probabilities of 4 successes which are
more than 0.15 of the maximum probability. A simple formula provides an easy
way of obtaining this range approximately without needing the tables (which
become very large for larger n) or a computer. The range can be calculated
using only the observed proportion p̂ = r/n and n: the end-points of the range
are

p̂ + λ2/(2n)

1 + λ2/n
± λ

√

p̂(1 − p̂)/n + λ2/(4n2)

1 + λ2/n
.

where λ = 2. With p̂ = 0.4 and n = 10, this gives the interval approximately as
(0.165, 0.692), which agrees reasonably well with the exact range (0.147, 0.698).
In the conventional language of statistical theory this interval of values of p is
called a 95% confidence interval. (The term confidence comes from the obser-
vation that with many students generating this interval from their independent
samples, only about 95% of the intervals will cover the true value of p – the
other 5% will not.)

The samples with r = 3 give the interval (0.106, 0.609). These intervals for
n = 10 are very wide – from a sample of 10 we learn very little about p. What
about n = 20? In my two samples of 20 I had 7 smoking mothers in each. We
read the binomial table for n = 20 and r = 7. The maximum probability is .185
at p = 0.35, corresponding to the sample proportion p̂ = 0.35. Dividing the row
values by 0.185 give this table:

The value 0.15 of the relative probability occurs between p = .15 and .2, and
between .55 and .6. A finer tabulation gives the values 0.169 and 0.567. The
formula gives (0.179, 0.571). This interval is much shorter than that for n = 10.

For my full sample of n = 40 with r = 14 (p = 0.35 again), the formula gives
(0.219, 0.508) and the exact interval is (0.216, 0.503), which is again shorter.
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p .10 .15 .20 .25 .30 .35 .40
RL .011 .087 .296 .610 .891 1.0 .900

p .45 .50 .55 .60 .65 .70
RL .662 .401 .199 .079 .024 .006

Note that the length of the interval is nearly proportional to 1/
√

n – a sample
four times as large (n = 40) has an interval approximately half the length of
that for n = 10 (.287 vs 0.551).

4.4 Formal Theory

The binomial distribution gives the probability of r successes in n trials with
success probability p at each trial:

Pr[r successes|n, p] =

(

n

r

)

pr(1 − p)n−r, r = 0, 1, ...n.

Probability theory enables us to make predictive statements about the relative

frequency or proportion of events which we will observe in repeated “experi-
ments” of performing the trials. It gives a mathematical representation of the
variability observed when we draw different random samples from the same
population.

The probability above, written Pr[r | n, p] – the probability of r given n
and p – is a function of the argument r – as r takes all its possible values
0, 1, 2, ..., n, Pr[r | n, p] takes its probability values, which sum to 1 over all
values of r, since one of them must occur.

When the sample has been drawn, we have now observed the r value – we
have the data. The value of p is unknown, and we want to use the observed value
of r to draw conclusions about it. Now we have to consider all the probability
distributions for r for different values of p which give appreciable probability
to what we have observed. For this purpose we define the likelihood function,
which is formally identical to the probability above, but is a function of p, not
of r:

L(p | n, r) =

(

n

r

)

pr(1 − p)n−r, 0 ≤ p ≤ 1.

This definition formalises our reading of the binomial tables across the row
instead of down the column – each row of the table is the likelihood function of
p for the given number of successes r.

The value of p which maximises the likelihood function is p̂ = r/n; this is
called the maximum likelihood estimate of p.

The ratio of the likelihood to its maximum is called the relative likelihood

function, written
RL(p) = L(p | n, r)/L(p̂ | n, r).

(We use the same notation RL as before, but it is now represented as an explicit
function of p.) This has a maximum value of 1 at p = p̂ – it is just a rescaling
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– a scale change of the likelihood function. Our conclusions about the true
population value of r are based on the function RL(p) : if this is “small” for some
values of p – that is, much less than 1 – then these values of p are “implausible”,
in the sense of giving relatively low probability to what we observed. This is
formalised in the idea of a confidence interval – an interval of p which contains
the “plausible” values of p, that is, those with high relative likelihood.

The figures show the relative likelihoods for my samples, for r = 3, 4, 5 or
6 successes (boy families) out of n = 10, for r = 7 and 11 boy families out of
n = 20, and for r = 18 boy families out of n = 40. The straight line is drawn
at a relative likelihood of 0.15; this gives an interval of p with 95% confidence

coefficient; this term is used because, if many such intervals are constructed
from different random samples, approximately 95% of them will cover the true
population value, while 5% will not. For greater confidence we need a smaller
relative likelihood than 0.15; a relative likelihood value of 0.037 will give 99%

confidence in the intervals constructed – only 1% of these intervals will not cover
the true value.

With modern computing software these intervals are easily calculated on
a computer. Most text books and practical users however rely on a simpler
approximation to the 95% interval than the one we have given; the simpler
approximation is

p̂ ± 2
√

p̂(1 − p̂)/n.

This interval is symmetric about p̂ and is easily calculated on a hand calculator.
Here are the exact, the simple and the more accurate approximate 95% intervals
for my sample results for the proportion of smoking mothers:

Table 4.1: 95% confidence intervals for p
r n Exact Accurate approx. Simple approx.
3 10 (0.085, 0.605) (0.106, 0.609) (0.010, 0.590)
4 10 (0.147, 0.698) (0.165, 0.692) (0.090, 0.710)
7 20 (0.169, 0.567) (0.179, 0.571) (0.137, 0.563)

14 40 (0.216, 0.503) (0.219, 0.508) (0.199, 0.501)

The simple approximation is quite inaccurate for small n and interval end-
points near 0 or 1. The “accurate” approximation is much better but is not
very accurate for n = 10.

4.5 Derivation of the approximate confidence in-

terval

How do we know theoretically that the approximate confidence interval works?
It is based on a mathematical approximation to the likelihood function, or ac-
tually to the natural logarithm of the likelihood function. We have

L(p) =

(

n

r

)

pr(1 − p)n−r
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for r successes in n trials. Taking the natural log, we have the log-likelihood

function

ℓ(p) = loge L(p) = log

(

n

r

)

+ r log(p) + (n − r) log(1 − p).

We approximate the log-likelihood by a quadratic function of p, of the form

ℓ∗(p) = a · (p − p̂)2 + b,

where a and b are determined so that the two functions, and their first and
second derivatives, agree at p = p̂. At p = p̂,

ℓ(p̂) = log

(

n

r

)

+ r log(p̂) + (n − r) log(1 − p̂)

ℓ′(p) =
r

p
− n − r

1 − p

ℓ′(p̂) = 0

ℓ′′(p) = − r

p2
− n − r

(1 − p)2

ℓ′′(p̂) = − n

p̂(1 − p̂)

ℓ∗(p̂) = b

ℓ∗
′

(p) = 2a(p − p̂)

ℓ∗
′

(p̂) = 0

ℓ∗
′′

(p) = 2a

So equating terms for ℓ(p) and ℓ∗(p),

b = log

(

n

r

)

+ r log(p̂) + (n − r) log(1 − p̂)

a = − n

2p̂(1 − p̂)

and the approximation is, for the log-likelihood,

ℓ(p)
.
= ℓ∗(p) = log

(

n

r

)

+ r log(p̂) + (n − r) log(1 − p̂) − n(p − p̂)2

2p̂(1 − p̂)
,

and the corresponding approximation for the likelihood is

L(p)
.
= L∗(p) =

(

n

r

)

p̂r(1 − p̂)n−r · exp

[

−n(p − p̂)2

2p̂(1 − p̂)

]

.
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The relative likelihood is then approximated by

RL(p)
.
= RL∗(p) = L∗(p)/L∗(p̂)

= exp

[

−n(p − p̂)2

2p̂(1 − p̂)

]

.

The interval for p for 95% confidence is defined by RL(p) = 0.15. If we use the
approximation RL∗(p) = 0.15, this is equivalent to

loge RL∗(p) = loge 0.15

which is

−n(p − p̂)2

2p̂(1 − p̂)
= −1.9,

which is equivalent to

(p − p̂)2 = 3.8
p̂(1 − p̂)

n
,

or

p = p̂ ± 1.95

√

p̂(1 − p̂)

n
,

and we round off the value 1.95 to 2.
The more accurate approximate interval comes from replacing a in the ap-

proximating log-likelihood by a′ = −n/[2p(1 − p)], where p is not replaced by
p̂.

4.6 Sample design

We often want to be able to estimate a population proportion to a given degree of
precision. For example, we may want a 95% confidence interval for a proportion
to be not more than a specified length. This usually requires a quite large
sample, for which the simple approximation for the confidence interval is quite
accurate.

Suppse we want the 95% confidence interval for p to be not more than 0.04

in length. The simple approximate interval is p̂± 2
√

p̂(1−p̂)
n

, and if this is to be

of length not more than 0.04, we must have
√

p̂(1 − p̂)

n
< 0.01,

which means that n > 104 · p̂(1− p̂). Since the maximum value of p̂(1− p̂) is 1/4,
the interval length requirement will be satisfied, whatever the sample outcome,
if n > 2500. In general, if the 95% confidence interval for p is to be of length
not more than δ, then this is guaranteed if the sample size exceeds 4/δ2.

We thus have a solution to the problem of inference about a single population
proportion, including the sample size required for a specified precision. We now
want to extend this more generally.
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Chapter 5

Two-population problems

5.1 Relationships

In the first assignment the last question asked whether fathers’ and mothers’
smoking was related. How do we investigate relationship questions?

For two binary variables, this is relatively simple. We can stratify, or divide,
the population into two sub-populations: families with a smoking father, and
those with a non-smoking father. In my sample of 40 families, there were 22 with
a smoking father, and 18 with a non-smoking father. In the 22 smoking-father
families, there were 10 in which the mother also smoked. In the 18 non-smoking
father families, there were 3 in which the mother smoked.

Let pFS be the (sub-)population proportion of smoking mothers in the sub-
population of smoking fathers. We call pFS a conditional probability – it is the
probability of a smoking mother, given that the father smokes.

We write similarly pFNS for the proportion of smoking mothers in the sub-
population of non-smoking fathers – pFNS is the conditional probability of a
smoking mother given that the father is a non-smoker.

If the father smokes, my sample proportion of smoking mothers is 10/22 =
0.45 which is the sample estimate pFS . If the father does not smoke, my sample
proportion of smoking mothers is 3/18 = 0.17. This is much smaller than 0.45
– it appears that if the father does not smoke, a smaller proportion of mothers
smoke than if the father does smoke. We say that mothers and fathers smoking
appears to be positively associated, or positively correlated – if one smokes, the
other is more likely to smoke.

However, as with all samples from populations, these estimates of the sub-
population proportions vary across different random samples, and so we need
a method to decide whether the difference in conditional proportions we see in
the sample reflects a real difference in the populations.

23



24 CHAPTER 5. TWO-POPULATION PROBLEMS

5.2 Confidence intervals for a difference in pro-

portions

We could construct confidence intervals for the sub-populations proportions
from our samples. Using the accurate approximation method, the 95% con-
fidence interval for pFS is (0.266, 0.657), and the simple approximation gives
(0.243, 0.667), while the approximations for pFNS are (0.057, 0.397) and (−0.009,
0.343). The last approximation gives an impossible negative endpoint, though
we know that any proportion p must lie in the range (0,1). The simple ap-
proximation breaks down from the small sample size and the low proportion
pFNS .

Since these intervals overlap in the interval (0.266 – 0.397), it appears that
the two population proportions could be equal. However we really want a con-
fidence interval for the difference pFS − pFNS . Obtaining this interval requires
more theory than we will develop, but the approximate result is very simple,
and is an extension of the simple approximate method for a single p.

An approximate 95% confidence interval for pFS − pFNS is

p̂FS − p̂FNS ± 2

√

p̂FS(1 − p̂FS)

nFS

+
p̂FNS(1 − p̂FNS)

nFNS

.

The first term is the difference between the observed proportions, and the second
is the square root of the sum of the terms in the square roots of the separate
confidence intervals.

For my sample this is

0.455−0.167±2

√

0.455 ∗ 0.545

22
+

0.167 ∗ 0.833

18
= 0.288±0.276 = (0.012, 0.564).

The interval extends from just above zero to 0.564 – it is possible, though at
the extreme of acceptability, that there is no difference between pFS and pFNS ,
but it is also possible that they could differ by a large amount, as much as 0.56
at the other extreme of acceptability.

Our small samples in each sub-population do not give much precision but
my sample suggests pretty strongly that there is a positive association in the
population. Yours will vary from this result ... The population reality will be
revealed!

5.3 Population breakdowns

The true population structure is as follows:
The difference in proportion of mothers smoking, between smoking fathers

and non-smoking fathers, is 0.483−0.232 = 0.251. This is a substantial difference
– the father’s smoking behaviour affects the mother’s (or is it the other way
around?). We can break this table down by the sex of the child:
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Table 5.1: Population smoking
Father smoking

Yes No Total
Mother Yes 345 135 480

smoking No 370 446 816
Total 715 581 1296

p 0.483 0.232

Table 5.2: Population smoking by sex of child
Girl child Boy child

Father smoking Father smoking
Yes No Total Yes No

Mother Yes 190 67 257 155 68 223
smoking No 178 213 391 192 233 425

Total 368 280 648 347 301 648
p 0.516 0.239 0.447 0.226

The proportions of smoking mothers in the “father smoking” category are
different – 0.52 in the girl baby and 0.45 in the boy baby sub-populations. Is
this important? This is a genetic and environmental issue – is it possible that
the relation could be the other way around – that the smoking behaviour of
father and mother could affect the sex of the child? That is, that the smoking
behaviour of the parents could change the probability of the child being a boy?
Such questions are common in epidemiology – the study of diseases in human
populations – where the same kind of data collected. We find cases with the
disease or condition, and look for causal factors which might cause or explain

the disease or condition, by comparing the frequency of a causal factor amongst
the cases with the frequency of the factor amongst controls – people who are
normal, or healthy, without the disease or condition.

Observational studies of this kind are called case-control studies. Since there
is no randomisation of people to “case” or “contro” condition, differences be-
tween these groups may be due to many other possible factors.

Studies of new drugs and their effectiveness in treating patients are carried
out in a very controlled way, in designed studies called Randomised Clinical

Trials.
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Chapter 6

The Randomised Clinical
Trial(RCT)

6.1 Definition

An important application of statistical inference using the binomial distribution
is to the comparison of new medical or surgical treatments for disease or illness
in a randomised clinical trial. Such trials have certain characteristic features:

• A new treatment which has found to be effective in small studies on se-
lected patients is to be evaluated in a large study, compared with the
current best treatment.

• Patients taking part in the study are assigned to receive either the new
treatment or the current best treatment. Assignment to one treatment or
the other by randomisation: in the simplest form (not used in practice)
by tossing a coin for each patient – heads means the new treatment, tails
means the current best treatment.

• The treatment received by the patient appears to be the same, so the
patient is not aware of which treatment her or she is receiving. This
requires informed consent by the patient in advance: he or she must be
told what the treatments are, and that he or she will be randomised to
one or the other treatment.

• With new drug treatments, the pills or capsules are made to look the same
for each treatment, though for the current best treatment group the pill
may have no active component – it may be an inert placebo.
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6.2 Example – RCT of depepsen for the treat-

ment of duodenal ulcers (1969)

This study was carried out at the Royal North Shore hospital in Sydney by Pro-
fessor D.W. Piper and co-workers. The drug depepsen (a trade name for sodium
amylosulphate) had been found effective in the treatment of gastric (stomach)
ulcers, and it was believed that because of its known physiological action in the
treatment of this condition, and the similarity of the two conditions, it should
also be effective for duodenal ulcers. The criterion for “success” of the treat-
ment was taken as the complete healing of the ulcer within a period of 8 weeks
after the beginning of treatment. The existence of an ulcer, and its healing,
were positively identified by fibre-optic duodenoscopy, in which a flexible tube
is swallowed by the patient, and the lining of the duodenum examined visually
through the optical tube.

The standard (current best treatment) for duodenal ulcers was then sedation
and bed rest. About 50% of patients recovered, that is healed completely in
8 weeks, with this treatment alone, without any additional drug treatment.
However this proportion could not be assumed to apply to the hospital subjects
in the study – it had to be assessed from patients randomly assigned to the
control group receiving the current best treatment.

The study encountered a difficulty – the drug depepsen was very expensive to
produce, and only 20 doses were available for the trial, so only 20 patients could
be treated with depepsen. The dose given in the depepsen treatment group was
5ml containing 500mg of depepsen, to be taken six times daily, one and three
hours after each main meal. Patients randomised to the placebo control group
received a “dose” of 5ml of flavoured liquid at the same frequency.

At the end of the eight week period, duodenoscopy was performed again to
determine whether the ulcer had completely healed. 20 patients were randomly
assigned to the treatment group and 18 to the control group, but three patients
had to be excluded from the study because they did not comply with the protocol
– the instructions for the treatment – they all took all the medication in the
first week. Two of these were in the treatment group and one in the control
group. Of the 35 remaining patients, 13 of the 18 receiving depepsen healed,
while 10 of the 17 receiving placebo healed. Does this indicate a real superiority
in healing of depepsen over placebo?

Classifying the patients by treatment and recovery, we have the 2 x 2 table:

Table 6.1: Clinical trial of depepsen
Depepsen Placebo Total

Healed 13 10 23
Not healed 5 7 12

Total 18 17 35

Write pD for the probability of recovery with depepsen, and pP for the
probability of recovery with placebo. Then p̂D = 13/18 = 0.722, and p̂P =
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10/17 = 0.588. A higher sample proportion of patients recover with depepsen,
but is this true in the population, or could it be that pD = pP , or pD < pP ?
We construct a confidence interval to answer this question.

The approximate 95% confidence interval for pD − pP is

pD − pP ∈ p̂D − p̂P ± 2

√

p̂D(1 − p̂D)

nD

+
p̂P (1 − p̂P )

nP

= 0.134± 2

√

0.722 ∗ 0.278

18
+

0.588 ∗ 0.412

17
= 0.134± 0.319

= (−0.185, +0.453).

So the difference in recovery proportions in the two populations could be as
much as 0.453 in favour of depepsen, or as much as 0.185 in favour of placebo.
Our trial is so small that this small difference in sample proportions is a poor
indicator of the difference in the population proportions.

So this trial is inconclusive, as are many small trials – the sample sizes are
too small to give any precision in the difference in the response proportions.
How large would the trial need to be to find that this difference did indicate the
superiority of depepsen?

We can work this out using the same method as for a single proportion. We
have as before p̂(1 − p̂) ≤ 1/4 for all p, and assuming nD = nP = n, we have

√

p̂D(1 − p̂D)

nD

+
p̂P (1 − p̂P )

nP

≤
√

1

4n
+

1

4n
=

√

1

2n
.

So if p̂D − p̂P > 2
√

1
2n

, the 95% confidence interval will not include zero. This
means

0.134 >

√

2

n
,

so that
√

n

2
>

1

0.134
,
√

n >

√
2

0.134
, n >

2

0.1342
= 111.4.

So in a large trial with 112 patients in each of the treatment and control groups,
an observed difference of 0.722−0.588 would indicate the superiority of depepsen
over placebo, because the 95% confidence interval would not include zero. The
actual sample sizes are less than 1/6 of the required size – the trial was far too
small to establish this difference as real.

Soon after this trial, a different drug treatment for duodenal ulcers – cime-
tidine (trade name Tagamet) – was found to be effective, and trials of depepsen
for the treatment of duodenal ulcers were abandoned.

In the last few years, these drug treatments which are based on reducing
acidity in the stomach have been replaced by an entirely different treatment
with antibiotics – it was discovered that most ulcers develop from a bacterial
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infection which responds almost immediately to antibiotic drug treatment –
many ulcers heal completely in one week!



Chapter 7

Measuring the strength of
association

7.1 Measures of association

We frequently want to express the strength of association between two binary
variables by a single number – a measure of association on a common scale.
Consider the association between mothers’ and fathers’ smoking. For the pop-
ulation we have:

Table 7.1: Parents’ smoking
Father smoking

Yes No Total
Mother Yes 345 135 480

smoking No 370 446 816
Total 715 581 1296

We would like the scale for our measure of association to range from −1
to +1, these extremes representing complete negative association and complete
positive association, with the midpoint 0 representing no association.

What does complete association mean? Suppose the table looked like Table
7.2. Then every couple either smokes, or does not smoke – the mother and

Table 7.2: Parents’ smoking – complete positive association
Father smoking

Yes No Total
Mother Yes 715 0 715

smoking No 0 581 581
Total 715 581 1296
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father have identical smoking behaviour. We want this pattern to correspond
to an association of +1.

Now suppose the table looked like Table 7.3. Now if one parent smokes, the

Table 7.3: Parents’ smoking – complete negative association
Father smoking

Yes No Total
Mother Yes 0 581 581

smoking No 715 0 715
Total 715 581 1296

other does not – we have identically reversed smoking behaviour. We want this
pattern to correspond to an association of −1.

Now suppose the table looked like this:

Table 7.4: Parents’ smoking independent
Father smoking

Yes No Total
Mother Yes 265 215 480

smoking No 450 366 816
Total 715 581 1296

From our conditional probability approach we have

pFS = 265/715 = 0.370, pFNS = 215/581 = 0.370,

so it makes no difference, to the probability of the mother smoking, whether
the father is smoking or not. We want this pattern, of independence of fathers’
and mothers’ smoking, to correspond to an association of zero.

7.2 The correlation coefficient

We now adopt a standard notation for the 2 x 2 contingency table:

Table 7.5: Parents’ smoking – in general
Father smoking

Yes No Total
Mother Yes a b a + b

smoking No c d c + d
Total a + c b + d a + b + c + d

We denote the “cell” entries in the table by , b, c and d. If we condition on
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father’s smoking, we have for the probability of the mother smoking,

pFS =
a

a + c

pFNS =
b

b + d

pFS − pFNS =
a

a + c
− b

b + d

=
a(b + d) − b(a + c)

(a + c)(b + d)

=
ad − bc

(a + c)(b + d)
.

If we consider the table the other way around, and ask what is the effect of
mother’s smoking on father’s smoking, we have

p′MS =
a

a + b

p′MNS =
c

c + d

p′MS − p′MNS =
a

a + b
− c

c + d

=
a(c + d) − c(a + b)

(a + b)(c + d)

=
ad − bc

(a + b)(c + d)
.

The numerator is the same, but the denominator is different. We now define
the correlation coefficient of the two binary variables, denoted by ρ, as

ρ =
ad − bc

√

(a + b)(c + d)(a + c)(b + d)
=

√

(pFS − pFNS)(p′MS − p′MNS).

The correlation is symmetric in the two variables. Its value for the smoking
status is

ρ =
345 · 446 − 135 · 370√

480 · 816 · 715 · 581
= 0.258 =

√
0.251 · 0.266,

where 0.251 and 0.266 are the differences in conditional probabilities in each
direction.

It is convenient to have a verbal scale to interpret the correlation coefficient.
We say that 0 < ρ < 0.3 is a low (positive) correlation, 0.3 ≤ ρ < 0.6 is a
moderate (positive) correlation, and 0.6 ≤ ρ < 1 is a high correlation, with
similar definitions for negative correlations.

This definition of the correlation coefficient applies to the population. We
can define correspondingly the sample correlation coefficient, denoted by r. For
my sample of 40, we have the corresponding sample correlation coefficient:
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Table 7.6: Parents’ smoking – my sample
Father smoking

Yes No Total
Mother Yes 15 2 17

smoking No 8 15 23
Total 23 17 40

r =
15 · 15 − 2 · 8√
17 · 23 · 23 · 17

= 0.535 =
√

(15/17− 8/23) · (15/23− 2/17) =
√

0.535 · 0.535.

The sample correlation in this sample is equal to the conditional probability
differences which are the same. The sample correlation is far away from the
true population correlation: sample correlations vary substantially in different
small random samples.
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Continuous Variables

8.1 Definitions

So far we have considered only binary variables, taking one of two values. How-
ever most of the variables in the StatLab database, and in practical surveys and
experiments, are not binary, but are either categorical with more than two cate-
gories, or “continuous”, measured on a continuous scale, like birth weight, age,
or income. In theory, any value of these “continuous” variables is possible, but
the values we can record are limited by the precision of the measuring instru-
ment which records them. So birth weight is recorded to the nearest 0.1 pound
(though it was actually measured in pounds and ounces), mother’s weight to
the nearest pound, and family income in $100 units.

If we tabulate the frequency of each possible value as a “bar chart”, we ob-
tain a histogram or frequency diagram of the population values for the variable.
Figure 1 shows a histogram of mothers weight for girls in the STATLA Bpopu-
lation. The figure is very “spiky”, as many possible values have no mothers and
others (particularly at “round” values like 150 and 165) have many mothers.

8.2 Population mean and median

We will not be concerned with this amount of detail in the histogram, and
will be content with some overall summaries of the population histogram. We
first define some notation. Let the possible values of the variable Y in the
population be represented by Y(1), Y(2), ..., Y(D) where these are in increasing
order, from the smallest Y(1) to the largest Y(D). The number of values of Y(I)

in the population will be written NI , so the sum of the NI over the range
I = 1, 2, ..., D is the population size N : we write N =

∑D

I=1 NI . If we divide
each NI by the population size N we obtain the proportion of the values of Y(I)

in the population: we define

pI = NI/N
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to be the population proportion of the value Y(I). If we add up, or cumulate, the
population proportions pI , we obtain the cumulative proportions CI :

CI =
∑

J≤I

pJ =
∑

J≤I

NJ/N.

Figure 2 shows the cumulative proportions for mothers weight for girl babies.
It is quite smooth, although Figure 1 is very rough.

We now define two commonly-used summary quantities. The population

(arithmetic) mean of the variable Y is denoted by the symbol µ (the Greek
letter “mew”) with a subscript for the variable:

µY =

D
∑

I=1

NIy(I)/N

=

D
∑

I=1

pIy(I);

it is the simple average of all the values in the population, which is equal to the
weighted average of all the possible values, weighted by their proportions in the
population.

The population median of the variable Y , denoted by νY (the Greek letter
“new”), is (roughly) the value below and above which 50% of the population
lie. More precisely, νY is the value of Y , say Y(K), such that CK−1 < 0.50 but
CK ≥ 0.50. So as Y increases, the cumulative proportion increases also, and
the median is the value of Y at which the cumulative proportion changes from
being less than 0.5 to being greater than or equal to 0.5.

For the mother’s weight population, the mean mother weight is 130.9 pounds
and the median is 128 pounds. These are quite close, and they are often close
for symmetrical populations of variable values.

Figure 3 gives the population histogram for boy birth weights. It is quite
symmetrical. The mean boy birth weight is 7.64 pounds and the median is 7.60
pounds.

8.3 Sample Median

Given a sample from the population with measured values of a continuous vari-
able, we define the sample median analogously. We sort the observations into
increasing order, and then find the “middle” observation. The definition of the
sample median is slightly different depending on whether the sample size n is
even or odd. If it is odd, then we define r = (n+1)/2, and the sample median is
the r-th observation in increasing order. So if n = 39 for example, then r = 20,
and the sample median is the 20-th observation in increasing order.

If n is even, define r = n/2, and the sample median is the average of the
r-th and (r + 1)-th observations in increasing order. So if n = 40, the median
is the average of the 20-th and 21-st observations.
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So the sample median defines a “cut” of the sample into “hih” and “low” val-
ues – we can convert the continuous variable into a binary variable: “high/low”
on the continuous scale. This allows us to use the previous theory of analysis for
binary variables applied to the high/low categorization of continuous variables.

Sorting the sample observations is tedious in large samples, for which we
use computer sorting routines. For small samples this sorting process is done
conveniently by constructing a stem-and-leaf plot.

8.4 Example 1 – boy and girl birth weights

It is common knowledge that boys are larger and heavier at birth than girls (in
some overall population sense). Do we have evidence for this in our sample of
40? My sample birth weights came from 18 boys and 22 girls:

Boys (18)

---------

7.6 7.2 8.3 7.1 6.9 8.8 7.6 9.8 6.9 8.4

9.9 6.3 7.3 7.4 7.0 6.4 7.3 6.9

Girls (22)

----------

7.2 6.8 5.9 6.2 7.8 6.9 7.3 6.7 7.6 3.1

8.9 6.4 7.0 7.1 4.9 6.4 6.9 7.5 5.9 7.9

5.7 7.1

We record each value (separately for boys and girls) as the “leaves” (using the
decimal place value) on the “stem” (the weight in pounds):

Weight Boys Girls

------ ---- -----

3 1

4 9

5 997

6 99349 8297449

7 62163403 283601591

8 384 9

9 89

The visual picture is clear – the “histogrm” for girls is shifted upwards – towards
smaller values – than that for boys. But could that be just a sample fluctuation
(do your samples show this too?) consistent with the same median weight in
the population for boys and girls?

To check this, we determine the combined sample median. We first re-order
the weights in increasing order in each row, and pool them to form a combined
sample:
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Weight(pounds) Boys Girls Combined

------ ---- ----- --------

3 1 1

4 9 9

5 799 799

6 34999 2447899 234447899999

7 01233466 011235689 00111223334566689

8 348 9 3489

9 89 89

The 20th and 21st observations in increasing order are both 7.1, so the sample
median is 7.1 pounds for the combined sample.

If the population medians for the boy and girl birth weight are the same, then
the same proportion of boys and girls (0.5) lie above and below their common
population median. So if we classify the sample values as above and below
the combined sample median, we should see approximately the same sample
proportions above and below for boys and girls.

We define “low” birth weight to be less than or equal to 7.1 pounds, and
“high” birth weight to be greater than 7.1 pounds. This does not mean that
“low” birthweight is abnormal, or even unusual – it simply means that half the
sample were in this below-sample-median category. Classifying the birthweights,
we have the 2 × 2 table:

Table 8.1: Birthweights – my sample
Boys Girls Total

Low 7 15 22
High 11 7 18
Total 18 22 40

Note that the numbers of “low” and “high” birth weights are not 20, because
the median is an observed value and so median values are classified into the
“low” category.

Does this table provide evidence of different population proportions of boy
and girl birth weights below and above 7.1 pounds? The sample proportion of
“high” birth weights for boys is 11/18 = 0.611, and that for girls is 7/22 = 0.318
which is substantially less. A 95% confidence interval for the true difference in
population proportions is

0.611 − 0.318± 2

√

0.611 · 0.389

18
+

0.318 · 0.682

22

which is 0.293± 0.304, or (−0.011, 0.597).

The confidence interval just includes zero, so we do not quite have convincing
evidence that the population proportions differ.
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8.5 Example 2 – mother’s smoking and child’s

birthweight

Do mothers who smoke at the diagnosis of pregnancy have babies with “low”
birthweight? This question is badly worded – we mean that the birthweight
average – mean or median – is lower for mothers who smoke than for mothers
who don’t smoke. Does our sample provide any evidence of this?

This question is complicated by the difference in average birthweights for
boys and girls. We did not give these earlier, but from the stem-and-leaf plot
we se that the sample median birthweight for boys is 7.3 pounds, while that
for girls is 6.9 pounds. We will ignore this difference, and classify the sample
by high/low birthweight as defined above, and by mother smoking or not at
diagnosis. The resulting 2 × 2 table is:

Table 8.2: Birthweights and mothers smoking – my sample
Mother’s smoking
Smoker Non-smoker Total

Birth Low 10 12 22
weight High 5 13 18

Total 15 25 40

The proportion of low birthweight babies in the sample is 10/15 = 0.667
for smoking mothers, and 12/25 = 0.480 for non-smoking mothers. Smoking
appears to be positively associated with low birth weight, but the correlation of
0.18 is quite low, and the 95% confidence interval for the difference in population
proportions is

0.187 ± 2

√

0.667 · 0.333

15
+

0.48 · 0.52

25
= 0.187± 0.315 = (−0.128, 0.502)

which includes zero.

Thus this sample does not provide convincing evidence of association between
smoking at diagnosis and low birthweight.

8.6 Changes in an individual on repeated mea-
surement

When we measure an individual on two occasions, we are often interested in
the change in the individual’s measurement between the two occasions, and in
particular whether there has been any change in the population median. The
weight of mothers in the StatLab population is an example.

The weights in pounds of the 40 mothers in my sample are given below, at
diagnosis (D) and follow-up (F), with the change C = F - D:
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D: 110 147 212 115 247 170 140 140 106 140

F: 113 147 206 120 185 168 135 144 112 156

C: +3 0 -6 +5 -62 -2 -5 +4 +6 +16

D: 133 145 140 130 135 105 112 104 172 118

F: 145 140 164 139 123 126 112 118 193 114

C: +12 -5 +24 +9 -12 +21 0 +14 +21 -4

D: 160 117 145 162 121 145 148 89 97 122

F: 161 128 169 160 118 200 165 97 109 151

C: +1 +11 +24 -2 -3 +55 +17 +8 +12 +29

D: 104 132 128 115 94 124 108 140 95 158

F: 115 141 123 120 100 134 106 157 109 207

C: +11 +9 -5 +5 +6 +10 -2 +17 +13 +49

The stem-and-leaf plot of the weight changes is shown below, for the observa-
tions in the above order, and then re-ordered. There are some large individual
changes, both positive and negative, but do these represent any general popu-
lation change in median weight?

C units units

--- ----- -----

-60 2 2

-50

-40

-30

-20

-10 2 2

- 0 625542352 222345556

+ 0 305469018956 001345566899

+10 6241721073 0112234677

+20 41149 11449

+30

+40 9 9

+50 5 5

The plot is fairly symmetrical about zero. The median is the average of 6 and 8,
so is 7. So in the sample, half the mothers gained 8 pounds or more, the other
half gained 6 pounds or less. Could the median in the population of the weight
changes be zero? This would mean that, in the population, as many mothers
gained weight as lost weight over the 10-year follow-up period.

The number of negative changes in the sample is 11, and the number of
positive changes is 27. Two mothers did not change weight – we exclude these
from consideration. So of the 38 mothers who changed weight, a proportion
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27/38 = 0.711 increased. Could this be consistent with a population proportion
of 0.5?

Based on p̂ = 0.711 in n = 38, the 95% confidence interval for the population
proportion is (0.549, 0.832). This does not include 0.5, so the sample proportion
who increased in weight is not consistent with 0.5 – a median weight gain defi-
nitely occurred over the 10-year follow-up period. The sample median increase
of 7 pounds is definitely not consistent with zero.

8.7 Confidence interval for the median

If the population median is not zero, what can we say about it? We could
check other hypothetical values of the median to see whether they are consistent
with the data. For example, could the median weight change be 3 pounds?
There are 13 sample values less than 3, one equal to 3, and 26 greater than
3. Of the 39 mothers with weight gains not equal to 3 pounds, the sample
proportion p̂ = 26/39 = 0.667 had weight gains greater than 3 pounds. The
95% confidence interval for the population proportion p with more than 3 pounds
gain is (0.507, 0.796) which still excludes zero. So the value of 3 pounds is also
not a possible value for the population median.

We don’t want to have to repeat this calculation for every possible value
of the median! Fortunately, we can find those values of the median in the
confidence interval directly from the formula. Recall that p̂ = r/n, where r is
the number of observations in the sample greater than the hypothetical median.
If the confidence interval for p includes 0.5, for a given value of the median ν,
then this value of ν is included in the confidence interval for the median. So the
extreme endpoints of the 95% confidence interval for ν are given by the values of
p̂, or r, corresponding to the extreme values of p̂ for which the 95% confidence
interval for p just includes 0.5.

So the endpoints of the 95% confidence interval for ν are given by the solu-
tions, in p̂, of

p̂ + λ2/(2n)

1 + λ2/n
± λ

√

p̂(1 − p̂)/n + λ2/(4n2)

1 + λ2/n
= 0.5.

After some algebra we find that the two solutions to this equation are

p̂ =
1

2
± 1√

n

which is equivalent to

r = np̂ =
n

2
±
√

n.

These values of r define the observations which are the endpoints of the 95%
confidence interval for ν. For n = 40, these values are

r = 20 ±
√

20 = 20 ± 4.47 = (15.53, 24.47).
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Of course r has to be an integer; we take the integer values of r just inside this
interval, 16 and 24. The 16-th observation in order is 4, the 24-th is 10. So the
95% confidence interval for the population median change ν in weight is (4, 10)
pounds.

This method can be used for any continuous variable. For mother’s weights
at diagnosis and at test, we have the stem-and-leaf plots below:

tens D(units) F(units)

---- -------- --------

80 9

90 457 7

100 44568 0699

110 025578 2234588

120 1248 003368

130 0235 459

140 0000055578 01457

150 8 167

160 02 014589

170 02

180 5

190 3

200 067

210 2

...

240 7

(med. 131) (med. 137)

So the 95% confidence interval for the median weight at diagnosis is (121, 140)
and for the median weight at follow-up is (123, 144).

8.8 Association between two continuous variables

We examine the association between two continuous variables by cutting both
variables at their medians and classifying them as high/low in a 2 × 2 table.

Is there an association between low birthweight and intelligence, as measured
by the Peabody test score? For my sample of 40, the Peabody test scores give
the stem-and-leaf plot below:

tens units

---- -----

50 7

60 22345788

70 1355556677899

80 0011122233445779

90 01



8.8. ASSOCIATION BETWEEN TWO CONTINUOUS VARIABLES 43

The sample median is 78.5. Classifying by “low” (≤ 78) or “high” (≥ 79) and
by low or high birthweight gives for my sample:

Table 8.3: Birthweights and Peabody score – my sample
Peabody score

Low High Total
Birth Low 10 10 20

weight High 10 10 20
Total 20 20 40

This is an unusual result! The correlation between birthweight and Peabody
score is zero! There is certainly no evidence from this sample of any association
in the population.


