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1 Aim of the project

It is widely known, or believed, that the 3PL model is difficult, if not impos-

sible,

to identify in test item analysis. The aim of this project was to assess

the identifiability of the 3PL model in simulations from known data struc-
tures, and in data analysis of the Numbers and Operations — Knowledge and
Skills subscale for the NAEP 1986 Math test.

2 Summary

In our simulations with 10 items taken by all 1000 examinees, with
responses generated from five items with 2PL. models and five with 3PL
models, fitting the model with the correct known guessing parameters
gave the highest maximized log-likelihood, and unbiased estimates of
the student-level reporting group parameters.

Ignoring the 3PL model structure by fitting the 2PL model to all items
gave biased estimates of the student-level reporting group parameters,
and a much lower maximized log-likelihood.

Fitting the 3PL model to all items with all the guessing parameters
set to incorrect known values, also resulted in biased student-level
parameter estimates and a much lower maximized log-likelihood, close
to that for the 2PL model for all items.

Fitting the 3PL model with known guessing parameter values in a fine
grid around the true values showed that these parameters should be
identifiable.

For the Numbers and Operations — Knowledge and Skills subscale of
the 1986 NAEP Math survey, ML estimation in Stata with “known”
guessing parameter values (from the ETS report) failed, probably be-
cause of the small number of items answered by most students.

Successful maximum likelihood (ML) and standard error estimation of
all item parameters, including the guessing parameters, was reported
by Garcia-Perez (1999), in a series of simulations with 50 3PL items
attempted by 500 examinees.

We concluded that 3PL models may be identifiable, and all parameters
estimated with sufficiently rich data, but for the very sparse NAEP math
data we examined, this estimation failed even with “known” guessing pa-
rameters. This raises a serious issue of bias in reporting group parameter
estimation. We considered the current estimation methods for the guess-
ing parameters and examined alternative guessing models, and suggest that
these be further investigated.



3 Background

The 2PL model for the probability p;; of examinee ¢ with ability 6; answering
correctly item j is given by

IOgit pij = CL]' (9, — bj),

where b; is the difficulty of item j and a; is its discrimination. We define
¢ij = a;j(0; — bj). The 3PL model (due to Birnbaum, in Lord and Novick
1968) extends the 2PL model to allow for random guessing by examinees.
For the 3PL model the correct answer probability is given as

pij = ¢j + (L —¢j)e?s /(1 + %),

where ¢; is the probability of a correct guess (formally, for an examinee with
ability —o0).

There are several descriptions of the basis for this model for a multiple-
choice item (Birnbaum, Hutchinson 1991, San Martin, del Pino and De
Boeck 2006). The most plausible is that the examinee, when presented with
the item, first works on it, with success probability given by the 2PL model
above. If the answer found is one of the response categories, that response
is given. If it is not, the examinee makes a guess, with a success probability
Cj.

This interpretation leads to the overall success probability

pij = €)1 +eP) 4+ [1—eP/(14e%)] ¢
= P /(1+e%)+1/(1+e%)-¢;
= ¢j+ (1 —c)e? /(1 +e%).
Birnbaum (pp. 404-5 in Lord and Novick 1968; we replace Birnbaum’s probit
by the logit) described this as a
“... highly schematized psychological hypothesis. .. if an examinee has

ability 6, then the probability that he will know the correct answer is given
by [the logit function]

Glay(0 = b)) = €507 /(1 + € 00))

“ ... if he does not know it he will guess, and with probability c¢; will

guess correctly. It follows from these assumptions that the probability of an
incorrect response is

{1 =Gla; (0 = b)]}(1 = ),
and that the probability of a correct response is the item characteristic curve

Pj(0) = ¢ + (1 = ¢;)Glaj (0 — b;)].”
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Whatever the strength of this justification, the introduction of the third
parameter greatly weakens the information about examinee ability, since
correct answers may be due to guessing, in which case they give no infor-
mation about examinee ability except that it may be low. Since a guess on
an item can only be poorly identified by an inconsistent response pattern
across items, the difficulty of estimation of the item parameters is greatly
increased.

The difficulties of maximum likelihood estimation in this model are well
known and frequently mentioned in the literature. For example, van der
Linden and Hambleton (1997 p. 16) point out that the estimates of the a;
and ¢; are “sensitive to minor fluctuations in the responses used to produce
these estimates. Unless huge samples of [examinees] or tight priors around
the true parameter values are used, the estimates are unstable.”

The simulation study of Garcia-Perez (1999) showed that for responses
generated from 50 items with 3PL models and a sample of 500 examinees,
there was no reported difficulty in estimating the 3PL model (for the range
of parameters considered); evidently the examinee abilities are evaluated
sufficiently well from this number of items to identify the guessing parame-
ters.

In his study, fitting the 2PL model to all items gave slightly downwardly
biased estimates of the item difficulties b;, but the estimates of the item
discriminations a; were severely biased downwards, as would be expected
— the slope must decrease to allow for the greater (0,1) range of the 2PL
response probabilities.

Skrondal and Rabe-Hesketh (2004, pp. 292-298) reported a 3PL analysis
of a small data set of four items (the Arithmetic reasoning data used by
Mislevy 1985), with all 16 response patterns observed. They fitted the
3PL model to all four items by setting equal all four guessing parameters
(the ML procedure did not converge with separate guessing parameters for
each item), and running over a grid of known values to generate the profile
likelihood in the single guessing parameter — the likelihood maximized over
the other parameters for given values of the guessing parameter.

This process gave an ML estimate for the common guessing parameter,
but the other parameter estimates were unstable with some very high pa-
rameter intercorrelations, suggesting that with this small number of items,
even a single common guessing parameter was nearly unidentifiable. We
comment further below on aspects of the model and ML analysis.

Garcia-Perez’s simulations did not use explanatory variables; since we
are concerned with the upper-level parameters we carried out simulations to
assess the possible biases in these parameters.



4 Simulation structures

Data were simulated from a simple model structure similar to that used in
previous simulations: a 10-item test with an explanatory variable structure
of ethnic group (4 levels), sex(2) homework(3) and poverty (2). Five of
the items had 2PL regressions on student ability, the other five had 3PL
regressions. All the item parameters were similar to those of 10 of the items
from the Numbers and Operations — Knowledge and Skills subscale of the
1986 NAEP math test. The parameter values are given in Table 1 of the
Appendix. The non-zero guessing parameters ranged from 0.208 to 0.352.

4.1 First simulation series

Samples of size 1000 were drawn from the N(0,1) ability distribution and
used to generate item responses from the model. For each sample three
models were fitted to the item data:

e the correct model for all items, with the true guessing parameters for
the 3PL items;

e the 2PL model for all items, setting the 3PL item guessing parameters
to zero;

e the 3PL model for all items, with all guessing parameters set to 0.2.

Model fitting was done in Stata using Gllamm. The 3PL model was fitted
using a composite link function, following the description in Skrondal and
Rabe-Hesketh (2004, p. 294). This allowed different known values to be set
for each guessing parameter.

Table 2 in Appendix 1 gives, for each of the three models fitted, the
mean, bias, mean square error (mse), standard deviation across simulations
(sdb) and the average across simulations of the reported standard error (se)
for each of the reporting group parameters. These values are computed over
332 samples.

4.2 Conclusions from the first simulations

The correct 3PL model gave by far the best maximized log-likelihood over
all samples. The 2PL model and the 3PL model with incorrect guessing
parameters were almost equally bad, and significantly worse than the correct
model in maximized log-likelihood.

For estimates, we present only those for the reporting group parameters,
since biases in the item parameters would not be of concern if the reporting
group parameter estimates were unbiased.

Standard errors were smallest for the 2PL model and largest for the
incorrect 3PL model. Standard deviations of parameter estimates across



simulations agreed well with the average standard errors, showing that the
latter were adequate representations of the sampling variability in the esti-
mates.

Biases of the 2PL estimates were severe for the large parameters — as
much as 8 SEs for the largest ethnic group parameter (ethnic2). For the
small parameters the biases were small.

For the 3PL model with incorrect guessing parameters, the biases were
substantially less, and of opposite sign to those from the 2PL model, but
were still of concern for the largest parameters — more than 2 SEs for ethnic2.

Mean square errors for the 2PL estimates were very much larger than for
the correct 3PL model, up to 17 and 14 times for the two largest ethnic group
parameters. For the smallest homework parameter the 2PL estimates had
smaller mean square error than those from the correct 3PL model, because
their larger bias was outweighed by their smaller variance.

For the incorrect 3PL model the mean square errors for the largest pa-
rameters were 4 to 7 time those for the correct model.

Thus the effect of negelecting the 3PL structure of some of the items
— whether by fitting the 2PL model or by mis-specifying the guessing pa-
rameter — was to produce serious biases in the largest model parameters,
especially serious for the 2PL model fitting which ignored guessing.

This is a very serious consequence of the use of the 3PL model, and
we conjecture that it is due to the inability to identify the discrimination
parameter because of the range restriction mentioned above. We comment
further below.

4.3 Second simulation series

To assess the sensitivity of the reporting group parameter estimates to mis-
specification of the guessing parameters, we repeated the simulations above
for a single sample, but over a 21-point grid of guessing parameter values,
in which the five non-zero guessing parameters were all changed in steps of
0.01, above and below their true values. Thus the guessing parameters used
varied from all 0.1 below their true values, to all 0.1 above their true values.
The grid steps d, log-likelihood, parameter estimates and standard errors
are given in Table 3, where d is the deviation from the true value.

The magnitudes of both parameter estimates and their standard errors
increased steadily with increasing values of the guessing parameters. The
log-likelihood was maximized at values 0.04 above the true guessing parame-
ters, but the asymptotic 95% confidence interval (defined by a log-likelihood
difference of 2.0 from the maximum) just included the true values of the
guessing parameters (d = 0 in Table 3).

Thus it should be possible to maximize the likelihood in the guessing
parameters, given a sufficiently careful algorithm.



5 3PL analysis of NAEP math data

We analyzed the 1986 NAEP math data on the Numbers and Operations —
Knowledge and Skills subscale for Age 9/Grade 3 students, as described in
previous reports. There were 12 items out of the 30 items on the subscale for
which 3PL models had been used in the original reported NAEP analysis.
Since we expected identification difficulties we did not attempt to estimate
the guessing parameters individually for these items, but set them to known
values equal to their estimates reported in the NAEP document for this
survey.

The analysis was aimed at replicating the comparison in the simulations
between the correct analysis, the incorrect guessing analysis and the analysis
using only the 2PL model for all items. We restricted the model to three
levels, ignoring the PSU sampling level; as shown in a previous report (Aitkin
and Aitkin 2005), the variance component at this level was very small.

The Gllamm analysis was set up as described above in Skrondal and
Rabe-Hesketh, and as used in the simulations, with a composite link function
to handle the two different relations between item responses and ability.

Both the 3PL runs failed to converge, with a flat likelihood indicat-
ing unidentifiability of one or more model parameters. Since there were
no guessing parameters to estimate in this model, we concluded that the
problem was probably in the item discriminations: as described above the
reduced range of response probabilities for the 3PL items increases the dif-
ficulty of estimating the item slopes, and provides less information in the
response about examinee ability, specially with the very sparse item data
from individual examinees.

Examination of the item assignment for the scale (see Appendix Tables
4 and 5) suggested one reason why the analysis might fail. The BIB spi-
ralling assignment of items to booklets gives a fairly even spread of items
across examinees: the number of examinees answering each item on the scale
ranged from 1534 to 2734, with a mean of 2437. However the number of
items answered by each examinee varied from 1 to 25, with median 7 and
interquartile range 2 to 10. 31% of the 10,465 examinees who had any items
on this scale had only 1 or 2 items in their booklets. So if the ability of each
examinee on this subscale were known, the sample size for each item would
be more than sufficient to estimate all its parameters, but there may not be
enough items for each eraminee to estimate their latent abilities sufficiently
accurately for this purpose.

Another possibility is that the reported guessing parameters, which are
determined by fitting a null model to the item data, are different from the
ML estimates obtained by jointly fitting both items and reporting group
variables. This may explain how the priors for the guessing parameters in
the null model are able to determine the item parameters, while constraining
the guessing parameters to their “true” values in the joint model (equivalent



to a terminally tight prior) does not.

A single-dimension ability model fitted to all the students on the full
Math test might not have this problem as many more items would be avail-
able for analysis for each student.

We assessed Latent GOLD as an alternative package for the 3PL analysis,
since it can handle three levels of nesting. However the program could not be
set up to fit this model, as it could fit only a mixture of normals distribution
to a Rasch model for the latent ability.

6 Conclusions from the data analysis and simula-
tions

Despite the widespread assumption that the 3PL model is unidentifiable, or
nearly so, it appears from Garcia-Perez’s simulations and our results that the
model can be identified given sufficient items answered by each examinee. A
large number of examinees with a small number of items does not guarantee
identification.

The results of the simulations and the NAEP data analysis are frus-
trating. The simulations reported by Garcia-Perez show that biases in the
item difficulty and discrimination parameter estimates occurred, and our
simulations showed that serious biases in the upper-level reporting group
parameter estimates could occur, if the true 3PL form of the item response
function was ignored and the 2PL model used instead. Biases were much
smaller, though still significant for the largest parameters, if an incorrect
value for all the guessing parameters was used. Of course this begs the
question of how to know what values are correct or incorrect.

Our simulations were based on small but dense data sets, of 10 items
with 1000 examinees. The NAEP data set is very sparse, with a median
of 7 items per student out of the 30, and more than 10,000 students. The
larger number of students does not help us in estimating individual abilities
— it is the number of items which provides this information. Even with
known guessing parameters, the small numbers of items per examinee from
the 30 NAEP subscale items do not provide enough information to estimate
the other item parameters given the fixed values of the guessing parameters
(unless these are set to zero with the 2PL model).

Since many items on many NAEP surveys use the 3PL model (as guessing
is expected to occur), this raises a serious difficulty for the analysis of these
items and the reporting group effects. This difficulty requires a closer look
at the 3PL model. We now consider some aspects of this model.



7 Further investigation and criticism of the 3PL
model

7.1 Mixture interpretation of the 3PL model

We want to consider a more general test item model. Its properties are easier
to understand if we exemplify with a biological model closely related to the
3PL model — the natural mortality model — which is used in biometrics to
assess the effectiveness of insecticides.

A test group of insects is randomly divided into K + 1 groups of ap-
proximately equal sizes n;,7 = 0,..., K, and K of these groups are treated
with an insecticide at increasing dose levels z;,7 = 1,..., K. The remaining
group is a control group and is not treated. The object of analysis is to
estimate the dose-mortality relationship, in order to set appropriate dose
levels for the spraying of insect populations.

In the i-th group r; insects die out of the n;. The probability of death
(Y; = 1) in the i-th dose group is modelled as

PrlY; =1|a;] = c+ (1— )P /(1 4 20y, (1)

where c is the probability of death from natural mortality. The logic of this
model is clear: without any insecticide treatment a proportion ¢ of insects
die naturally, so this has to be allowed for in modelling the effect of the
treatment — the death probability increases monotonically with dose from ¢
to 1.

7.2 Biological model extension

We now consider a slight extension of this model which is relevant to the
interpretation of the 3PL model.

The insect population now consists of two types: Type 0 dies with prob-
ability p regardless of dose, while the Type 1 death probability increases
with dose. The two types of insects are indistiguishable. The proportion
of Type 0 in the population (and therefore in each dose group) is ¢. The
death probability for Type 1 is the logistic function of dose with parameters
a and . The death probability for any insect given in (1) now has a formal
mizture model representation:

Pr[Y; =1[z] = Pr[Type0]Pr[Y; =1|a;, Type0]
+ Pr[Typel] Pr[Y; =1 | z;, Typel]
= c-p4(1—c)- e /(1 4 ey,
The case p = 1 gives the dose model in (1): in this model, if we accept

the mixture interpretation, all Type 0 insects die in all the treatment and
control groups.
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7.3 Extended psychometric model

The analogous psychometric model (for item j) is an extension of the 3PL
model. In this extension there are two indistinguishable types of exam-
inees for each item j: Type 0; examinees guess with success probability
p;j regardless of ability, and their proportion in the population is ¢;. For
Type 1; examinees the correct answer probability has the 2PL model with
parameters a; and bj;, so the model is

pij = ¢j-pj+ (1 —¢;) - e¥ /(1 + %),

where

¢ij = a;(0; — b))
as before. The usual 3PL model results from setting p; = 1 — the “guessors”
guess perfectly!

This result looks quite unreasonable. Guessors are much more likely
to have p; around 1/4 or 1/5, or the reciprocal of the number of response
categories in a multiple-choice item. No-one can guess correctly 100% of
the time. Yet that is the implication of the 3PL model, if we interpret it in
terms of two groups of examinees following different strategies.

The fitting of the standard 3PL model (with a known guessing param-
eter) described in Skrondal and Rabe-Hesketh implicitly uses the extended
model above: the model fitted with a known guessing parameter of 0.1 is
expressed as (p. 294 — their notation is slightly different)

pi; = 0.1g; (1) + 0.995 * (¢5),

where g7 '(1) = 1 and g;'(z) = €%/(1 + ¢®). This is equivalent to the
extended 3PL model above, with p; = 1.

Further unattractive features of this aspect of the 3PL model are that
guessing is a random process in which all examinees participate, and there
is no relation between those who guess on item j and those who guess on
any other item.

It seems more reasonable to suppose that guessing itself depends ex-
plicitly on ability, as well as the item difficulty, and that the probability of
guessing decreases with increasing ability, rather than being constant. We
now consider a model for this process.

8 Ability-based guessing

The basis for the ability-based guessing models (there are several versions —
see San Martin, del Pino and de Boeck 2006) is that:

e the probability of guessing increases with item difficulty, and decreases
with ability;
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e when guessing occurs, the probability of a correct answer may be item-
specific, and is generally small.

We extend the logistic function, to both the probability of a correct re-
sponse to an item based on ability, and the probability of guessing. The
most general form of the model uses 2PL functions for both these probabil-
ities. Define ¢;; = o;(0; — B;), where «; is negative, and define the dummy
indicator Z;; = 1 if examinee 4 guesses on item j, Z;; = 0 if he or she does
not guess. Then the model for guessing is

Pr{Zi; =110 = e}/ 1+ €f),
and the probability of a correct answer by examinee ¢ on item j is

PI‘[YVZ‘]‘ =1 | 92] = PF[YEJ‘ =1 | 92', Zij = 1] PI’[ZZ']‘ =1 | 92]
+ PT[Y;j =1 | 0;, Zij = 0] PI"[ZZ']' =0 | 92]
= P /(L4 e™) + e /(14 e?) - 1/(1+ ™).

Here the probability of a correct guess p; is unspecified, other than depend-
ing on the item j. Compared with the 3 parameters for each item for the
3PL model, this model has 5 — the two parameters in each logistic regres-
sion and the correct guess probability p;. So many parameters will certainly
cause identifiability problems; there are several ways to reduce the number
of parameters:

e specify the guessing parameters p; to be 1/D; where D; is the number
of response categories for the multiple choice items (this gives one less
parameter per item);

e relate the parameters in the guessing probability (1) model to those
in the correct answer probability (¢) model — for example set 3; = b;
(this gives one less parameter per item);

e specify equal item discriminations in one or both models, as in the
Rasch model.

8.1 An example

San Martin et el (2006) introduce the 1PL-AG model, in which the ability
model is Rasch and the guessing model is 2PL, but with a common dis-
crimination parameter across items. This has 2 parameters for each item,
plus one additional discrimination parameter; if this common discrimination
parameter is 1, the guessing model is also Rasch; if it is zero, the guessing
model is random, independent of ability.

They report analyses of both simulated and real test data using this
model. Model fitting was done with SAS NLMIXED using non-adaptive

12



Gaussian quadrature with 15 nodes and Newton-Raphson for optimization.
The parameter estimates were recovered well in simulations, though over
only four generated data sets because of heavy computing time.

The model was fitted to several replicate sub-samples of 2,000 examinees
from the Chilean SIMCE tests in mathematics and language. Conclusions
from the replicate samples were consistent, and showed that the model fitted
well, with guessing occurring in the language test but not in the mathematics
test.

9 Conclusions and recommendations

It appears that with the NAEP BIB spiralling item design, for scales with
small numbers of items there may be insufficient items per examinee for reli-
able estimation of the guessing parameters for the 3PL items. With current
software and the BIB design, an intensive search of the guessing parame-
ter space appears to be needed to obtain maximum likelihood estimates,
assuming this is possible.

Since fitting mis-specified 2PL. models leads to biases in reporting group
estimates, this is a serious matter for NAEP analysis. However, the 3PL
model is not the only possible model for guessing, and is in any case not a
gold standard for NAEP analysis. The difficulty is finding a suitable model
which can incorporate guessing and is identifiable in NAEP scales with small
numbers of items. It appears that the ability-based guessing model can be
fitted to the NAEP item data in Gllamm, using the same composite link
function approach as used for the 3PL model. With a sufficiently restricted
parameter structure in this model, it may be possible to estimate a guessing
model based on ability and item difficulty. Guessing parameters based on
the number of response categories, or plausible distractors, could be used to
simplify the model.

If this turns out not to be possible, it appears that the 3PL model
should be abandoned, at least for scales with small numbers of items like
the Knowledge and Skills subscale. If the individual scale results are not
reported, it would be simplest to abandon the analyses of these scales, and
reduce the overall computational load of the NAEP analysis by analyzing
and reporting only a single math ability scale for all items; this might be
able to support the estimation of guessing parameters.

We recommend

e that further investigation of the class of ability-based guessing models
be made, with the object of assessing their suitability for NAEP item
analysis;

e that the current estimation of guessing parameters be reviewed, for
the role of the tight priors used and the methods by which estimates

13



of the guessing parameters are obtained;

e that consideration be given to the use of guessing parameters equal
to the reciprocal of the number of items, or the number of plausible
distractors;

e that consideration be given to abandoning analyses of scales using the
3PL model with small numbers of items per examinee, and analyzing
only a single scale, or scales identified by large numbers of items.
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11 Appendix

Table 1 - true parameter values

-2.369 -1.887 0.944 0.100 0.300 -0.800 -0.472

0 O O 0.2380 0.208 0 0.280 0.352 0.225
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Table 2 - simulation results, first series

true mean bias mse sdb se param method

-2.359 -1.526 0.833 0.708 0.119 0.114  ethnic2 2pl
-2.359 -2.464 -0.106 0.040 0.169 0.160 ethnic2 correct_
-2.359 -2.841 -0.482 0.293 0.247 0.224 ethnic2 wrong_gu

-1.887 -1.253 0.634 0.415 0.113 0.110 ethnic3 2pl
-1.887 -1.972 -0.085 0.032 0.158 0.150 ethnic3 correct_
-1.887 -2.181 -0.294 0.132 0.213 0.192 ethnic3 wrong_gu

0.944 0.715 -0.229 0.081 0.169 0.153 ethnic4 2pl
0.944 0.967 0.023 0.042 0.204 0.194 ethnic4 correct_
0.944 0.917 -0.027 0.044 0.207 0.197 ethnic4 wrong_gu

0.100 0.069 -0.031 0.007 0.076 0.078 hw2 2pl
0.100 0.103 0.003 0.010 0.099 0.103 hw2  correct_
0.100 0.103 0.003 0.011 0.106 0.112 hw2 wrong_gu
0.300 0.208 -0.092 0.020 0.109 0.098 hw3 2pl
0.300 0.311 0.011 0.019 0.137 0.129 hw3  correct_
0.300 0.313 0.013 0.023 0.151 0.139 hw3  wrong_gu
-0.800 -0.518 0.282 0.090 0.103 0.101 poverty 2pl

-0.800 -0.834 -0.034 0.020 0.137 0.138 poverty correct_
-0.800 -0.892 -0.092 0.036 0.166 0.162 poverty wrong_gu

-0.472 -0.323 0.149 0.027 0.066 0.067 sex 2pl
-0.472 -0.485 -0.013 0.008 0.089 0.089 sex correct_
-0.472 -0.492 -0.020 0.010 0.098 0.098 sex wrong_gu

16



Table 3 - simulation results, second series

-0.10 -5651.00 -.419 .081 -.700 .128 .015 .094 .301 .117
-0.09 -5647.99 -.423 .082 -.708 .130 .016 .096 .305 .118
-0.08 -5645.16 -.427 .082 -.716 .131 .017 .097 .310 .119
-0.07 -5642.52 -.431 .083 -.724 .132 .018 .098 .314 .120
-0.06 -5640.08 -.435 .084 -.731 .134 .019 .098 .319 .121

-0.05 -5637.85 -.439 .085 -.738 .135 .021 .099 .323 .123
-0.04 -5635.83 -.443 .086 -.745 .136 .022 .100 .328 .124
-0.03 -5634.03 -.447 .086 -.752 .137 .023 .101 .332 .125
-0.02 -5632.46 -.451 .087 -.758 .138 .024 .102 .336 .127
-0.01 -5631.11 -.454 .088 -.763 .139 .025 .103 .341 .127

0 -5630.00 -.458 .089 -.769 .141 .027 .104 .345 .129
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Table 3 - simulation results, second series

d ethnic2 se ethnic3 se ethnic4 se

-0.05 -2.452 .158 -2.052 .149 1.001 .182
-0.04 -2.476 .159 -2.073 .150 1.016 .184
-0.03 -2.499 .160 -2.094 .1561 1.031 .186
-0.02 -2.520 .161 -2.113 .1562 1.047 .189
-0.01 -2.540 .162 -2.131 .163 1.065 .191
0 -2.569 .163 -2.148 .154 1.083 .193

+0.06 -2.646 .169 -2.229 159 1.206 .209
+0.07 -2.657 .170 -2.239 160 1.228 .212
+0.08 -2.668 171 -2.248 161 1.249 .214
+0.09 -2.677 .172 -2.257 162 1.270 .216
+0.10 -2.686 .173 -2.265 162 1.290 .218
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Table 4 - Number of items per examinee

items frequency A cumulative %

1| 1,276 12.19 12.19

2 | 1,990 19.02 31.21
3| 88 0.84 32.05

4 | 162 1.55 33.60

5 | 212 2.03 35.62

6 | 171 1.63 37.26

7 | 1,580 15.10 52.36

8 | 1,662 15.88 68.24

9 | 331 3.16 71.40

10 | 1,576 15.06 86.46
11 | 486 4.64 91.10
12 | 243 2.32 93.43
13 | 238 2.27 95.70
14 | 4 0.04 95.74
15 | 16 0.15 95.89
16 | 10 0.10 95.99
17 | 14 0.13 96.12
18 | 6 0.06 96.18
19 | 10 0.10 96.27
20 | 14 0.13 96.41
21 | 13 0.12 96.53
22 | 54 0.52 97.05
23 | 18 0.17 97.22
24 | 16 0.15 97.37
25 | 275 2.63 100.00
____________ e

Total | 10,465 100.00
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Table 5 - Number of examinees per item

item | frequency A cumulative %
_____ S

1| 2,697 3.69 3.69

2 | 2,694 3.68 7.37

3 | 2,688 3.68 11.05

4 | 2,599 3.55 14.61

5 | 2,527 3.46 18.06

6 | 2,446 3.35 21.41

7 | 2,372 3.24 24.65

8 | 2,318 3.17 27.82

9 | 2,734 3.74 31.56

10 | 2,718 3.72 35.28
11 | 2,690 3.68 38.96
12 | 2,671 3.65 42.61
13 | 2,656 3.63 46.24
14 | 2,640 3.61 49.86
15 | 2,613 3.57 53.43
16 | 2,027 2.77 56.20
17 | 1,945 2.66 58.86
18 | 1,890 2.59 61.45
19 | 1,764 2.41 63.86
20 | 1,534 2.10 65.96
21 | 2,699 3.69 69.65
22 | 2,695 3.69 73.34
23 | 2,692 3.68 77.02
24 | 2,688 3.68 80.70
25 | 2,537 3.47 84.17
26 | 2,344 3.21 87.37
27 | 2,266 3.10 90.47
28 | 1,905 2.61 93.08
29 | 2,684 3.67 96.75
30 | 2,378 3.25 100.00
____________ S

Total | 73,111 100.00
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