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1 Aim of the project

The aim of this project was to assess the information about the student
ability distribution in the Knowledge and Skills subscale of the 1986 NAEP
Math survey for Grade 3/Age 9 students, through model fitting with both
parametric and nonparametric models.

2  Summary

Several parametric distributions (including the normal distribution) were
fitted to the student ability distribution in three-level analyses of the Knowl-
edge and Skills subscale. The heavily skewed log cubic distribution fitted
best amongst these, and substantially better than the normal.

Fully nonparametric estimation with the three-level model was not pos-
sible,! and only two-level nonparametric analysis was possible. This con-
founded student ability with the school random effect; the resulting com-
posite distribution was left-skewed with a heavy left tail relative to the
normal distribution.

Changes in reporting group parameter estimates between the normal dis-
tribution and the best-fitting log cubic distribution were small, the largest
being 0.5 of an SE. Most changes were between 0.1 and 0.3 SEs. Changes
in SEs were very small. Parameter estimates and SEs in the two-level non-
parametric analysis were similarly stable.

We conclude that, as for the 2PL model analysis of simulated binary
item data, Gaussian quadrature appears so far to work well on real NAEP
test data, if the interest is in the reporting group parameter estimates and
SEs. However, if interest is in the percentiles of the ability distribution
the nonparametric estimate is unsuitable, and reliance on parametric ability
distributions appears essential.

3 Background

Current analysis of the NAEP math survey requires a distribution of ability
in the fitting of the large conditioning model. The model-based ML approach
also requires a distributional assumption to evaluate the likelihood. The
usual assumption is a normal distribution, which is convenient as it allows
the use of Gaussian quadrature to compute the likelihood. This assumption
raises two important questions: is the assumption correct? — and if not,
does it matter?

An earlier report under Study 1.3.301.2: Identification of Ability Distri-
butions in IRT models for NAEP items showed that in simulation studies in

LA software bug in Gllamm, so far not corrected, allowed only the highest level distri-
bution to have more than two estimated quadrature points.



the 2-level 2PL model, reporting group estimates and standard errors were
very robust to different shapes of the true ability distribution.

So for a unidimensional ability underlying all items, the true ability dis-
tribution was essentially irrelevant to the estimation of upper-level (report-
ing group) effects in the 2PL model, and thus the normal distribution was
a convenient computational assumption, not a restrictive model. A further
consequence was that there is no need to use the more computationally in-
tensive Bock-Aitkin semi-nonparametric method currently used to estimate
the ability distribution; Gaussian quadrature methods assuming a normal
ability distribution could be used quite generally to estimate reporting group
differences over different true ability populations for the 2PL model.

4 The ability distribution

However, NCES publishes percentiles of the ability distribution (on the
NAEP reporting scale) by reporting groups, and so the dependence of per-
centiles on variations in the ability distribution is also an important question.

Current methods use the percentiles of the distribution of plausible val-
ues by reporting group. The latter are generated from a normal distribu-
tion of ability across all students, though there is evidence from the semi-
nonparametric estimation that this distribution is not normal.

A difficulty with this approach is its circularity: percentiles are com-
puted from plausible values which are themselves generated from a normal
ability distribution which is not clearly appropriate. In a fully model-based
framework percentiles depend strongly on the form of the ability distribution,
which therefore needs to be investigated. There are two possible approaches:

e fit parametric distributions more general than the normal to find the
most appropriate;

e cstimate the distribution semi- or fully non-parametrically.
For the first approach, we considered the following distribution families:

e The extreme value and reversed extreme value, with fixed left and
right skew;

e the log cubic distribution of Holland and Thayer (2000), with ad-
justable skewness left or right determined by a skewness parameter;

e the symmetric ¢ distribution, with adjustable tail heaviness determined
by the degrees of freedom parameter.

Since these distributions, like the normal, do not give an analytic like-
lihood function, they require numerical integration analogous to Gaussian
quadrature, but with masses determined by the specific densities. For direct



comparison with Gaussian quadrature, the continuous densities were con-
verted to 8-point discrete distributions on the Gaussian quadrature mass-
points zi, k = 1,...,8 for the numerical integrations. For each candidate
distribution density f(z), the masses fj at the z; were calculated by

8

fo=FC)/ D fzn).
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For the second approach, we used fully nonparametric estimation, fitting
up to 10 masspoints and estimating both the locations of the masspoints and
their probability masses.

4.1 Data analysis for the 1986 NAEP Math survey

There were 21,287 Grade 3/Age 9 students in the 1986 Math survey, but only
about half of these had responses on any of the items on the Knowledge and
Skills scale, so the “full” data set for this scale has 10,463 students clustered
in 440 schools. The schools are themselves clustered in 94 PSUs, but the
PSU level is ignored in this analysis as the variance component at this level
is very small.

The number of students per school varied from 5 to about 45, with an
average of 24, and there was an average of 7 items answered per student.
We used a minimal set of reporting variables: sex, race (6 levels), region (4),
size and type of community (stoc, 7) and parents education level (pared, 6),
to give us some feel for the results. We used a main effect model with 20
dummy variables for these categorical variables.

We ran a 3-level analysis using Gllamm in Stata. To increase the speed
of convergence for the non-normal analyses we used as starting values the
parameter estimates from the normal (Gaussian quadrature) 3-level analysis.
A full discussion of the normal analysis is give in the report Multi-level model
analysis of the Knowledge and Skills scale of the NAEP 1986 math data.

4.2 Parametric distributions

For each candidate distribution, the three-level main effect regression model
was fitted by maximum likelihood, and the maximized log-likelihoods are
given in the table below.? For the t and log cubic families, the log-likelihood
at the MLE of the additional parameter can be compared with that for
the normal distribution by the usual large-sample likelihood ratio test: the
difference in —21log L, is compared to the x? percentage points. For the
t distribution the difference (at 2 or 3 df) is 32.90, and for the log cubic (at
4 = —0.075) it is 41.68. The 1% point of x? is 6.64: the above values are

2We ran the log cubic analysis over a finer and wider grid but report here only the
relevant range.



far beyond any critical values from the x? distribution. There is no question
that these distributions are more appropriate than the normal for the ability
distribution.

Comparing the t family to the log cubic family is more complex because
these families are not nested, but the log-likelihood improvement of 4.39
for the best log cubic strongly suggests skew in the distribution; this is
supported by the extreme value distribution result, with its very heavy left
tail, and is validated by the nonparametric analysis which follows.

Table 1: Log-likelihoods for parametric models

normal -39,930.05
extreme value -39,918.44
131 -39,916.36
o -39,913.60
i3 -39,913.60
t -39,914.54
log cubic(+. 02) -39,937.52
log cubic(+.01) | -39,933.89
log cubic(0.00) | -39,930.05
log cubic(-.01) | -39,927.61
log cubic(-.02) | -39,924.70
log cubic(-.03) | -39,921.72
log cubic(-.04) | -39,918.53
log cubic(-.05) | -39,915.10
log cubic(-.06) | -39,911.70
log cubic(-.07) | -39,909.30
log cubic(-.075) | -39,909.21
log cubic(-.08) | -39,910.55

Of these distributions, the heavily skewed log cubic (with the ML es-
timate of v = —0.075) fitted the data best, but all the alternative distri-
butions (with negative skew or heavier tails) fitted much better than the
normal. The somewhat better fit of the log cubic than the ¢ family points
to heavier tails on the left than the right: a longer tail of low-ability than
high-ability candidates.?

4.3 Nonparametric distributions

Nonparametric estimation (discrete) of the ability distribution may be achieved
in two ways:

3 Another possible reason for the skewed distribution is that the 3PL model was not
used; accounting for guessing might change the form of the ability distribution.



e semi-nonparametrically, by estimating the probability ordinates 7 of
the distribution on a fixed grid of ability values z, typically an equally-
spaced set of 20-40 values covering a range like -5 to +5;

e fully nonparametrically, by estimating both the probability ordinates
7y, and their locations zy.

There is a finite limit to the resolution — the number of estimable parameters
— of the discrete estimate (Aitkin 1996, 1999), which for binary response data
on all respondents is of the order of half the number of scale items (15 here).
Since a long-tailed distribution could be expected, we preferred to estimate
both locations and ordinates fully nonparametrically rather than to fix the
locations and estimate only the ordinates.

However, in trying to use Gllamm to estimate a reasonable number of
masspoint locations and ordinates at the student level we encountered a
program bug, which did not allow more than a two points to be estimated
at the lower (student ability) level. This bug does not affect the upper level
estimation, but our aim was to estimate the student abilty distribution, not
the school ability distribution. We consulted Sophia Rabe-Hesketh about
the bug and at the date of writing, no patch for it has been given.

To obtain a nonparametric estimate with more than two points, we were
therefore restricted to the two-level model, ignoring the school level. The
consequence of this constraint is that the school random effects are con-
founded with the student ability random effects: the distribution estimated
nonparametrically is a composite of the student ability and school random
effect distributions. The model for student ¢ with ability z; in school k with
random effect 7, answering item j with probability p; ;i of a correct answer,

logit pijk | zi,me = o + Bz
zilme ~ N@'x;+m,0%)
me ~ N(0,02;)

sch

becomes, if the school level is suppressed,

logitpl-j | Zi = Q4 + szi
zi ~ N(E@'xg, o’ + O'?Ch),

so the student-level variance is inflated by the school level variance; also the
correlation structure of responses of students within the same school is lost.
A further consequence is that the three-level parametric models fitted above
are not comparable to the two-level model below.

To assess the effect of increasing the number of masspoints, we fitted
4-, 6-, 8- and 10-point ability distributions by nonparametric maximum
likelihood. More than seven points (with 13 distribution parameters: 7



masspoints and 6 probability masses) could not be identified — any additional
points gave the same maximized log-likelihood and degenerated to the 7-
point estimate.

4.3.1 Masspoint estimates

The sets of estimated masspoints and masses are given in the table be-
low, rescaled to have mean zero and variance 1, together with the Gaussian
quadrature masspoints and masses, and the maximized log-likelihoods ¢.

1 -3.897 .012

2 -3.767 .013 -1.937 .066 -4.146 .0001
3 -2.469 .068 -1.919 .065 -0.850 .170 -2.803 .010
4 -2.075 .102 -1.010 .178 -0.859 .187 -0.843 .019 -1.637 .117
5 -0.561 .361 -0.237 .292 -0.174 .275 -0.168 .272 -0.539 .373
6 0.542 .440 0.566 .330 *0.580 .326 0.580 .331 0.539 .373
7 1.810 .097 1.142 . 111 1.133 .103 1.137 .083 1.637 .117
8 2.523 .031 2.465 .031 1.240 .018 2.803 .010
9 1.317 .0001 4.146 .0001
10 2.490 .029

1 -40,067.95 -40,049.00 -40,046.98 -40,046.98 -40,077.26

* Two points coincident here

The maximized log-likelihood increased with increasing number of mass-
points up to 7 points, when it remained unchanged with more points. The
8-point distribution has a degeneracy at 0.580, where two points are co-
incident. Increasing the number of masspoints to 10 gives three near-
degeneracies, with the points at —0.850 and —0.843, and those at 1.137
and 1.240, almost coincident, and the point at 1.317 having almost no mass:
no more than 7 points can be identified. Combining the two points near
—0.85 and 1.2, and eliminating the point at 1.317 gives a distribution very
similar to the 7-point estimate.

The likelihood is extremely flat in the estimated masspoints and masses,
and the Gauss-Newton algorithm is extremely slow to converge for all the
nonparametric estimates, showing the difficulty of identifying the ability dis-
tribution for these data. It had not converged for any of them after 30 iter-
ations, though the parameter estimates, standard errors and log-likelihoods
were then unchanged to 3 decimal places.



For reasons given below the estimated masses and masspoints are shown
without standard errors, though these are computed by the package. The
estimated 7-point distribution is in no sense precise; however it is clearly
both left-skewed and heavy left-tailed.

This distribution is unfortunately not comparable with the parametric
distributions, as mentioned above, but we show for reference the 8-point
parametric and 7-point nonparametric cdfs on the same (probability) scale
in Figure 1, with all distributions scaled to have mean zero and variance 1.

The two-level nonparametric estimate is in red, the best three-level para-
metric model (the log cubic) is in dark blue, the normal in green, the t4 in
dark green and the extreme value in blue. The heavy left, and light right,
tail of the nonparametric estimate are clearly visible.

4.4 Inference about percentiles

The maximized log-likelihoods for the continuous models clearly identified
the left-skewed log cubic distribution as the best-fitting among those that
we examined. Percentiles of these non-normal continuous distributions can
be obtained directly from the analytical form of the density, or by numerical
computation of the cdf. The report Identification of Ability Distributions in
IRT models for NAEP items gave a table of moments and major percentiles
for the log cubic family with various degress of skewness, computed directly
from the density.

Inference about the percentiles of these distributions, in terms of esti-
mates and standard errors, follows by standard delta-method theory from
the estimates and covariance matrix of the model parameters.

However the nonparametric estimate does not lend itself to such infer-
ence, because the estimated distribution is discrete, with discrete jumps in
the cdf. Thus percentiles are not generally available except by assumptions
of linearity or other simple forms, or smoothing, between the estimated mass-
points. Even if this assumption is made, the standard errors and covariances
of the masspoints and their probability masses make very complicated the
calculation of a standard error for an estimated percentile.

Thus the estimation of ability distribution percentiles requires a para-
metric model, as we found in the simulations. However, the nonparametric
estimate is very useful in identifying the type of skew and tail behaviour of
the ability distribution, and so can point to a suitable family of continuous
distributions which can be used with some confidence for parametric model
inference about the percentiles.



5 Effect of the different ability distributions on
reporting group estimates

A natural question is the extent to which the form of the ability distribu-
tion affects the reporting group estimates. We show in the table below the
maximum likelihood estimates and standard errors of the reporting group
effects for the 3-level model, for the normal and the other distributions us-
ing 8-point quadrature. The model fit improves across the table (increasing
maximized log-likelihood).

Changes in parameter estimates were small, the largest (between GQ
and the best-fitting log cubic) being 0.5 of an SE for race4. Most changes
were between 0.1 and 0.3 SEs. Changes in SEs were very small.
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ML estimates for 8pt 3-level normal and ev, t-,
and log cubic(y = —0.075) distributions

sex2: .012(.028) .007(.

race2: -.667(.047) -.672(.
race3: -.460(.043) -.449(.
raced: -.203(.117) -.108¢(.
race5: -.471(.093) -.479(.
race6: -.200(.752) -.190¢(.

regi2: -.020(.077) -.029(.
regild: -.172(.074) -.209¢(.
regi4: -.182(.069) -.169(.

stoc2: -.201(.113) -.227(

pred2: -.179(.206) -.162(.
pred3: .045(.200) .037(.
pred4: .398(.205) .401(.
preds: .382(.198) .372(.
.178)

pred6: .027(.197) .017(

028)

045)
042)
115)
091)
586)

073)
073)
066)

.109)
stoc3: .497(.116) .505(.
stocd: .150(.106) .124(.
stocb: .158(.112) .107(.
stoc6: .092(.097) .090¢(.
stoc7: -.019(.095) -.023(.

111)
109)
111)
102)
098)

187)
181)
186)
179)

log L: -39,930.05 -39,918.44
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As described above, because of the Gllamm bug we are unable to assess
this question for the three-level model and could examine it only for the two-
level model. We show in the table below the maximum likelihood estimates
of the reporting group effects for Gaussian quadrature and for the 4-, 6-, 8-
and 10-point nonparametric estimates. The model fit improves with more
points up to 8 (of which only 7 are distinct), then remains constant.

ML estimates for 2-level normal and nonparametric
ability distributions

GQ(8pt) SE NP (4pt) (6pt) (8pt) (10pt)

sex2: .015(.028) .010(.028) .015(.028) .012(.028) .013(.029)

race2: -.792(.041) -.776(.041) -.782(.041) -.786(.041) -.786(.042)
race3: -.514(.041) -.502(.040) -.496(.041) -.499(.041) -.499(.041)
raced: -.240(.114) -.180(.113) -.170(.125) -.188(.120) -.187(.122)
raceb: -.588(.092) -.582(.091) -.569(.093) -.573(.093) -.574(.095)
race6: -.380(.855) -.336(1.14) -.057(.725) -.096(.711) -.106(.713)

regi2: .003(.046) .014(.046) .014(.045) .016(.046) .015(.046)
regi3: -.219(.046) -.199(.046) -.205(.046) -.208(.046) -.208(.047)
regid: -.193(.042) -.175(.041) -.170(.042) -.174(.042) -.174(.045)

stoc2: -.126(.075) -.103(.074) -.139(.074) -.131(.074) -.129(.079)
stoc3: .475(.074) .460(.074) .454(.072) .455(.072) .456(.079)
stocd: .133(.072) .152(.072) .106(.072) .117(.072) .119(.080)
stoch: .121(.074) .134(.073) .107(.072) .111(.072) .113(.078)
stoc6: .031(.067) .031(.067) .028(.066) .034(.066) .036(.070)
stoc7: -.055(.066) -.042(.065) -.062(.064) -.056(.064) -.054(.070)

pred2: -.205(.152) -.250(.150) -.226(.153) -.235(.153) -.233(.158)
pred3: .061(.141) .011(.140) .018(.143) .013(.142) .016(.143)
pred4: .460(.149) .405(.147) .430(.150) .432(.150) .435(.150)
predb: .453(.138) .382(.136) .416(.140) .412(.139) .414(.140)
pred6: .047(.137) -.011(.135) .008(.139) .008(.138) .011(.139)

log L: -40,077.26 -40,067.95 -40,049.00 -40.046.92 -40046.98

Parameter estimates were again very stable, the largest change (between
GQ and the 8-point NPML estimate) being 0.5 SE for race4 and region4.
Most changes were between 0.1 and 0.3 SEs. Standard errors were very
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similar for all the analyses, with a slight increase as the number of estimated
masspoints increased.

We were unable to determine whether, in a full three-level nonparametric
analysis, the student ability distribution would show the same structure as
in the two-level analysis, or whether the school random effect distribution
induces heavy left-tail behaviour, or both.

6 Conclusion

It is clear that for this data set the parameter estimates from the Gaussian
quadrature analysis using the normal model for ability were very little af-
fected by the actual distribution, which was left-skewed with a heavy left
tail. This result for the scale we examined was consistent with the earlier
simulation studies we reported with the 2-level model (Identification of Abil-
ity Distributions in IRT models for NAEP items). It supports our conclusion
that Gaussian quadrature appears to be sufficient for robust inference about
reporting group parameters in the 2PL model analysis of binary item data,
and it appears so far to work well on real NAEP test data also.

The nonparametric estimation provides standard errors for the locations
and ordinates, but the estimates and standard errors are difficult to use for
inference about percentiles, though they help identify a suitable parametric
family for the ability distribution. The families of parametric models exam-
ined provided a “best-fitting” one in the log cubic family which was clearly
superior to the normal distribution, and inference about its percentiles would
be straightforward using standard theory and the covariance matrix of the
parameter estimates.
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Figure 1: Parametric cdfs and 8-point NPML ability estimates

14




