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1 Aim of the project

The aim of this project was to investigate efficient methods for maximum likelihood
(ML) estimation in large-scale multilevel models, with particular reference to NAEP-
scale national and international educational achievement surveys with binary and multi-
category response items. The investigation had three strands:

• the assessment of current packages for logit latent variable models, for their possible
extension to NAEP-scale data structures;

• a detailed investigation of extensions to the EM algorithm for fitting these models
to NAEP-scale data structures;

• an investigation of other methods for these models, including Bayesian MCMC
methods.

2 Background

Statistical modelling and analysis is being increasingly applied to systems with multiple
model levels, ranging from education (e.g., classes, schools, districts) to clinical data
on patient outcomes (e.g., clinics, hospitals, regions and states). While the underlying
theory behind multilevel models was developed 25 years ago, efficient algorithmic and
programming implementation of the models took much longer, and has lagged behind
both theory and applications.

The multilevel structures of interest in education surveys are generally hierarchical
or nested: in national testing in schools, students are nested in schools (or in classes
within schools) and schools are nested in higher-level administrative areas, which may
be nested in states. In international surveys there is a further level of country nesting.
In health surveys, for example of adverse events following specific surgery types, events
may be nested within practitioners or clinics, nested in hospitals, nested in state or other
administrative areas.

Not all structures of interest are pure hierarchies. In school studies, students in high
school may come from catchment areas outside the local neighborhood of the high school,
so there may be “neighborhood effects” which are crossed, or partly crossed and partly
nested, with high school effects, leading to more complex models. However the survey
designs used in the NAEP surveys are fully nested (students within schools within PSUs),
so the hierarchical model is directly appropriate for these survey structures.

The analysis of nested or hierarchical data sets aims to relate outcomes at the “lowest”
level – student item scores – to explanatory variables at every level of the hierarchy,
since student item scores are potentially affected by student ability, family environment,
teacher qualities, school equipment and climate, and state curriculum design.

The statistical models for hierarchical structures use random effect or variance com-
ponent models to represent the random variation at each level of the structure. Max-
imum likelihood analysis of these models relies heavily on the EM algorithm (Demp-
ster, Laird and Rubin 1977), though other approaches, particularly Gauss-Newton and
Markov Chain Monte Carlo (MCMC) simulation methods, are possible and have become
popular.
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The EM algorithm for two-level normal response variance component models was
developed by Aitkin, Anderson and Hinde (1981), used in a ground-breaking reanalysis of
a major educational survey in Aitkin, Bennett and Hesketh (1981), extended to two-level
binary variance component models by Anderson and Aitkin (1985), and to generalized
linear mixed models (GLMMs) by Anderson and Hinde (1988). Detailed applications
and implementation in GLIM4 were discussed by Aitkin (1999a), based on earlier work
on single-level random effect GLMs by Aitkin (1996) for which the EM algorithm was
developed in GLIM4 by Aitkin and Francis (1995). The computational methods for
model fitting in these papers were based on the EM algorithm, and are reviewed in
Chapters 7–9 in Aitkin, Francis and Hinde (2005).

A version of the binary variance component algorithm was developed in a different
context (binary test item data in large-scale psychometric and educational testing) by
Bock and Aitkin (1981); it has been extended to more general forms of item response by
many others (for example Masters 1982, and Mislevy and Bock 1986) and is the basis of
much psychometric modelling, particularly in the NAEP. The item response model was
not recognized as a variance component model until Adams, Wilson and Wu (1997).

The need for more than two levels in these models was recognized early in school
comparison studies (Aitkin and Longford 1986) where students could be nested in classes
nested in schools nested in Local Education Authorities.

Methods current in 1999 for fitting two-level models in the GLM family were reviewed
by Aitkin (1999a). Few current proprietary statistical packages can handle nested struc-
tures for binary data with more than three levels; non-normal response models with Gaus-
sian random effects are particularly difficult because of the non-analytic log-likelihood
and the numerical integration steps needed at each random effect level; these are some-
times avoided by quasi-likelihood methods which do not use the actual likelihood and so
do not provide a fully efficient ML analysis; their properties are generally inferior relative
to those of full ML estimates.

Markov Chain Monte Carlo (MCMC) methods are now widely used for these models
and can handle the non-conjugate Gaussian random effects; however as noted further
below the EM algorithm-based maximum likelihood methods described here have a major
advantage in being able to use arbitrary random effect distributions.

The proprietary statistical package Stata with the Gllamm add-on developed by
Rabe-Hesketh, Skrondal and Pickles, at URL http://www.gllamm.org/ can handle very
general structures with an unlimited number of levels. However this program uses Gauss-
Newton (GN) methods in which the first and second derivatives of the log-likelihood are
computed numerically; this gives great generality but results in extraordinarily slow
running on large-scale problems with high-order random effects – a NAEP data four-
level model with 30 binary items with 10,763 cases, 60 item parameters, 24 explanatory
variables and sparse item responses required 75 days of CPU time on a dedicated fast
PC to achieve convergence in Gllamm.

Comparative timings of GLIM4 and Gllamm on the same data and computer with
a two-level Rasch model, 30 item parameters and no explanatory variables gave 2.16
minutes for GLIM and 5 hours for Gllamm. For the two-level 2PL model with 60 item
parameters and 24 variables, GLIM4 took 11 minutes, Gllamm 46 hours. The speed-
up factor for GLIM4 was approximately 140 for the smaller model and 250 for the
larger. If the larger model factor could apply to the four-level model, it would run in 7.2
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hours, a practical time for routine data analysis. (Though GLIM4 is an older statistical
package, it is one of the few in which the EM algorithm for two-level models has been
implemented. In Latent Gold, described below, the speed-up factor for the 3-level EM
algorithm implementation is even greater – more than 300.)

In the remainder of the paper we examine ways in which such a speed-up might be
achieved.

3 The assessment of current packages

There are several currently available packages which can fit two or more hierarchical
levels to binary item response data. The major packages we examined are described
below.

3.1 Gllamm

This is the only package currently available which can handle four levels with IRT models.
We used it for all the analyzes of the simulated and the NAEP data on which we have
reported.

Gllamm has been optimized by the Stata developers as far as possible. We had
detailed discussions on Gllamm and Stata with Stata Corporation President Bill Gould
and Chief Statistician Bobby Gutierrez at the October 2006 Australian and New Zealand
Stata Users workshop in Melbourne. They said that the main reason for its slowness is
the numerical integration: each hierarchical level multiplies the time by a factor equal to
the number of quadrature points at that level; so for eight-point quadrature at each of
three levels the time (relative to a single level model with no integration) is increased by a
factor of of 512. This however does not explain the slowness of the two-level model: this
must be due to the numerical derivatives and/or the Gauss-Newton algorithm instead of
the EM algorithm used in the GLIM program.

Speeding-up the Gllamm algorithm for multi-level IRT models would require a com-
plete rewrite of the Stata code:

• allow the option of analytic derivatives wherever possible (for the call to the ML
program in Stata);

• provide the option of using a hybrid EM/Gauss-Newton algorithm (as used in
Aitkin and Aitkin 1996);

• parallelize the computationally intensive parts of the code using the StataMP
(multi-processor) version.

3.2 xtmixed in Stata

Stata has been substantially strengthened by the new Mata programming language. This
is said to be almost as fast as C, but with safeguards C lacks. Gould claims that Stata’s
standard procedures (written in Mata) are now as fast as those of any competitor, and
faster than most.
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Stata’s standard provision for multi-level models (excluding Gllamm) is the very fast
xtmixed procedure, which is only for normal models, with any number of levels. A
more general GLMM procedure is said to be under development; we have registered our
interest to serve as a beta test site for the new procedure.

3.3 Latent Gold

This is a maximum likelihood package oriented to finite mixtures and latent variable
models, particularly factor models. It allows very general models to be fitted, to the
mixture multinomial probabilities as well as to the probability functions within each
component. However it is unable to fit some simpler models needed for NAEP analysis,
for example the 2PL model with a simple discrete latent ability distribution, for which it
can fit only a mixture of normals distribution. A discrete (nonparametric) latent variable
can be fitted with a Rasch model for two or three levels, but this might confound the
latent ability with variations in the item discriminations.

Jeroen Vermunt has implemented the EM algorithm for three levels, so far only
for Gaussian quadrature, based on his ingenious representation (Vermunt 2004) of the
mixture probabilities resulting from the three levels of numerical integration, allowing
efficient recursive computation of these probabilities needed in the M step of the EM
algorithm. A user-defined number of random starting points is used to find the best
local maximum of the likelihood to iterate. After the initial EM iterations, computation
switches to the Gauss-Newton algorithm when near convergence to provide standard
errors from the information matrix.

The package is very fast: Latent Gold is 300 times as fast as Gllamm on the 3-level
2PL NAEP analysis (1.75 hours on a small laptop compared with 522.6 hours on a faster
cluster PC – nearly 22 days). Vermunt reports that he is revising the program syntax to
allow more general models to be fitted, and is possibly extending the number of levels.
The package is proprietary, so cannot be extended by the user at present.

Issues that need addressing for fitting NAEP-scale models are

• allowing program specification in scripts which can run in a Linux environment;

• memory management difficulties which limit the data and model size;

• allowing starting a model fit from a previously saved set of estimates;

• allowing nonparametric analysis with the 2PL model;

• extension to four levels;

• quadrature points for other distributions besides normal;

• extension to 3PL models;

• extension to MIMIC models.

However the speed on the 3-level model shows that the EM algorithm is both feasible
and efficient for Gaussian quadrature with 2PL (not MIMIC) models for NAEP-scale
data sets.
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3.4 VARCL

VARCL was one of the first stand-alone maximum likelihood variance component mod-
elling packages for normal data. It was developed as a menu-driven package for normal
variance component and random coefficient models by Nick Longford in 1984-6. Long-
ford implemented the efficient (scoring) algorithm in this model (LaMotte 1972, Longford
1989), which can be implemented for any number of levels by recursive computation of
sums of squares and cross-products up and down the levels of the model. One of the
versions of VARCL could handle up to nine levels of nesting.

The package is now distributed by Assessment Systems Corporation, at URL
http://www.assess.com/Software/VARCL.htm

but in a very restricted form - only 24 parameters can be included in the regression model.
VARCL has a quasi-likelihood analysis for generalized linear mixed models; there is no
full ML analysis for these models.

3.5 MLWin

This is a well-established multi-level model package. It gives maximum likelihood es-
timates for normal hierarchical models with up to three nesting levels, but only quasi-
likelihood estimates for other response distributions. These are inferior to full ML esti-
mates from the numerical integration procedures in Gllamm and Latent Gold. Markov
Chain Monte Carlo methods are also available in MLWin. These are discussed further
below, under Bayesian methods.

3.6 HLM

This is a well-established multi-level model package. It gives maximum likelihood es-
timates for normal hierarchical models with up to three nesting levels, but only quasi-
likelihood estimates for other response distributions (reference is made to the EM algo-
rithm and the Laplace approximation), which are limited to two levels.

3.7 R

R is an open-source object-oriented statistical package (an open-source version of the
proprietary S-plus package) which can be downloaded free from the various R mirror web
sites, with a huge set of library functions. It has library multilevel functions lme and lmer

for normal models, and there are several implementations in R of the GLIM4 macros by
Aitkin and Francis for overdispersion and generalized linear mixed models, for example by
Jochen Einbeck and John Hinde, at http://www.nuigalway.ie/maths/jh/npml.html.
The latter are restricted to two levels.

The R implementations are very memory-intensive and cannot fit any model more
complex than the two-level Rasch model to the 1986 NAEP math data. For this model
R took 25 minutes, compared with 2.16 minutes for the GLIM4 macro and 5 hours for
Gllamm.

Since R is open-source, all its facilities are available for program development, in-
cluding the vast libraries of R procedures. It is the development platform of choice for
most statisticians, but is less suitable for large-scale data analysis as it runs very slowly
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on large models and data sets, and can quickly run out of memory because of the ac-
cumulation of objects in the workspace. The R code for the implementations of the
GLIM4 macros needs to be assessed to determine whether deletion of redundant objects
would improve memory management and allow more complex models to be fitted. Also,
intensive computation needs to be speeded-up by using “plug-in” C code.

Howard Doran at AIR and Doug Bates at Wisconsin are considering an extension of
lme to generalized linear models.

3.8 SAS Proc NLMIXED

This SAS procedure handles two sets of random effects in exponential family (and other)
models by maximum likelihood using Gaussian quadrature, and so can handle three-level
binary item data with person and school random effects, or two-level normal response
data. Other non-linear (and non-GLM) models can be handled in the same framework.
With more than two sets of random effects, the model has to be restructured to reduce
the random effects to two levels, for example by marginalizing over one random effect
level to give two sets of random effects, and an intra-class covariance matrix for the
observed responses, conditional on the two sets of random effects.

3.9 WinBUGS

This is a very widely used Bayesian package (the Windows version of Bayesian analysis
Using Gibbs Sampling) which is naturally oriented to hierarchical structures from its
Bayesian formulation (priors for parameters are at a higher level than models for observed
data). Further discussion of Bayesian methods is given below.

4 Extensions to the EM algorithm

4.1 Extension of the EM algorithm for two-level GLMMs to

four levels

The EM algorithm works by treating the random effects as unobserved data, and replac-
ing in the E step terms in the log-likelihood involving these effects by their conditional
expectations given the observed data and the current parameter estimates.

With more than two levels, there are several sets of random effect terms, and in the
non-normal response GLMMs their conditional expectations become progressively more
complicated with the number of levels in the model.

In the two-level GLMM with only one set of Gaussian random effects at the upper
level (the model used for binary item data with a normally distributed latent ability),
these expectations require numerical integration over the discrete Gaussian masspoints,
and the consequent M step can be expressed as a weighted version of ML with an
additional masspoint factor and an expanded data set, with weights given by posterior
probabilities of “membership” of each observation in the finite mixture “component”
formed by each masspoint. These weights are calculated at the upper level but then
applied to the ML analysis at the lower level (Aitkin 1999a).
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A particular strength of the ML analysis, as noted above, is that it can handle, by
a small extension, the case of arbitrary or unspecified random effects distributions, by
estimating these distributions by nonparametric ML as discrete on a finite number of
masspoints (Aitkin 1996, 1999a). The resulting estimate is equivalent to a latent class
model for the random effects; by including interactions of the random effects with other
explanatory variables, different regressions can be modeled in each latent class. This is
generally not appropriate for ability but it may be very appropriate for school effects
at a higher level. (If the random effects have a specified non-Gaussian distribution, for
example t4, masspoints and masses for this distribution simply replace those for the
Gaussian distribution.)

This greatly increases the generality of the analysis, at the same time allowing a
comparison of the Gaussian random effect model with others: a substantial improve-
ment in the likelihood over the Gaussian distribution by estimating the random effect
distribution (or by replacing it by another specified distribution) identifies failure of the
Gaussian model to adequately represent the random effect variation. This feature of the
EM analysis is much more difficult in MCMC because of the need for a random effect
distribution prior on the space of all distributions; the Dirichlet process prior sometimes
used (Escobar and West 1995) is particularly complicated (Aitkin 2001).

Aitkin (1996, 1999a, 1999b) gave several examples of the value of estimating the
random effect distribution, and Aitkin, Francis and Hinde (2005 pp. 499-505) gave
a detailed educational example. For NAEP this feature is of particular importance if
percentile reporting is to continue.

Recently Vermunt (2004) has developed a recursive form for the EM algorithm in the
multilevel GLMM which allows the weights to be computed cumulatively at each level
and finally applied in the M step at the lowest level. This approach, which works for
both Gaussian and unspecified random effects, provides the same level of generality as
for the normal variance component model; the number of levels is (at least in theory)
unlimited.

This algorithm has been implemented, though so far only for three levels and Gaussian
quadrature, in Vermunt’s proprietary package Latent Gold, distributed by Statistical
Innovations, at the URL

http://www.statisticalinnovations.com/products/latentgold_v4.html.

4.2 The redesign of the M step of the algorithm to reduce the

effective data size for this step

Both the single-level overdispersion and the two-level GLMM EM algorithms can be
implemented (in GLIM and R) by expanding the data size by a factor equal to the number
of quadrature masspoints K. This allows a simple weight specification to be applied to
the expanded data set which weights together the SSP matrix terms calculated at each
masspoint. If there are many quadrature points K this becomes a serious time and
storage issue for large data sets – the effective data size is Kn, K times the actual
sample size n.

In GLIM the expanded data set does not have to be stored, but the actual data
set still has to be looped through K times to calculate the weighted SSP matrix for
the M step. This is wasteful, particularly for simple models with only one random
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effect – overdispersion or simple variance component structure – because the explanatory
variables are invariant over the masspoints and the same SSP matrix terms are computed
at each masspoint: only the masspoint factor dummy variable is changed in the K loops
through the data.

In more general models with random slopes as well as intercepts, the interaction
terms also change over the masspoints, but their main effects do not, so again substantial
savings are available by not repeatedly calculating the same terms at each masspoint.

With more levels, the current approach becomes unworkable because of the multiple
expansions required – with two random effects each with 10 masspoints, the data are
expanded by a factor of 100.

In the extension of the algorithm to more levels, full advantage will be taken of
the constancy of explanatory variables across mass points, to reduce the effective data
size. In particular, the SSP matrix for the “null” model without any random effects,
which is currently used to provide initial parameter estimates for the algorithm, will also
provide a substantial part of the full SSP matrix needed for the GLMM and will not be
recalculated in the algorithm steps.

The extension will also compute at convergence the observed information matrix and
standard errors for the fitted model by the Louis (1982) or Friedl-Kauermann (2000)
methods: in the GLIM implementation standard errors are not provided for the parame-
ter MLEs except by the device of dropping each individual variable after the full analysis
and relating the change in deviance to the standard error (Aitkin, Francis and Hinde
2005 p. 373).

4.3 The parallelizing of the numerical integration step at each

random-effect level

The numerical integration step repeats the same computations at each of the K mass-
points, as noted in 2 above. By assigning these computations to a set of K parallel
processors, a considerable speed gain factor can be potentially achieved on this part of
the computation, which is a major part of the full EM computation.

Developing the procedure to provide overnight run-times on large models will require
several steps: a) recoding the algorithms in a compiled language, such as C, b) a parallel
implementation, to distribute the work across many processors, and c) tuning the parallel
implementation to approach linear speedup (if possible).

A summer internship student at VPAC (the Victorian Partnership for Advanced
Computing) has implemented a prototype of phase a) and b), using the current EM
algorithm in the R package. The correctness of both the compiled C library and its
parallel version have been verified, but not yet checked for code efficiency. The speedup
on small problems is counteracted by the overheads in message traffic to the multiple
processors. Significant speedups should be achievable on large data sets, which cannot
be fitted in the current R implementation.

Stata’s multiple processor version StataMP and the new programming language Mata
provide the opportunity to check the feasibility and possible implementation of an effi-
cient parallel program as above in Stata rather than R.
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4.4 The acceleration of the M step by expanding the step-

length

The EM algorithm is notoriously slow to converge with a high proportion of missing data,
because of the replacement of the unobserved data by their conditional expectations,
which are then treated as known data. This overstates the information in the data and
leads to successive steps in the parameter space which are too small. Aitkin and Aitkin
(1996) evaluated a hybrid EM/GN algorithm which used EM for the initial iterations
and then switched to GN for faster convergence. On simple normal mixtures this saved
some time, but only about 30% compared with pure EM iterations.

Jamshidian and Jennrich (1993) reformulated the EM steps as approximately gen-
eralized gradient steps and suggested that the algorithm be accelerated by generalized
conjugate gradient methods which increase the step-length. They showed considerable
improvements in the convergence rate of the resulting AEM (Accelerated EM) algorithm,
especially in problems with large numbers of parameters and substantial proportions of
“missingness” through latent variables. The time improvement factor ranged from 3 to
100 on different problems.

Lange (1995) and Jamshidian and Jennrich (1997) described alternative quasi-Newton
acceleration methods which also change the step-length.

A new paper (Kuroda and Sakakihara 2006) gives a quite simple acceleration method
for EM which does not require matrix inversion and has the same guaranteed convergence
as EM. They report speed-up factors of 3-10 on different examples relative to EM.

The multilevel algorithm will be assessed for acceleration by the most appropriate of
these improvements.

4.5 The inclusion of incomplete covariate data by computing a

close approximation to the full information matrix for the

incomplete data

In his PhD thesis under M. Aitkin’s supervision, Darnell (2003) examined several meth-
ods for including incomplete covariate data – observations with one or more covariate
values missing randomly – into a full ML analysis for the normal response GLM. The
common complete case analysis of incomplete data (by omitting the incomplete data) is
widely recognized as inefficient and frequently biased; currently only multiple imputation
methods allow properly for this inclusion (Rubin 1987, Schafer 1997), but these are not
generally available for multilevel models.

Darnell (2003) examined the use of nonparametric maximum likelihood for the incom-
plete cases, treating them as finite mixtures over the missing covariates and estimating
the covariate distribution nonparametrically by a finite mixture maximum likelihood EM
algorithm. A similar approach was developed by Lawless, Kalbfleisch and Wild (1999),
but this fails on continuous covariates with many values because the conditional dis-
tribution of the missing data given the observed data in general has no support points
in the observed data with exactly the same values of the fully observed covariates. No
software routines have been published for their approach, and a personal communication
from Chris Wild suggests that any implementation will be restricted to discrete covari-
ates with small numbers of categories. This is also the case for the approach which can
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be implemented in Gllamm, of treating the missing data as latent variables (Aitkin and
Scott 2006).

A detailed study by Aitkin and Chadwick (2003) for the US National Center for Edu-
cation Statistics, comparing maximum likelihood and multiple imputation for incomplete
data, suggested a composite approach which gave good results in normal GLMs with in-
complete covariates, by obtaining parameter estimates using the EM algorithm assuming
a multivariate normal distribution even for categorical covariates (as recommended by
Schafer 1997 for multiple imputation), but computing the information matrix contri-
butions for the incomplete cases by treating these cases as a finite mixture with mass
1/m at each set of the relevant covariate values in the m complete cases (the empirical
distribution of the covariates).

This method will be extended to general GLMs; simulations will assess the validity
of the approximate methods and their possible extensions to multilevel models.

5 Bayesian methods

The use of Bayesian methods for the analysis of complex statistical models has increased
dramatically in recent years, due partly to the increasing availability of cheap computing
power, and partly to the extensive development of Markov Chain Monte Carlo (MCMC)
methods (Gamerman 1997). The latter are notoriously computationally intensive, but
for many complex non-linear models they are the only practical methods for analysis.

It is clear from the earlier discussions in this paper that MCMC methods are not
essential for NAEP-scale analysis, but they may provide a richer and more theoretically
defensible analysis than ML methods. These two advantages both derive from the de-
pendence of ML methods on the validity of large-sample statistical theory, in which ML
estimates are efficient and normally distributed with minimum variance. While some
aspects of large-sample theory may be satisfactory for NAEP reporting (for example,
the normality and efficiency of ML estimates of reporting group parameters), this may
not be true for other aspects (like reporting group parameter SEs, and variance compo-
nent estimates and SEs). Since standard errors are affected by the size of the variance
components, their dependence on “plug-in” estimates of the variance components makes
these SEs doubtful when the number of random effects is not large (for example at the
PSU level), or when the variance component estimates themselves are small (as with the
PSU level for the 1986 data).

The advantage of Bayesian methods here is that they do not require large samples for
validity: the variability in parameter estimates is correctly represented for any sample
size by very large-scale sampling directly from the full posterior distributions given by
the computational output of the Markov Chain. These results also do not depend on
informative or subjective prior distributions for the model parameters; standard non-
informative priors are sufficient.

The main package used for MCMC is WinBUGS, mentioned above, or derivatives of
it. Variance component models are easily specified in WinBUGS, and the normal multi-
level model has a simple conjugate prior specification, with regression model parameters
given diffuse normal priors and variance components given diffuse inverse gamma priors
(or diffuse flat priors on the standard deviations).

The MCMC approach frequently uses Gibbs sampling in the chain computations.
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Gibbs sampling works by alternating steps of the Data Augmentation Algorithm (Tan-
ner and Wong 1987, Tanner 1996); these are similar to the E and M steps of the EM
algorithm, but with full distributions of parameters and unobserved variables rather than
MLEs and conditional means. For multi-level models, in the data step the random effects
at each level are drawn randomly from their posterior distributions given the observed
data and the parameters, and in the parameter step the parameters are drawn randomly
from their posterior distributions given the observed data and the random effects. Al-
ternating these steps leads to convergence of the parameter distributions to their joint
posterior, and of the random effect distributions to their posterior distributions, given
the observed data.

In the multilevel model with a normal response and normal random effects, all the
posterior distributions above have simple analytic forms, and the simulations involved are
very fast, though a large number of steps is needed for convergence - 50,000 is common.
For the binary item outcomes at the bottom level, a probit model implies a normal latent
threshold variable, and this also leads to a form of full normal analysis, affected only at
the bottom level by the transformation from the latent threshold scale to the observed
binary outcome scale. So a small change to the simple hierarchical normal model would
allow the full analysis by Gibbs sampling. For the logit model an additional Metropolis-
Hastings step would be needed as the logistic distribution is not conjugate with the rest
of the normal model.

A detailed comparison of maximum likelihood and quasi-likelihood estimation with
MCMC in 2- and 3-level normal and logistic regression models was carried out by Browne
and Draper (2006). They found that in 2-level normal models, ML and REML-based
methods were substantially faster than MCMC and had similar confidence interval cov-
erage of both regression and variance component parameters. (REML – restricted maxi-
mum likelihood – methods maximize a marginal likelihood in which the regression param-
eters are integrated out of the likelihood, giving degrees-of-freedom corrections for the
variance component parameters which have smaller biases, but generally larger MSEs,
than the ML estimates for these parameters.)

In 3-level logistic regression models, full ML methods were not used in the study,
but MQL or PQL (marginal or penalized quasi-likelihood) methods. The PQL or MQL
estimates had poorer confidence interval coverage than MCMC for both regression and
variance component parameters, and gave biased parameter estimates as well.

Full ML by Gaussian quadrature was not investigated, as being too slow computa-
tionally. An investigation of the relative performance of MCMC and full ML implemen-
tations of the four-level model would be of considerable value, as the MCMC output is
much richer than just the MLEs and SEs of the model parameters – full information is
available about the random effects as well, and posterior inference about these effects
(usually done by plug-in empirical Bayes estimation) can be done with full accounting
for the uncertainty in all the parameters. The computationally intensive parts of the
MCMC algorithm may be also be parallelized, as for the EM algorithm, and this may
substantially improve its performance.
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6 Summary and developments proposed

It is clear from the above survey that routine analysis of NAEP-scale data, incorporating
the full survey design, a large regression model incorporating relevant reporting group
and other variables, and the psychometric models for test items, is feasible provided that
dedicated special-purpose programs are developed for this analysis.

To develop such a program requires an extensive set of steps; not all of these can
be completed in an 18-month project. The steps are not sequential; some will be done
together:

• Implement the 2- and 3-level EM algorithms for 2PL models.

• Compare timings of different programs and platforms on NAEP-scale data.

• Compute the information matrix (for complete covariate data) for the 2- and 3-level
EM algorithms.

• Implement the Gauss-Newton (GN) algorithm using the information matrix.

• Construct a composite algorithm with initial EM iterations switching to GN.

• Experiment with numbers of EM iterations for optimal convergence before switch-
ing to GN.

• Extend models to 3PL; experiment with methods to assess identifiability.

• Redesign the M-step to avoid data expansion.

• Experiment with step-length increments to accelerate convergence.

• Develop C code for computationally intensive parts of programs.

• Assess speed-up with parallel versions of the EM algorithm and MCMC, with
varying numbers of processors.

• Develop methods for handling incomplete covariate data and the full information
matrix.
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