
New multi-parameter item response

models

April 16, 2008

Prepared by:
Murray Aitkin and Irit Aitkin
School of Behavioural Science

University of Melbourne

Prepared for:

US Department of Education
Office of Educational Research and Improvement

National Center for Education Statistics

This project was an activity of the NAEP Education Statistics Services Institute.

1



Contents

1 Aim of the project 4

2 Summary 4

3 The 2PL model 5

4 Extended models 6

4.1 The 3PL model . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.2 The 3QL model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2.1 Maximum likelihood model fitting . . . . . . . . . . . 7
4.3 The 4CL model . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 The composite 3PQL model . . . . . . . . . . . . . . . . . . . 9
4.5 A generalized 4-parameter guessing model . . . . . . . . . . . 9
4.6 Mixture of logits model . . . . . . . . . . . . . . . . . . . . . 9

4.6.1 Maximum likelihood model fitting . . . . . . . . . . . 10
4.7 Mixture guessing model . . . . . . . . . . . . . . . . . . . . . 10

5 Examples: the LSAT6 and LSAT7 data sets 11

5.1 LSAT6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 LSAT7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Model comparisons 12

7 The effect of mis-specification of the 3PL model 13

8 NAEP data analysis 15

8.1 Models fitted . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.1.1 The 2PL model . . . . . . . . . . . . . . . . . . . . . . 16
8.1.2 The 3PL model . . . . . . . . . . . . . . . . . . . . . . 16
8.1.3 The 3QL model . . . . . . . . . . . . . . . . . . . . . . 17
8.1.4 The 3PQL model . . . . . . . . . . . . . . . . . . . . . 17

8.2 Mixed ability models . . . . . . . . . . . . . . . . . . . . . . . 17
8.2.1 Common regression, component membership not mod-

eled 2xG . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.2.2 Component-specific regressions, component member-

ship not modeled 2xRG . . . . . . . . . . . . . . . . . 19
8.2.3 Common regression, component membership modeled

2xCG . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2.4 Item difficulty and item discrimination only model 2xID 19
8.2.5 Reporting group model 2xIDR . . . . . . . . . . . . . 19
8.2.6 Component membership model 2xIDC . . . . . . . . . 19
8.2.7 Reporting group and component membership model

2xIDRC . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2



9 Multidimensional models 21

10 Discussion 21

11 References 25

12 Tables 26

13 Figures 37

3



1 Aim of the project

The aim of this project was to assess the identifiability of the 3PL model for
guessing on NAEP items, and to examine alternative models for guessing
which are ability-based and are more readily identifiable on NAEP-scale
data sets.

2 Summary

The study established that the 3PL model could be identified using Latent
Gold for all items on the 30-item Knowledge and Skills subscale of the 1986
NAEP Math data (age 9/Grade 3), and that 15 of the 30 items had non-zero
guessing parameters. These items corresponded closely with the 3PL items
identified in the original analysis.

The 3PL model gave a substantial improvement in fit over the 2PL
model. The reporting group estimates for the 3PL model were not directly
comparable with those from the 2PL model because of the compression of
the logit scale implied by the 3PL model, but were nearly proportional by
a scale factor.

Polynomial models – quadratic and cubic generalizations of the linear
logit model – were also examined. The quadratic model – the 3QL – was
more easily fitted than the 3PL and had no identification difficulty. It was
not equivalent to the 3PL model, but on the NAEP Math data gave a sim-
ilar improvement to the 3PL model over the 2PL model. A further model
generalization – the 3PQL model – including both guessing and quadratic re-
gression could also be identified on the NAEP data, though it nearly reached
the limit of identifiability.

A further class of models was considered, based on a two-component nor-
mal mixture distribution of ability. This has a different implication from the
polynomial models or the 3PL model – that students in the two components
may respond differently to the items. Most models in this class gave similar
fit and results to the 3PL/3QL models, but those with different difficulty
and discrimination parameters in each component gave a greatly improved
fit to the data.

For the sub-class of guessing models, with zero discrimination parame-
ters in one (the guessing) component, and a full 2PL model in the other
component, the fit of the model was substantially better than that of the
3PL model. A further extension of the model allowed the modeling of the
probability of being in the guessing component; this further increased the
improvement in fit. Membership in the guessing component was positively
related to black and Hispanic ethnicity, and to attendance at South-East re-
gional schoools, and negatively related to white ethnicity and to attendance
at high metropolitan and urban fringe schools.
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The general two component mixture with different and non-zero dis-
crimination parameters in each component improved substantially over the
two-component guessing model. This model showed that a smaller subset
of the population responded consistently differently from the larger subset,
finding the items generally much harder. The additional modeling of the
smaller component membership probability further increased the improve-
ment in fit.

Combinations of categories with high probabilities of being in the smaller
component were blacks, Hispanics and American Indian students in South-
east and West region schools in low metropolitan areas, and those with high
probabilities of being in the larger component were white students in the
Northeast and Central region schools in high metropolitan and urban fringe
areas whose parents were college graduates. Girls had a marginally higher
probability of being in the larger component.

The reporting group differences in this model were changed substantially
from those in the 2PL and other models. They were generally substantially
decreased relative to those in the 2PL model, by as much as 4 SEs for
the Black-White and 3SEs for the Hispanic-White differences. None of the
size and type of community estimates, or the parents’ education estimates,
were now significantly different from zero: these variables do not affect, or
contribute to, the variation in item responses, but they do contribute to
the identification of the latent component membership which identifies how
difficult the students find the items.

Further investigation of factors at the student, school or class level which
could identify this latent component structure would be valuable both edu-
cationally and politically; this will be carried out on the 2005 NAEP math
data in a Secondary Analysis project.

For the comparison of complex models on sparse item data, the like-
lihood ratio test comparison of models may not follow its asymptotic χ2

distribution, and a fully Bayesian model comparison approach is needed for
reliable inferences.

3 The 2PL model

The 2PL model for the probability pij of student i with ability θi answering
correctly (yij = 1) a binary item j is given by

pij = Pr[yij = 1 | θi] = exp(φij)/[1 + exp(φij)]

φij = aj(θi − bj),

= αj + βjθi,

θi ∼ N(0, σ2),

where bj is the difficulty of item j and aj is its discrimination, and the
alternative parameters αj and βj are given by βj = aj, αj = −ajbj . For
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model identification one constraint is needed on either σ or one of the slope
parameters aj. A non-zero ability mean for θ is not identifiable: it is aliased
or confounded with one of the intercept terms αj . We give above the equiv-
alent simple linear regression form of the model as well, as this facilitates
the notation for the extensions we describe.

Maximum likelihood analysis in this model has been well-established
since the EM algorithm approach of Bock and Aitkin (1981). Much large-
scale analysis for binary response items is based on this model, and on the
3PL model for items on which guessing is expected.

Detection of departures from the 2PL model is an important issue in the
use of the model; in particular, ambiguous or badly-written items may lead
to a non-monotone item characteristic curve (ICC) which could affect the
estimation of both regression model parameters and individual abilities. We
give examples of both these effects in real data.

Various measures of item fit and item residuals have been used for this
purpose, but as noted by van der Linden and Hambleton (1997 p.16), “Well-
established statistical tests [for the 2PL and 3PL models] do not exist, and
even if they did, questions about the utility of statistical tests in assessing
model fit can be raised, especially with large samples.”

We address these difficulties by extensions of the 2PL model. We con-
sider first the 3PL model.

4 Extended models

4.1 The 3PL model

The 3PL model for the probability pij of student i with ability θi answering
correctly item j is given by

pij = cj + (1 − cj)φij ,

θi ∼ N(0, σ2),

where cj is the guessing parameter for item j – the probability of answering
item j correctly for students who are guessing independently of ability. This
model is a form of two-component mixture which is more difficult to estimate
by maximum likelihood as it has two kinds of latent structure.

4.2 The 3QL model

We consider a 3-parameter model which is the quadratic extension of the
2PL model, with a quadratic regression of logit response probability on
ability. We call this model the 3QL – the 3-parameter Quadratic Logit
model. The parallel 3QP probit model can be defined similarly, but we

6



restrict consideration to the logit version:

Pr[yij = 1 | θi] = exp(ψij)/[1 + exp(ψij)]

ψij = αj + βjθi + γjθ
2

i ,

= φij + γjθ
2

i ,

θi ∼ N(0, σ2).

Here γj is the curvature parameter for item j. This 3QL model requires an
identifiability constraint on one of the quadratic coefficients (conveniently
γ1 = 0) if σ is not constrained.

Polynomial logit item response models were considered briefly by Mc-
Donald (1989), who predicted identification difficulties with these models, by
analogy with the well-known difficulties with the 3PL model. We comment
on this point below.

The 3QL model can have a wide range of ICC forms, as is clear from the
behaviour of the quadratic. With a small positive quadratic coefficient, the
model is close to the 2PL model, and may be similar to the 3PL in its ICC
shape. For a larger positive quadratic coefficient it may decrease and then
increase, while for a large negative quadratic coefficient it may increase to a
maximum and then decrease, suggesting an ambiguous item for high ability
students.

Strong curvature would generally indicate a badly written item, since
the intended design of good items is that the success probability increases
monotonically with latent ability. Consequently the model may be regarded
as providing a test for item consonance with the 2PL model. As such it
provides much more information than merely a single global test statistic of
item fit: each item can be assessed through its own estimated parameters,
rather than from residuals from the 2PL model.

If the items do fit the 2PL model, this will be indicated by a non-
significant difference in deviances (−2 logLmax) between the 2PL and 3QL
models, and this will provide a strong goodness of fit test for the 2PL model
(as for the corresponding deviance comparison for the Rasch model com-
pared with the 2PL model). In large samples the deviance difference will be
distributed as χ2

ν with ν the difference between the numbers of identifiable
parameters in the two models.

4.2.1 Maximum likelihood model fitting

Maximum likelihood estimation in the 3QL model parallels closely that for
the 2PL model described by Bock and Aitkin (1981). We first extend the
2PL model with explanatory variables xi:

logit pij = αj + βjθi + βββ′xi

θi ∼ N(0, σ2);
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the likelihood for responses yij is

L(βββ, {αj , βj}) =
∏

i

∫ ∏
j

[p
yij

ij (1 − pij)
1−yij ]φ(θi/σ)/σdθi,

where φ(x) is the normal density function. The maximization of the likeli-
hood is achieved through numerical integration over the θi: the approximate
log-likelihood is (Bock and Aitkin 1981, Aitkin 1999)

log l
.
=

∑
i

∑
k

πk

∏
j

[p
yij

ijk
(1 − pijk)

1−yij ]

where
logit pijk = αj + βjzk + βββ′xi

where zk is the Gaussian quadrature masspoint with mass πk.
For the 3QL model we have

logit pijk = αj + βjzk + γjz
2

k + βββ′xi

with the same marginal distribution for θi.
Since zk is observed in the discrete computation, the Gaussian quadra-

ture approximation procedure is unchanged by the quadratic extension, apart
from the additional estimation of the γj curvature parameters for each item.
The quadratic extension requires only a very minor change in the M step
of the EM algorithm, with an additional set of score equations for these
parameters. The E step is unchanged, except for the inclusion of the es-
timated curvature parameters in the probability model and the maximized
likelihood; the weight calculation needed in this step is unchanged.

This is an important point: as for the 2PL model, each 3QL item provides
information about each student’s ability, in contrast to the 3PL model in
which guessed items do not provide information about student ability, and
the fact of guessing on an item has to be assessed from the inconsistency of
responses on this item relative to responses on other items on which there
is no guessing – which has to be assumed.

The identifiability issue raised by McDonald (1989) is circumvented by
using the EM algorithm: even if the model is underidentified, the algorithm
will converge to a point on the (generally multidimensional) ridge in the
parameter space on which the unidentifiable parameters are related. The
resulting parameter estimates are not unique, since any other point on the
ridge would give the same maximized likelihood; however the inversion of
the information matrix reveals the singularities in the model and the uniden-
tifiable parameters.

We give examples below; models were fitted using either Gllamm or
Latent Gold.
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4.3 The 4CL model

The quadratic regression can be extended to higher-order polynomials, to
the extent that the parameters are identifiable. This is a simple matter
of defining the appropriate ability power variable and extending the item
regression on ability to include it. We extend the quadratic model with a
cubic term, and call the resulting model the 4CL model.

4.4 The composite 3PQL model

This model allows both guessing and quadratic regression:

pij = cj + (1 − cj) exp(ψij)/[1 + exp(ψij)],

ψij = αj + βjθi + γjθ
2

i ,

θi ∼ N(0, σ2).

This model may look far too complicated to fit, but it is identifiable on the
NAEP data example.

4.5 A generalized 4-parameter guessing model

pij = cj · gj + (1 − cj) exp(φij)/[1 + exp(φij)],

θi ∼ N(0, σ2),

where cj is the proportion of students who guess on item j, and gj is the
probability of guessing item j correctly.

Comparison of this model with the 3PL model shows that the latter’s
single cj parameter is split into two: the proportion of guessers on item j, cj,
and the probability of a correct guess on item j, gj. It follows immediately
that in the 3PL model, gj = 1 for all j, that is, those guessing on item j all
guess correctly ! This is an unexpected and unreasonable feature of the 3PL
model.

This consideration leads us to further extended models, in which we
recognise explicitly heterogeneity in the ability population.

4.6 Mixture of logits model

This is a population heterogeneity model: the population is a mixture of two
components. In the first component which contains a proportion δ of the
population, the probability of a correct answer on item j is given by the
2PL model 1 with parameters α1j and β1j , while in the second component,
containing the proportion (1 − δ) of the population, the probability of a
correct answer on item j is given by the 2PL model 2 with parameters α1j

and β1j . The probability of a correct answer on item j is then

pij = δ · exp(φ1ij)/[1 + exp(φ1ij)] + (1 − δ) · exp(φ2ij)/[1 + exp(φ2ij)]
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where

φ1ij = α1j + β1jθi,

φ2ij = α2j + β2jθi,

and the parameters in the two components are in general unrelated. It
might be thought that the ability distribution in the two components can
be correspondingly general, with different means and variances. However
because of the same issue in the 2PL model, in this model the component
variances are each aliased with one of the 2PL component discrimination
parameters, and the component means are aliased with one of the 2PL
component intercepts. So the ability distributions cannot be generalized
to be different without constraining other model parameters. We therefore
treat the ability distributions as identical in the reported analyses.

4.6.1 Maximum likelihood model fitting

The mixture of logits model can be fitted straightforwardly by nested EM
algorithms, since the component logit models can themselves be fitted by
EM, and any finite mixture can be fitted by an EM algorithm. We do not
give details.

4.7 Mixture guessing model

This is a special case of the generalized 4-parameter guessing model above
(and of the mixture of logits model), with cj replaced by δ, constant over
items. In this model, students in the first component guess at random, with
probability gj of guessing correctly on item j. In the second component, the
probability of a correct answer is given by the 2PL model.

The probability of a correct answer by student i on item j is then

pij = δ · gj + (1 − δ) · exp(φij)/[1 + exp(φij)],

φij = αj + βjθi.

This model can be considered a representation of engagement: those in the
first component are not engaged in the test. Since guessing by definition does
not provide information about student ability, those unengaged students in
the first component do not contribute to the estimation of their own abilities,
and therefore to group differences in ability. These group differences are
estimated only from those in the second component. There may therefore be
considerable change in reporting group estimates in this model relative to the
single-component 2PL model, if the proportion in the guessing component
is at all appreciable.

To the extent that these models are identifiable, they provide a rich class
of alternative models to the 3PL. With explanatory variables in the model

10



at the student level, these models can be made even richer by allowing the
explanatory variables to affect the probability of membership in the compo-
nents, as well as the probability of correct responses on the items. This is
achieved by replacing the cj parameter by

cij = exp(λ′xi)/[1 + exp(λ′xi)],

which has a logistic regression of the probability of component membership
on the explanatory variables. This requires only a slight extension of the
EM algorithm for the finite mixture of logit models. We do not give details.

We illustrate these models on a number of examples.

5 Examples: the LSAT6 and LSAT7 data sets

Bock and Aitkin illustrated the EM algorithm for the two-parameter probit
(2PP) analysis with two small data sets of 1000 students from the Law
School Aptitude Test. These scales each had 5 items; scale 6 was well fitted
by the 2PP model but scale 7 was not, pointing to either multidimensionality
of these items or a mis-specified item response model. Both data sets are
given in Table 12.

5.1 LSAT6

For this data set, the deviances (−2 logLmax) for the Rasch and 2PL models
are 4933.87 and 4933.30, a deviance change of 0.57 on 4 df. For the 3QL
model the deviance is 4930.70, a reduction of 2.60 on 4 df compared to
the 2PL model. It is clear that there is no evidence of curvature over all
items, and that the Rasch model is a very good fit. The G2 goodness of fit
index, comparing the model deviance with the deviance for the “saturated”
multinomial model reproducing the observed data (Maydeu-Olivares and
McArdle 2005 p. 90) is 22.04 on 25 df for the Rasch model, 21.47 on 21 df
for the 2PL model, and 18.87 on 17 df for the 3QL model.

Parameter estimates for the Rasch, 2PL and 3QL models are shown in
Table 1.

5.2 LSAT7

For this data set, the deviances for the Rasch and 2PL models are 5329.82
and 5317.54, a deviance change of 12.28 on 4 df, which has a χ2

4
p-value of

0.0154. The 2PL is a better fit. However the goodness-of-fit G2s for the
Rasch and 2PL models are 44.24 on 25 df (p = 0.0102) and 31.94 on 21 df
(p = 0.0594). The 2PL does not fit very well.

The 3PL model has a deviance of 5316.17, a reduction of only 1.37 on
4 df from the 2PL model. Only item 2 has a non-zero guessing parameter.
The 3PL model is clearly not supported by the data.
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Aitkin, Francis and Hinde (2005 p.535) noted that adding a common
quadratic term to the 2PL decreased the deviance by only 0.12, so that
this common term was not needed. For the full 3QL model the deviance
is 5304.04, a reduction of 13.50 on 4 df (p = 0.0091) compared to the 2PL
model. The G2 for this model is 18.44 on 17 df, a good fit. Parameter
estimates for the 2PL and 3QL models are shown in Table 2.

Fitting the 4CL model, we obtain a deviance of 5294.05, a reduction
of 9.99 on 4 df (p = 0.0406) compared with the 3QL model. This is just
significant at the 5% level. The goodness-of-fit G2 is now 8.45 on 13 df (p
= 0.8131); the high p-value suggests over-fitting.

The 3QL model is not the only generalization of the 2PL which could
provide a model check: both multi-dimensional ability and latent class (mix-
ture) models could achieve this. We discuss these in detail below for the
NAEP data, but present the results here for comparison with the other
models. A two-dimensional 2PL model for the LSAT7 example has a de-
viance of 5307.03, a reduction from the 2PL of 10.51 with 5 df, while a
two-latent-class 2PL mixture model with different intercepts but the same
slopes in each class has a deviance of 5300.93, a reduction of 16.60 on 5 df.
These compare with the 3QL reduction of 13.50 on 4 df.

Parameter estimates for the 2PL mixture model are shown in Table 2.
The second latent class is very small, with only 2.5% of the 1000 students;
these people found the items (except for item 2) very much harder than
those in the first latent class.

6 Model comparisons

The 2PL (solid curve), 3QL (dotted curve) and 4CL (dot-dashed curve)
ICCs for each LSAT7 item are shown in Figures 11–15, over the range −3
to 3 for θ.

There are striking departures from linearity, with both positive and neg-
ative curvature. We interpret only the quadratic model; the cubic model
appears to be overfitted and gives only a marginally significant improve-
ment in deviance.

Items 1, 4 and 5 all show downward curvature; item 1 has a maximum
response probability of 0.92 at θ = 0.61, item 4 a maximum of 0.74 at
θ = 0.53 and item 5 a maximum of 0.9 at θ = 0.81. Item 2 shows a very high
response probability for low θ, falling rapidly to less than 0.3 at θ = −1.2
and then increasing to 1. The cubic model does not change the lower-tail
behaviour. Item 3 shows close agreement of the three models for large θ, but
the quadratic model suggests a 3PL model with guessing parameter about
0.2, as the 3QL ICC flattens out near this value at θ = −3.

How do we interpret these results? First, since the 3QL model is a much
better fit than the 2PL, the inference about individual ability from the 2PL
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needs to be checked. Figure 16 graphs the posterior mean (EAP) of the
ability variable for each response pattern under the 3QL model against the
corresponding posterior mean under the 2PL model.

The correlation is high (0.8155) but there are some notable discrepan-
cies; because three items have negative curvature, high total scores do not
necessarily indicate high ability.

Second, for the general case in which the model contains explanatory
variables, the sensitivity of their estimates and standard errors should also
be checked.

Finally, the items themselves may need to be re-written to achieve a
monotone ICC which can be better represented by the simpler 2PL model
(or the Rasch model) in future administrations of the items.

A further major issue is whether there are other models which also fit
the data which do not have the non-monotone property of the 3QL. For the
LSAT7 data the two-component mixture of logits model fits even better than
the 3QL (with one extra parameter), and has a quite different interpretation:
it is not the items which are badly written, but the student population which
is heterogeneous.

7 The effect of mis-specification of the 3PL model

One major question in this study was whether the 3QL model could serve
as a more easily computed alternative to the 3PL without its identifiability
difficulties. To assess this we carried out a simulation study of the effect
of mis-specification in the analysis of item data from a 3PL model. We
generated 332 samples with 10 binary item responses for each of 1000 sub-
jects, from five items with 2PL models and five with 3PL models. The item
parameters are given in Table 3.

In addition to the items, the logit linear predictor had a regression model
with four explanatory variables which we labelled ethnic group (4 levels),
sex, poverty (2 levels) and homework (3 levels). The generating parameters
for this model are given in Table 4; these were intended to be more extreme
representations of NAEP data, to highlight estimation differences.

Results for one random sample from this model are also shown in Table
4. The incorrect 2PL model for all items had a deviance of 11,444.03. Fitting
the 3QL model gave a deviance of 11,423.54, an improvement of 20.49 for
the additional 10 parameters. Fitting the 3PL model gave a deviance of
11,258.40, an improvement of 165.14 compared to the 3QL, with the same
number of parameters.

Regression parameter estimates for all three models are shown in Table
4 with the true values. All 2PL parameter estimates appear to be consider-
ably biased downwards in magnitude, as would be expected from the range
restriction in the 3PL model. This effect appears less severe for the 3QL
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model parameters. The 3PL parameter estimates had smaller biases, in the
opposite direction to the other two.

The estimated 3QL ICCs are shown in Figures 1–10 (dashed lines) over
the range −3 to 3 for θ, with the true 2PL or 3PL ICCs (solid lines). The
3QL ICCs for the 3PL items are similar to those for the 3PL model for most
items (6, 8, 9, 10), while item 4 has a marked negative curvature. For the
2PL items most 3QL ICCs (1, 2, 5, 7) are in general agreement with the
2PL ICCs, while item 3 shows marked negative curvature.

Of the 332 simulations, 21 failed to give an output file, apparently be-
cause of the instability of the current beta version of Latent Gold running
under wine on the Linux cluster. In the 311 successful simulations we fitted
the 2PL, 3QL and 3PL models, and two mixed 2PL models with normal
mixture distributions for ability, the first with different means but common
variance, the second with different means and variances. The deviance im-
provement on the 2PL model, averaged over the 311 samples, was 24.70 for
the 3QL model, 193.54 for the 3PL model, 3.14 for the equal-variance mix-
ture model and 4.34 for the unequal variance mixture model. (The deviance
change for the 3QL model was in many samples significant at the 5% level of
χ2

10
(18.3), indicating some failure of the 2PL model.) Estimation warnings

occurred frequently for the 3PL model and occasionally for the 3QL model,
indicating that convergence had not been achieved, because the number of
EM and Gauss-Newton iterations specified was insufficient. For the 3PL
model this resulted from the estimated guessing parameters approaching
zero (five of them were zero); as these are estimated on the logit scale, they
tried to approach −∞, with minutely increasing likelihood. For the 3QL
model this did not indicate any parameter estimation difficulty, only the
need for more iterations. Iterating to convergence in both these models
would have the effect of increasing their likelihoods slightly, and increasing
their improvement over the 2PL model.

Parameter estimates are shown in Table 5. The bias of the 3PL estimates
had the opposite sign to the biases of the other methods, reflecting the
compression of the probability scale in the 3PL models generating the data.
The 3PL estimates had the smallest (absolute) biases except for the largest
ethnic2 parameter, where the 3QL estimate had the smallest bias.

The 3QL estimates had consistently smaller biases than the 2PL esti-
mates. The biases of the 2PL mixture model estimates were very similar to
those of the 2PL estimates, not surprising as these models barely improved
on the likelihood for the 2PL model.

Surprisingly (since the 3PL model was correct), the 3PL estimates always
had the largest across-sample variability (measured by sdb), followed by
the 3QL estimates; the 2PL estimates had the smallest variability, and the
mixture model sdbs were just slightly larger. As a consequence, the MSE
of the 3QL model was generally the smallest, though it was equalled by the
3PL for sex and ethnic 4, and equalled or slightly bettered by the 2PL for
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the small homework estimates.
The “se” column of Table 5 gives the average across samples of the esti-

mated standard error given by the Latent Gold package. In several samples
the mixture models failed to give an identifiable mixture and the informa-
tion matrix in the regression variables, latent class means and variances was
singular. This led to infinite standard errors for some parameter estimates,
which are set to 1000 by the package, and resulted in a very large mean(se).
This does not lead to any difficulty in actual analysis as it is immediately
clear that the mixture model is unidentifiable and over-complex for the data.
However the average of one or more values of 1000 with other values like 0.06
indicates this unidentifiability in a number of samples – the item responses
do come from a mixture, but at the item level, not the population level.

For the 2PL, 3PL and 3QL which did not have this difficulty, the average
se underestimated the actual variability across samples, slightly for the 2PL
and 3PL, and more seriously for the 3QL.

8 NAEP data analysis

We applied these models to the analysis of a large NAEP survey. The
data are the 30 items of the Numbers and Operations – Knowledge and
Skills subscale of the 1986 NAEP Age 9/Grade 3 math test. Estimated item
parameters for these items can be found in the ETS Technical Report for this
survey and are reproduced in Table 3; some items were fitted in the original
ETS analysis by the 3PL model, while most were fitted by the 2PL model.
These parameters were estimated in a “null” model with no explanatory
variables, and so need not correspond to the estimates we obtain below.

There were 10,463 children who attempted at least one item from this
subscale. The sample design used a two-stage clustered and stratified sample
of PSUs, schools within PSUs, and students within schools, with stratifica-
tion by student and school ethnicity, and oversampling of lower frequency
ethnic groups. A regression model was fitted to the item responses, additive
on the logit scale to the 2PL model. The 20-parameter regression model
included the main effects of the NAEP reporting group variables sex, eth-
nicity, region, size and type of community (STOC), and parents education
(PARED).

In the analyses described below, all models included the ethnicity strat-
ifying variable and the school random effect, so the different sampling frac-
tions among ethnic groups and across school ethnicity do not require reweight-
ing (Pfefferman 1993).

A four-level analysis of the sample data using Gllamm (Skrondal and
Rabe-Hesketh 2004) showed that the PSU level had a very small variance
component; the school variance component however was large. The detailed
analysis reported below used a three-level model ignoring the slight PSU
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clustering, and was carried out in Latent Gold 4.5.
In using Latent Gold, at the termination of iterations the models had

sometimes not converged by the convergence criterion (10−5 on the succes-
sive log-likelihood differences). So some small increases in the maximized
log-likelihoods may occur for the most complex models; this does not change
the major conclusions from the analyses.

8.1 Models fitted

We adopt a consistent form for presentation for the models, since there is a
large number of parameters in all models. The reporting group estimates are
shown for all the polynomial models in Table 7, with standard errors and
the maximized log-likelihood. These are the important model parameters;
substantial variations in these estimates across models would show the need
for a careful choice of model for reporting these estimates.

8.1.1 The 2PL model

This is the basic model against which we compare all others, though many
of the items in the original analysis required the 3PL model (Table 6). The
model has a maximized log-likelihood of −39, 930.05.

8.1.2 The 3PL model

This model fitted the 3PL for all items. The notorious identification dif-
ficulties of this model led us to expect unidentifiability. However Latent
Gold 4.5 was able to identify the model, with a maximized log-likelihood of
−39, 848.49, an improvement of 81.56 (an equivalent χ2 of 163.12) for the
additional 30 parameters: there is no question of the inadequacy of the 2PL
model.

The guessing parameters are shown in Table 9. The Latent Gold analysis
reported 13 unidentifiable parameters; we interpreted these as guessing pa-
rameters which were all approaching zero. We refitted the model with these
cj parameters fixed at 0, together with two other items with large logit val-
ues (≥ 5); values less than 5 were retained. The maximized log-likelihood
for this model was unchanged by the 15 constrained guessing parameters,
and converged much faster.

It is of interest that the original NAEP analysis identified 12 3PL items:
4, 6, 9, 10, 15, 19, 20, 24, 27, 28, 29, 30, whereas the full 3PL analysis here
identified 15 3PL items, 10 of the original 12 plus five others: items 1, 2, 3,
7, and 11. Items 4 and 19 are not 3PL items in the current analysis.

For the reporting group estimates, those from the 3PL are almost all
larger than those from the 2PL, as are their standard errors and the variance
components. The reason is clear: the compressed logit scale for the 3PL
items, and the large number of them, mean that effects on this scale must
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be larger than on the full 2PL logit scale to reproduce the data fit. The two
sets of parameter estimates are not directly proportional, but they are very
similar in their relations within each set. The improved fit of the 3PL model
does not appear to change much the relative differences in the reporting
group categories.

8.1.3 The 3QL model

Latent Gold had no difficulty in estimating this model. The maximized log-
likelihood was −39, 845.75. This is slightly higher than for the 3PL model,
although there are more parameters (29 curvature parameters versus 15
guessing parameters). The curvature parameters are shown in Table 9.

Only 7 of the curvature parameters exceed twice their standard errors,
for items 2, 12, 13, 14, 21, 22 and 23. Item 2 was identified as a 3PL item
in the previous analysis. All the curvatures are negative except for item 12:
the negative curvature is the opposite of 3PL curvature.

The reporting group estimates and standard errors show the opposite
effect from those for the 3PL: they are generally smaller, and again show
similar proportionality to the 2PL estimates. However this cannot be due
to the different variance component estimates, as these are very similar to
those for the 2PL model.

8.1.4 The 3PQL model

This very large model (140 parameters) imposed the same constraints on
zero guessing parameters as in the 3PL model. Surprisingly, it required
fewer EM iterations than the 3PL model. The maximized log-likelihood was
−39, 777.87, an improvement of 67.88 on the 3QL model for the additional
15 parameters. Guessing and curvature parameters are shown in Table 9,
and reporting group estimates in Table 7. The guessing parameters are very
similar to those for the 3PL, and the curvature parameters to those for the
3QL, though their standard errors have increased so much that only four
items (13, 21, 22, 23) now have estimates more than twice their standard
errors. The reporting group estimates and standard errors are generally
slightly smaller than those for the 3PL model, reflecting the “shrinkage” of
the 3QL model over the 2PL model.

8.2 Mixed ability models

The following models all represent the ability distribution as a two-component
mixture of normals, with different regressions (slopes and intercepts) of items
on ability in the two components. They vary in the extent to which the
reporting group parameters vary over the two components, and whether
membership in the two components is itself modeled. We also examined
three-component mixtures, but found so many unidentifiable parameters
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that we concluded that the 1986 data cannot support this level of latent
structure.

In the two-component mixtures we found that it was necessary to con-
strain the student ability variance parameter to be 1 in all models, and to
free the discrimination parameters. It proved impossible to identify a sec-
ond variance parameter for the two groups, and so all models fix the ability
variance parameter to be 1 in both groups. This also gave much faster ML
estimation.

We label the models by the parameters which are different in each com-
ponent – the other parameters are understood to be the same. The code is
2x for 2-component mixture, and

• I – intercept

• D – discrimination

• R – reporting group

• C – component membership

• G – guessing model

We consider first guessing models, with the discrimination parameters
set to zero in one component. Three models were examined, the first with
common reporting group regressions and no modeling of component mem-
bership, the second with different reporting group regressions and no mod-
eling of component membership, and the third with a common reporting
group regression and modeling of component membership.

8.2.1 Common regression, component membership not modeled

2xG

This model has a maximized log-likelihood of −39, 777.88 with 110 param-
eters, a large increase of 152.17 for the 31 extra parameters in the mixture
and the guessing component. The proportion in the guessing component is
estimated to be 0.219, with 95% confidence interval (0.184, 0.259). Report-
ing group parameter estimates are given in Table 8, and estimated guessing
parameters, on both the logit and probability scale, are in Table 11. The
reporting group estimates are little changed (less than 0.5 SEs) from those
for the 2PL model. The guessing parameter estimates are much greater, for
nearly all items, than the random guessing values 1/k, with k the number
of response categories. The among-school variance component, 0.143 (.016),
is close to that for the 2PL model.
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8.2.2 Component-specific regressions, component membership not

modeled 2xRG

This model has a maximized log-likelihood of −39, 743.12 with 130 param-
eters, an increase of 34.76 relative to the 2xG for the 20 extra parameters.
The deviance change of 69.52 is highly significant relative to the asymptotic
χ2

20
distribution. Parameter estimates are not shown for this model, for

reasons given below.

8.2.3 Common regression, component membership modeled 2xCG

This model has a maximized log-likelihood of −39, 711.77 with 130 param-
eters, an increase of 66.11 relative to the 2xG model for the 20 extra pa-
rameters. This is substantially larger (by 31.35) than the improvement of
the 2xRG model, with the same number of parameters. Reporting group
and logit probability model parameter estimates are given in Table 8. The
reporting group estimates are little changed from those for the 2PL model.
The largest change is less than 1 SE, and most are much smaller. The school
variance component is very similar 0.132 (.015).

The component membership parameters are for the probability of be-
ing in the non-guessing component. Combinations of categories with high
probabilities of being in the guessing component are Blacks and Hispanic
students in Southeast region schools, and those with high probabilities of be-
ing in the non-guessing component are white students in high metropolitan
and urban fringe schools.

8.2.4 Item difficulty and item discrimination only model 2xID

This model has a maximized log-likelihood of −39, 649.41 with 142 param-
eters, an increase of 280.64 for the 60 additional parameters compared to
the 2PL model. The reporting group estimates are given in Table 9 and the
item parameter estimates are given in Table 12. The among-school variance
component was 0.130 (.016), very similar to that for the 2PL model.

8.2.5 Reporting group model 2xIDR

This model has a maximized log-likelihood of −39, 623.38 with 162 param-
eters, an increase of 26.03 for the 20 additional parameters compared to the
2xID model. The deviance change of 52.06 is significant compared with χ2

20
.

Parameter estimates are not shown for this model, for reasons given below.

8.2.6 Component membership model 2xIDC

This model has a maximized log-likelihood of −39, 547.41, also with 162
parameters. This is an increase of 102.00 for the 20 additional parameters
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relative to the 2xID model. The item parameters are give in Table 15 and
the reporting group and logit probability model estimates in Table 12. The
among-school variance component was 0.121 (.015), very similar to that for
the 2PL model. The reporting group parameter estimates are generally sub-
stantially decreased relative to those in the 2PL model, by as much as 4 SEs
for the Black-White and 3SEs for the Hispanic-White differences. None of
the size and type of community estimates, or the parents’ education esti-
mates, is now significantly different from zero. The modeling of membership
in the two components has a substantial effect on the reporting group dif-
ferences. The SE region is now 2 SEs above the reference NE region.

The discrimination parameters in Table 13 are all positive apart from
three non-significant negative ones. It is difficult from the table to see the
nature of the differences; the ICCs are shown for each component in Figures
17-46 (component 1 solid curve, component 2 dashed curve). It is very clear
that the items were found much easier, and many less discriminating, in
component 2 than in component 1. So component 1 (containing 45.6% of
the population) appears a lower-achieving group than component 2 (55.4%).

Items 27 and 28 have non-significant negative discriminations in the
first component – it is clear that this corresponds to random guessing in
this component; the items are hard, and the more able group in the second
component also found them hard.

Item 1 has a non-significant negative discrimination in the second com-
ponent; the figure shows that in this component the success probability is
essentially 1: the item is extremely easy for those in this component. The
wording of the item questions is given in Table 15.

The nature of the second component membership can be seen from the
logistic model estimates in Table 9. The parameter estimates in this model
are log-oddds values for the probability of being in the second component.
By exponentiating, they are converted to odds ratios for component 1 to
component 2, relative to the odds ratio for the first category of the variable.
These odds ratios for each variable are given in the last column of Table 9.

Combinations of categories with high probabilities of being in the first
component are Blacks, Hispanics and American Indian students in Southeast
and West region schools in low metropolitan areas, and those with high
probabilities of being in the second component are white students in the
Northeast and Central region schools in high metropolitan and urban fringe
areas whose parents are college graduates. Girls have a marginally higher
probability of being in the second component.

8.2.7 Reporting group and component membership model 2xIDRC

This model has a maximized log-likelihood of −39, 532.44, with 182 param-
eters, an increase of 14.97 over the component membership model 2xIDC
for the 20 additional parameters. The deviance change of 29.94 is not sig-
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nificant for χ2
20

. Given that the component membership is modeled, the
additional interaction modeling of separate reporting group effects in the
two components is unnecessary. We do not further discuss this model, or
the reporting group model 2xIDR. We conclude that the model 2xIDC pro-
vides a sufficient representation of the relationship between test outcomes,
latent class membership and reporting group variables.

9 Multidimensional models

We noted in the section on the LSAT7 test above that a multidimensional
ability model is another alternative to the 2PL model. We examined the
two-dimensional ability model for the 30 scale items: though the items are
intended and designed to be unidimensional, this may not be the case. The
improvement found in fitting the mixed distribution model may be due to a
different departure from the 2PL model.

In fitting the two-dimensional 2PL model, we constrained the ability
variance to be 1 on both dimensions, and constrained the correlation be-
tween the factors to be zero. This does not imply any loss of generality,
because the two-dimensional model, like all multi-factor models, is invari-
ant (in terms of its maximized likelihood) under arbitrary rotations, and in
particular under the orthogonal rotation which makes the rotated factors
uncorrelated. Since the rotated ability factor loadings have no simple inter-
pretation, we do not present them in the tables, but give just the reporting
group estimates and standard errors in Table 8. They are very close to
those for the 2PL model, with slightly greater standard errors reflecting the
larger number of parameters estimated. The maximized log-likelihood for
the two-dimensional model is −39, 685.69 with 110 parameters, a very sub-
stantial improvement over the 2PL model, but a smaller improvement than
that of the 2xID model (−39, 649.41 with 142 parameters). These models
are not nested, but the improvement of the 2xID model is 36.28 greater with
its 32 extra parameters; this would be highly significant if the models were
nested. The component modeling 2xIDC extension of the 2xID model gives
a further improvement of 102.00 in maximized log-likelihood over the 2xID
model, with 20 extra parameters.

10 Discussion

We began this study with the search for a more easily identified ability-based
model for guessing as an alternative to the 3PL. However our experience
with the Latent Gold implementation of the EM algorithm showed that the
identification difficulties of this model are less than we had believed: even
for the very sparse NAEP data we were able to identify not only the 3PL
model, but also the more complex 3PQL model with both guessing and

21



quadratic regression. Our first attempt at an alternative model, the 3QL, is
very easily fitted: as for the 2PL model, every item contributes to estimation
of the student ability, as there is no mixture guessing structure.

These generalized item response models – 3QL, 3PQL – can represent a
wide variety of ICCs. What is not clear is whether real items actually have
non-monotone ICCs, or whether the fitted non-linearity is purely a feature of
forcing the model on data which show only random improvement, as occurs
with any unnecessarily complex model.

We rely at present on the asymptotic distribution of the likelihood ratio
test to assess the real need for more complex item response functions, so it
would be helpful to know how these asymptotic properties deteriorate with
increasingly parametrized models, and to have Bayesian methods for model
comparison which work better in heavily parametrized models.

The simulation study showed that when the true model is the 3PL, the
3QL fails to reproduce it (for the sets of parameter values considered), so
the 3QL is not a replacement for the 3PL, but is a diagnostic for the failure
of the 2PL: for several of the examples in the report the 2PL model failed
to represent adequately the response functions. In the simulation study,
the 3QL model, though incorrect, still gave the best regression parameter
estimates (in terms of MSE), despite its biases. The 3PL model also showed
biases, combined with less precision in the estimates: this model is inherently
difficult, and its parameter estimates are not as well behaved as those of
the 2PL model. This may be a consequence of its unnatural structure, as
described above.

For the NAEP data, the 3PL and 3QL models gave similar fits and
reporting group estimates and standard errors; the differences are inter-
pretable as a scale change caused by the logit scale compression (for the
3PL and 3PQL models).

The mixture models without different difficulty and discrimination pa-
rameters were similar to the 3PL and 3QL models in fit and reporting group
estimates. For the guessing models with zero discrimination parameters in
one component, the fit of the model was substantially better than that of
the 3PL model, with maximized log-likelihoods of −39, 848.49 for the 3PL
and −39, 777.88, with almost the same number of parameters, for the 2xG
guessing model without modeling of the guessing component probability.
The additional modeling of this probability increased the maximized log-
likelihood to −39, 711.77 for the 2xGC model with 20 additional parameters.
Membership in the guessing component was positively related to black and
Hispanic ethnicity, and to attendance at South-East regional schoools, and
negatively related to white ethnicity and to attendance at high metropolitan
and urban fringe schools. So it appears that modeling guessing through the
3PL model, with guessing a function of the item only independently across
items, gives a poorer representation of the test results than the guessing
model with a subgroup of the student population who guess on all items.
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However for the models with sets of both difficulties and discriminations
in the two components, a very large improvement in fit occurs: the max-
imized log-likelihood for the 2xID model was −39, 649.40, an increase of
128.48 over the 2xG model for the 30 additional discrimination parameters,
and the modeling of the component membership probability increased this
further for the 2xIDC model to −39, 547.41, an even larger improvement of
164.36 over the 2xGC model.

If these maximized likelihood comparisons can be relied on to compare
the models, the existence of a mixture of response types in the population
is very clear, and the ICCs for the two components show a markedly greater
difficulty of the items in one component (with 46% of the population), while
in the other component (with 54%) the items are relatively easy, and much
less discriminating.

The effect of modeling the component membership probabilities is to
separate the effects of the reporting group variables into two categories:
those affecting the latent component membership, and those affecting both
the latent component membership and the correct response probability on
the items.

The sex, region, size and type of community, and parents education
variables do not affect the probability of a correct response on the items
(though the Central region has a marginally lower level of correct responses
than the other regions). Their effect is on the latent group membership:
students in Southeast and West region schools in low metropolitan areas
have higher probabilities of being in the first component, and students in
the Northeast and Central region schools in high metropolitan and urban
fringe areas whose parents are college graduates have higher probabilities of
being in the second component. Girls have a marginally higher probability
of being in the second component. The component grouping affects how
difficult the students find the items: those in the first component find the
items much more difficult than those in the second component.

The ethnic origin variables affect both latent component membership and
the correct response probabilities on the items, and in the same way: all non-
white ethnic groups have both higher probabilities than whites of being in
the second component, and lower probabilities of a correct response on the
items. The ethnic group differences on the item responses are smaller than
for the 2PL model, but this is counter-weighted by the higher probability of
being in the component which finds the items much harder.

The two-factor 2PL model did not nearly reach the fit of the mixed ability
models: we conclude that heterogeneity of ability in the student population,
rather than guessing or multidimensionality of the Knowledge and Skills
subscale, provides the best representation of the data among the models we
examined.

The implications of these findings deserve careful study. It would be
intriguing to investigate whether the latent component can be identified by
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manifest variables at the student, class and school level – is this an issue
of the class teacher, syllabus, type of school attended by the student, or
something else? We will be investigating the 2005 NAEP math data to see
whether the models identified here appear in a similar form.
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12 Tables

Table 1: Parameter estimates, LSAT 6
Rasch 2PL 3QL

Item j αj βj αj βj αj βj γj

1 2.730 0.755 2.773 0.826 3.334 0.505 -0.490
2 1.000 0.755 0.990 0.703 0.884 0.885 0.176
3 0.240 0.755 0.249 0.891 0.449 0.733 -0.260
4 1.306 0.755 1.285 0.699 1.158 0.883 0.214
5 2.099 0.755 2.053 0.657 1.832 1.269 0.564

dev 4933.87 4933.30 4930.70

Table 2: Parameter estimates, LSAT 7
2PL 3QL 2PLmix

Item j αj βj αj βj γj α1j α2j βj

1 1.856 0.988 2.305 0.643 -0.524 1.899 -3.008 0.750
2 0.808 1.081 0.693 2.597 1.000 0.915 1.236 1.506
3 1.805 1.708 1.647 1.868 0.296 1.798 -1.241 1.518
4 0.486 0.765 0.950 0.580 -0.542 0.521 -1.724 0.637
5 1.855 0.736 2.106 0.488 -0.301 1.927 -5.542 0.453

dev 5317.54 5304.04 5300.93
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Table 3: Item parameters, simulation
j αj βj cj
1 -0.217 1.738 0
2 -0.359 1.202 0
3 0.540 0.841 0
4 0.789 1.090 0.238
5 0.735 0.855 0
6 0.339 1.150 0.208
7 0.985 1.162 0
8 0.858 0.894 0.280
9 -1.643 0.898 0.352

10 -1.159 0.620 0.225

Table 4: Regression parameter estimates, simulation
Variable True 2PL 3QL 3PL (SE)

Sex 2 -0.472 -0.426 -0.406 -0.577 0.093
Ethnic 2 -2.359 -1.600 -1.733 -2.643 0.168
Ethnic 3 -1.877 -1.274 -1.432 -2.166 0.158
Ethnic 4 0.944 0.458 0.480 0.773 0.201
Poverty -0.800 -0.522 -0.639 -0.931 0.143

Homework 2 0.100 -0.017 -0.025 0.036 0.107
Homework 3 0.300 0.158 0.187 0.281 0.130
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Table 5: Biases and MSEs, simulated data
method parameter true mean bias MSE sdb se

2PL Sex -0.472 -0.324 0.148 0.026 0.067 0.067
3QL -0.343 0.128 0.022 0.076 0.067
3PL -0.571 -0.099 0.022 0.108 0.106
2xE -0.323 0.149 0.027 0.068 9.906
2xU -0.323 0.149 0.027 0.068 6.630

2PL Ethnic2 -2.359 -1.527 0.831 0.705 0.118 0.113
3QL -1.640 0.719 0.555 0.196 0.117
3PL -3.123 -0.764 0.667 0.290 0.278
2xE -1.513 0.846 0.730 0.124 3.396
2xU -1.513 0.846 0.731 0.126 9.950

2PL Ethnic 3 -1.887 -1.257 0.630 0.410 0.115 0.109
3QL -1.342 0.545 0.324 0.164 0.112
3PL -2.409 -0.522 0.328 0.236 0.218
2xE -1.243 0.644 0.428 0.115 3.391
2xU -1.244 0.643 0.427 0.117 13.223

2PL Ethnic 4 0.944 0.716 -0.228 0.079 0.165 0.152
3QL 0.750 -0.193 0.073 0.188 0.153
3PL 1.090 0.146 0.073 0.226 0.220
2xE 0.718 -0.226 0.079 0.168 6.711
2xU 0.719 -0.225 0.079 0.169 13.266

2PL Poverty -0.800 -0.518 0.282 0.090 0.103 0.101
3QL -0.556 0.244 0.074 0.120 0.100
3PL -1.026 -0.226 0.081 0.172 0.173
2xE -0.515 0.285 0.092 0.103 6.658
2xU -0.515 0.285 0.092 0.104 9.936

2PL Homework2 0.100 0.068 -0.032 0.007 0.077 0.078
3QL 0.074 -0.026 0.008 0.084 0.077
3PL 0.119 0.019 0.015 0.119 0.120
2xE 0.067 -0.033 0.007 0.078 16.471
2xU 0.067 -0.033 0.007 0.078 13.191

2PL Homework3 0.300 0.205 -0.095 0.021 0.108 0.098
3QL 0.218 -0.082 0.021 0.120 0.098
3PL 0.362 0.062 0.029 0.159 0.150
2xE 0.204 -0.096 0.021 0.110 19.768
2xU 0.204 -0.096 0.021 0.110 13.212
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Table 6: Item parameters (NAEP)
item a SE b SE c SE

1 0.503 0.019 -3.780 0.143 0 0
2 0.769 0.017 -2.066 0.049 0 0
3 0.841 0.018 -0.642 0.019 0 0
4 1.090 0.045 -0.724 0.044 0.238 0.015
5 0.855 0.023 -0.860 0.032 0 0
6 1.150 0.065 -0.295 0.040 0.208 0.013
7 1.162 0.022 -0.848 0.024 0 0
8 1.738 0.125 0.125 0.018 0 0
9 0.894 0.032 -0.960 0.044 0.280 0.014
10 0.898 0.047 -0.716 0.050 0.352 0.015
11 0.886 0.020 -0.900 0.028 0 0
12 1.288 0.021 -1.101 0.025 0 0
13 1.300 0.025 -0.445 0.017 0 0
14 1.234 0.023 -0.554 0.018 0 0
15 0.620 0.037 -0.256 0.032 0.225 0.013
16 0.942 0.022 -1.273 0.039 0 0
17 1.202 0.059 0.299 0.034 0 0
18 0.865 0.023 -0.047 0.014 0 0
19 1.058 0.038 -1.152 0.053 0.198 0.020
20 1.101 0.053 -0.817 0.055 0.257 0.018
21 0.899 0.014 -1.871 0.034 0 0
22 0.893 0.014 -1.839 0.033 0 0
23 1.017 0.016 -1.042 0.021 0 0
24 1.185 0.027 -1.074 0.034 0.232 0.012
25 1.096 0.025 -0.376 0.020 0 0
26 0.998 0.024 -0.484 0.021 0 0
27 1.766 0.296 1.115 0.248 0.197 0.006
28 1.149 0.034 0.365 0.021 0.164 0.006
29 0.955 0.044 -0.544 0.040 0.247 0.013
30 0.974 0.051 -0.454 0.042 0.243 0.013
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Table 7

Reporting group estimates and SEs - guessing/quadratic models

-------------------------------------------------------------

2PL 3PL 3QL 3PQL

-----------------------------------------------------

male 0

femal .012 (.028) .022 (.034) .007 (.027) .003 (.033)

white 0

black -.667 (.047) -.837 (.059) -.651 (.046) -.812 (.059)

hispa -.460 (.043) -.609 (.053) -.427 (.043) -.562 (.053)

as/pa -.203 (.117) -.223 (.139) -.161 (.114) -.162 (.136)

amind -.471 (.093) -.602 (.119) -.419 (.089) -.542 (.113)

other -.200 (.752) -.035 (.820) .075 (.661) .072 (.821)

NE 0

SE -.020 (.077) -.073 (.095) .022 (.079) -.022 (.093)

Cent -.172 (.074) -.211 (.092) -.166 (.075) -.196 (.089)

West -.182 (.069) -.217 (.085) -.146 (.076) -.183 (.084)

extru 0

lomet -.201 (.113) -.348 (.138) -.156 (.141) -.343 (.140)

himet .497 (.116) .586 (.145) .423 (.110) .524 (.135)

manct .150 (.106) .162 (.135) .144 (.111) .143 (.136)

urbfr .158 (.112) .171 (.151) .142 (.113) .140 (.152)

medct .092 (.097) .115 (.122) .074 (.096) .092 (.121)

smplc - .019 (.095) -.029 (.118) -.029 (.097) -.030 (.119)

nfnhs 0

finhs -.179 (.206) -.186 (.274) -.247 (.188) -.333 (.223)

smcol .045 (.200) .057 (.267) -.064 (.181) -.127 (.216)

colgr .398 (.205) .524 (.273) .271 (.187) .308 (.223)

DK .382 (.198) .489 (.266) .265 (.179) .287 (.214)

nores .027 (.197) .057 (.265) -.101 (.178) -.151 (.213)

s^2_sch .139 (.017) .233 (.028) .137 (.018) .224 (.026)

s^2 1.682 (.365) 2.225 (.608) 1.654 (.354) 2.243 (.650)

log Lmax -39,930.05 -39,848.49 -39,845.75 -39,777.87

-------------------------------------------------------------
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Table 8

Reporting group estimates and SEs - 2PL, guessing and two-factor models

---------------------------------------------------------------------------

2PL 2xG 2xGC 2xGC(mem.ship) two-factor

--------------------------------------------------------------------

intercept -1.087 (.540)

male 0 0 0

femal .012 (.028) .038 (.028) .022 (.028) .086 (.104) .033 (.030)

white 0

black -.667 (.047) -.674 (.046) -.617 (.048) -.856 (.168) -.692 (.049)

hispa -.460 (.043) -.453 (.043) -.415 (.044) -.593 (.150) -.470 (.046)

as/pa -.203 (.117) -.123 (.118) -.069 (.119) -.622 (.407) -.197 (.126)

amind -.471 (.093) -.519 (.094) -.480 (.095) -.698 (.386) -.489 (.100)

other -.200 (.752) -.133 (.633) .015 (.596) -.268 (2.42) -.287 (.809)

NE 0

SE -.020 (.077) .055 (.077) .116 (.079) -.349 (.163) -.025 (.078)

Cent -.172 (.074) -.146 (.082) -.165 (.079) .096 (.160) -.191 (.076)

West -.182 (.069) -.098 (.078) -.180 (.079) -.099 (.144) -.196 (.070)

extru 0

lomet -.201 (.113) -.230 (.132) -.191 (.116) -.542 (.300) -.221 (.118)

himet .497 (.116) .428 (.122) .384 (.118) .811 (.248) .501 (.118)

manct .150 (.106) .153 (.113) .152 (.101) .110 (.251) .143 (.112)

urbfr .158 (.112) .168 (.128) .134 (.115) .569 (.247) .156 (.115)

medct .092 (.097) .078 (.107) .075 (.097) .367 (.231) .078 (.104)

smplc - .019 (.095) -.007 (.106) -.016 (.095) .243 (.230) -.034 (.101)

nfnhs 0

finhs -.179 (.206) -.177 (.184) -.235 (.184) -.318 (.574) -.185 (.203)

smcol .045 (.200) .068 (.176) -.009 (.176) -.069 (.514) .054 (.195)

colgr .398 (.205) .376 (.182) .259 (.182) .497 (.528) .421 (.202)

DK .382 (.198) .396 (.174) .298 (.173) .348 (.500) .403 (.193)

nores .027 (.197) .020 (.173) -.074 (.172) .127 (.500) .033 (.192)

s^2_sch .139 (.017) .143 (.016) .132 (.015) .137 (.018)

s^2 1.682 (.365) 1.0 - 1.0 - 1.0

1.0

log Lmax -39,930.05 -39,777.88 -39,711.77 -39,685.69

--------------------------------------------------------------------------------
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Table 9

Reporting group estimates and SEs - 2PL and mixed models

-------------------------------------------------------------------------------------

2PL 2xID 2xIDC 2xIDC(mem.ship) odds ratio

------------------------------------------------------------------------------

male 0 0 0

femal .012 (.028) .034 (.029) .008 (.035) .168 (.089) 1.18

white 0

black -.667 (.047) -.675 (.048) -.458 (.056) -.935 (.122) 0.39

hispa -.460 (.043) -.451 (.044) -.313 (.051) -.610 (.117) 0.54

as/pa -.203 (.117) -.149 (.122) -.073 (.139) -.300 (.312) 0.74

amind -.471 (.093) -.480 (.097) -.307 (.111) -.720 (.274) 0.49

other -.200 (.752) -.256 (.763) -.186 (.937) -.016 (1.82) 0.98

NE 0

SE -.020 (.077) .029 (.074) .116 (.079) -.395 (.138) 0.67

Cent -.172 (.074) -.177 (.076) -.165 (.079) -.054 (.146) 0.95

West -.182 (.069) -.135 (.068) -.078 (.073) -.299 (.129) 0.74

extru 0

lomet -.201 (.113) -.227 (.112) -.112 (.119) -.493 (.217) 0.61

himet .497 (.116) .361 (.122) .222 (.126) .742 (.208) 2.10

manct .150 (.106) .119 (.105) .091 (.114) .127 (.203) 1.14

urbfr .158 (.112) .109 (.110) -.016 (.119) .554 (.216) 1.74

medct .092 (.097) .012 (.100) -.041 (.108) .291 (.192) 1.34

smplc - .019 (.095) -.078 (.098) -.100 (.105) .134 (.185) 1.14

nfnhs 0

finhs -.179 (.206) -.244 (.191) -.315 (.214) .202 (.430) 1.22

smcol .045 (.200) -.031 (.184) -.093 (.203) .265 (.394) 1.30

colgr .398 (.205) .347 (.190) .163 (.210) .764 (.413) 2.15

DK .382 (.198) .315 (.181) .181 (.200) .644 (.383) 1.90

nores .027 (.197) -.060 (.181) -.178 (.199) .543 (.382) 1.72

s^2_sch .139 (.017) .130 (.016) .121 (.015)

s^2 1.682 (.365) 1.0 - 1.0 -

log Lmax -39,930.05 -39,649.40 -39,547.41

--------------------------------------------------------------------------------
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Table 10

Guessing parameters Curvatures 3PQL

-------------------------------------------------------------------------

3PL constrained 3PL 3QL guessing curvature

item c* SE c* SE gamma SE c* SE gamma SE

--------------------------------------------------------------------------------

1 0.150 (0.898) 0.150 (0.898) 0 - -0.019 (0.805) 0 -

2 3.057 (3.369) 3.058 (3.370) -0.257 (0.102) 2.240 (1.734) -0.198 (0.113)

3 3.096 (0.817) 3.096 (0.817) -0.184 (0.110) 2.988 (0.757) -0.158 (0.155)

4 30.005 (1000) 100 - -0.070 (0.082) 100 - -0.153 (0.083)

5 14.118 (478) 100 - -0.108 (0.076) 100 - -0.155 (0.078)

6 3.283 (0.625) 3.283 (0.625) 0.174 (0.088) 3.416 (0.765) 0.065 (0.102)

7 2.880 (0.761) 2.880 (0.761) -0.028 (0.103) 3.020 (0.924) 0.027 (0.113)

8 67.174 (1000) 100 - -0.066 (0.283) 100 - 0.095 (0.236)

9 0.563 (0.159) 0.563 (0.159) -0.048 (0.073) 0.522 (0.159) 0.018 (0.166)

10 2.221 (0.495) 2.221 (0.495) -0.130 (0.071) 2.396 (0.609) -0.109 (0.078)

11 1.464 (0.214) 1.464 (0.214) -0.179 (0.090) 1.463 (0.218) -0.151 (0.134)

12 43.718 (1000) 100 - 0.469 (0.177) 100 - 0.300 (0.266)

13 242.982 (1000) 100 - -1.047 (0.174) 100 - -0.655 (0.276)

14 112.153 (1000) 100 - -1.126 (0.196) 100 - -0.624 (0.410)

15 1.482 (0.210) 1.482 (0.210) -0.068 (0.066) 1.472 (0.217) -0.235 (0.167)

16 21.735 (1000) 100 - -0.010 (0.082) 100 - -0.030 (0.094)

17 119.377 (1000) 100 - 0.098 (0.114) 100 - 0.001 (0.141)

18 52.183 (1000) 100 - 0.090 (0.090) 100 - 0.072 (0.101)

19 19.732 (1000) 100 - 0.033 (0.164) 100 - 0.012 (0.162)

20 2.731 (1.176) 2.731 (1.176) 0.167 (0.152) 2.761 (1.266) 0.064 (0.182)

21 49.881 (1000) 100 - -1.006 (0.105) 100 - -1.049 (0.099)

22 69.430 (1000) 100 - -1.149 (0.133) 100 - -1.175 (0.129)

23 59.832 (1000) 100 - -0.490 (0.095) 100 - -0.490 (0.090)

24 4.303 (5.002) 4.303 (5.001) 0.155 (0.095) 3.099 (1.436) 0.161 (0.104)

25 124.321 (1000) 100 - -0.008 (0.077) 100 - -0.026 (0.075)

26 17.078 (1000) 100 - 0.109 (0.100) 100 - 0.123 (0.101)

27 2.115 (0.155) 2.115 (0.155) 0.096 (0.058) 2.195 (0.177) 0.010 (0.154)

28 1.924 (0.181) 1.924 (0.181) 0.130 (0.100) 1.933 (0.196) -0.058 (0.219)

29 1.062 (0.221) 1.062 (0.221) 0.128 (0.084) 1.174 (0.255) 0.096 (0.122)

30 1.013 (0.165) 1.013 (0.165) 0.174 (0.104) 1.058 (0.176) 0.170 (0.212)

--------------------------------------------------------------------------------

c*_j = logit(1 - c_j)
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Table 11

Guessing parameters and SEs, 2xG model

------------------

item 2xG p

-------------------------

1 22.14 (1000) 1.000

2 2.078 (0.384) 0.889

3 -0.291 (0.341) 0.428

4 0.741 (0.289) 0.677

5 0.763 (0.305) 0.682

6 0.096 (0.283) 0.524

7 -0.459 (0.312) 0.387

8 -4.675 (1.050) 0.009

9 0.688 (0.246) 0.666

10 0.403 (0.244) 0.599

11 0.238 (0.243) 0.559

12 39.00 (1000) 1.000

13 1.151 (0.268) 0.760

14 1.543 (0.293) 0.824

15 -0.203 (0.242) 0.449

16 0.603 (0.257) 0.646

17 -2.625 (0.414) 0.068

18 -0.849 (0.263) 0.300

19 1.617 (0.379) 0.834

20 0.773 (0.349) 0.684

21 0.939 (0.287) 0.719

22 0.940 (0.287) 0.719

23 0.608 (0.274) 0.648

24 2.014 (0.380) 0.882

25 -0.385 (0.257) 0.405

26 -0.113 (0.272) 0.472

27 -2.180 (0.352) 0.102

28 -1.302 (0.370) 0.214

29 0.465 (0.300) 0.614

30 0.078 (0.327) 0.520

---------------------------------------------------------------------------------

% c*_j = logit(1 - c_j)
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Table 12

Intercept and slope parameters for the 2xID mixture model

comp1 comp2 comp1 comp2

item int (SE) int (SE) slope (SE) slope (SE)

---------------------------------------------------------------

1 2.740 (0.296) 4.563 (0.538) 1.128 (0.214) -0.674 (0.474)

2 0.815 (0.237) 2.748 (0.256) 0.960 (0.157) 0.099 (0.197)

3 -1.611 (0.264) 0.641 (0.228) 0.815 (0.226) 0.407 (0.131)

4 -0.107 (0.230) 0.627 (0.225) 1.048 (0.173) 0.968 (0.153)

5 -0.329 (0.234) 0.439 (0.220) 1.032 (0.184) 0.658 (0.126)

6 -0.982 (0.233) 0.041 (0.228) 0.567 (0.160) 1.066 (0.161)

7 -0.819 (0.238) 0.845 (0.230) 0.594 (0.166) 0.751 (0.159)

8 -4.278 (0.516) -2.548 (0.312) 0.211 (0.596) 1.081 (0.248)

9 0.468 (0.219) 1.272 (0.221) 0.861 (0.129) 0.892 (0.128)

10 -0.189 (0.220) 0.898 (0.216) 0.856 (0.126) 0.652 (0.105)

11 -0.429 (0.221) 0.721 (0.217) 1.017 (0.148) 0.771 (0.113)

12 -1.173 (0.249) 2.713 (0.251) 0.641 (0.164) 0.627 (0.215)

13 -7.750 (2.652) 0.749 (0.223) 2.898 (1.247) 0.758 (0.138)

14 -3.189 (0.377) 1.012 (0.224) 0.834 (0.346) 0.776 (0.143)

15 -0.296 (0.219) 0.140 (0.214) 0.773 (0.123) 0.463 (0.094)

16 0.256 (0.229) 1.386 (0.235) 1.460 (0.217) 1.135 (0.164)

17 -3.494 (0.442) -1.779 (0.249) 2.102 (0.363) 1.263 (0.181)

18 -1.382 (0.238) -0.489 (0.225) 1.047 (0.173) 1.085 (0.146)

19 0.105 (0.263) 1.694 (0.252) 1.316 (0.354) 0.765 (0.230)

20 -0.322 (0.268) 1.266 (0.254) 0.895 (0.256) 0.907 (0.227)

21 2.673 (0.377) 2.447 (0.290) 3.525 (0.409) 1.917 (0.276)

22 2.926 (0.446) 2.429 (0.280) 4.399 (0.899) 1.951 (0.241)

23 -0.400 (0.243) 1.139 (0.233) 1.688 (0.330) 1.140 (0.176)

24 0.238 (0.230) 1.949 (0.275) 0.746 (0.147) 1.110 (0.205)

25 1.173 (0.265) -0.058 (0.223) 0.979 (0.259) 0.691 (0.139)

26 -1.228 (0.266) 0.164 (0.232) 1.007 (0.286) 0.835 (0.158)

27 -1.710 (0.257) -1.585 (0.242) -0.267 (0.156) 0.387 (0.160)

28 -1.161 (0.275) -0.941 (0.254) -0.117 (0.231) 0.701 (0.211)

29 0.136 (0.238) 0.815 (0.226) 0.351 (0.168) 0.555 (0.154)

30 -0.348 (0.246) 0.589 (0.235) 0.406 (0.206) 0.820 (0.193)
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Table 13

Intercept and slope parameters for the 2xIDC mixture model

comp1 comp2 comp1 comp2

item int (SE) int (SE) slope (SE) slope (SE)

---------------------------------------------------------------

1 3.250 (0.345) 3.931 (0.364) 1.446 (0.236) -0.191 (0.368)

2 1.328 (0.261) 2.426 (0.255) 1.482 (0.187) 0.361 (0.202)

3 -0.964 (0.278) 0.279 (0.237) 1.662 (0.250) 0.633 (0.143)

4 -0.612 (0.243) 1.251 (0.245) 0.405 (0.115) 0.811 (0.183)

5 -0.778 (0.253) 0.921 (0.237) 0.597 (0.134) 0.375 (0.135)

6 -1.161 (0.252) 0.349 (0.240) 0.316 (0.149) 0.985 (0.165)

7 -0.187 (0.248) 0.482 (0.242) 1.231 (0.176) 1.231 (0.176)

8 -3.672 (0.443) -3.292 (0.436) 1.368 (0.342) 1.670 (0.337)

9 0.489 (0.232) 1.376 (0.236) 0.827 (0.123) 0.856 (0.132)

10 -0.114 (0.231) 0.999 (0.231) 0.810 (0.119) 0.678 (0.109)

11 -0.319 (0.233) 0.792 (0.232) 1.039 (0.152) 0.799 (0.119)

12 -0.944 (0.252) 2.877 (0.263) 0.683 (0.161) 0.505 (0.255)

13 -9.012 (7.070) 0.954 (0.237) 3.185 (2.659) 0.691 (0.153)

14 -3.168 (0.483) 1.167 (0.238) 1.059 (0.458) 0.627 (0.140)

15 -0.287 (0.232) 0.254 (0.229) 0.765 (0.121) 0.404 (0.092)

16 0.310 (0.242) 1.504 (0.250) 1.418 (0.217) 1.134 (0.172)

17 -3.111 (0.399) -1.618 (0.261) 1.668 (0.332) 1.274 (0.188)

18 -1.373 (0.251) -0.311 (0.239) 0.930 (0.174) 1.083 (0.153)

19 -0.024 (0.276) 1.917 (0.265) 1.554 (0.401) 0.605 (0.219)

20 -0.217 (0.264) 1.369 (0.268) 0.889 (0.221) 0.972 (0.236)

21 2.456 (0.332) 2.615 (0.313) 3.454 (0.375) 1.910 (0.254)

22 2.424 (0.332) 2.603 (0.305) 3.705 (0.513) 1.890 (0.234)

23 -0.363 (0.252) 1.255 (0.245) 1.787 (0.290) 1.031 (0.170)

24 0.197 (0.240) 2.276 (0.296) 0.705 (0.120) 1.053 (0.225)

25 -1.220 (0.265) 0.116 (0.237) 0.971 (0.197) 0.617 (0.123)

26 -1.203 (0.259) 0.319 (0.245) 0.944 (0.207) 0.757 (0.143)

27 -1.604 (0.260) -1.567 (0.258) -0.282 (0.142) 0.531 (0.176)

28 -1.147 (0.268) -0.810 (0.255) -0.122 (0.200) 0.675 (0.192)

29 0.283 (0.240) 0.817 (0.240) 0.284 (0.135) 0.591 (0.144)

30 -0.208 (0.248) 0.622 (0.243) 0.477 (0.165) 0.821 (0.181)
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Figure 1: Item 1 ICCs, simulated data
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Table 14: Data sets, LSAT 6 and 7
Item 1 2 3 4 5 LSAT6 LSAT7

0 0 0 0 0 3 12
0 0 0 0 1 6 19
0 0 0 1 0 2 1
0 0 0 1 1 11 7
0 0 1 0 0 1 3
0 0 1 0 1 1 19
0 0 1 1 0 3 3
0 0 1 1 1 4 17
0 1 0 0 0 1 10
0 1 0 0 1 8 5
0 1 0 1 0 0 3
0 1 0 1 1 16 7
0 1 1 0 0 0 7
0 1 1 0 1 3 23
0 1 1 1 0 2 8
0 1 1 1 1 15 28
1 0 0 0 0 10 7
1 0 0 0 1 29 39
1 0 0 1 0 14 11
1 0 0 1 1 81 34
1 0 1 0 0 3 14
1 0 1 0 1 28 51
1 0 1 1 0 15 15
1 0 1 1 1 80 90
1 1 0 0 0 16 6
1 1 0 0 1 56 25
1 1 0 1 0 21 7
1 1 0 1 1 173 35
1 1 1 0 0 11 18
1 1 1 0 1 61 136
1 1 1 1 0 28 32
1 1 1 1 1 298 308
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Table 15: NAEP items
Report NAEP NAEP
item Block item

1 M1 4 35 + 42 = (77)
2 M1 5 55 + 37 = (92)
3 M1 6 59 + 46 + 82 + 68 = (255)
4 M1 11 ? represents nine tens (90)
5 M1 13 Number 10 more than 95 (105)
6 M1 15 The digit in thousands place in 45,372 (5)
7 M1 16 Product of 21 and 3 (63)
8 M1 17 Product of 314 and 12 (3768)
9 M2 3 Which is greater: 2573, 2537, 2735 or (2753)
10 M2 6 (7 > 5), 7 = 5 or 7 < 5
11 M2 8 7 + 24 + 9 = (40)
12 M2 9 64 - 27 = (37)
13 M2 10 604 - 207 = (397)
14 M2 11 231 - 189 = (42)
15 M2 12 Number of birds in picture [< 100, (100-1000), > 1000, > 10,000]
16 M2 21 15 / 5 = (3)
17 M2 22 52 / 4 = (13)
18 M2 23 29 - (13) = 16
19 M3 15 One dollar and 86 cents means [$.186, ($1.86), $10.86, $18.60,

$186.00]
20 M3 17 The digit in the tens place in 3058 (5)
21 M4 8 39 -26 (13)
22 M4 9 79 - 45 (34)
23 M4 10 65 - 7 (58)
24 M4 11 If 10 in each bag, 150 marbles in [10, (15), 25, 140, 150, 160] bags
25 M4 17 Three-fourths is (3/4)
26 M4 20 If N*13 = 13, N = (1)
27 M4 22 4.32 is [forty-three and 2/10, four hundred 32, (four and 32/100),

forty-three hundred]
28 M6 21 152 - 59 - 93 [four possibilities]
29 M7 15 Which picture shows 3/4 shaded [four possibilities]
30 M7 23 82 - 39 is closest to [80 - 30, (80 - 40), 90 - 30, 90 - 40]
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Figure 2: Item 2 ICCs, simulated data
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Figure 3: Item 3 ICCs, simulated data
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Figure 4: Item 4 ICCs, simulated data
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Figure 5: Item 5 ICCs, simulated data
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Figure 6: Item 6 ICCs, simulated data
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Figure 7: Item 7 ICCs, simulated data
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Figure 8: Item 8 ICCs, simulated data
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Figure 9: Item 9 ICCs, simulated data

47



-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
p

θ

Figure 10: Item 10 ICCs, simulated data
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Figure 11: LSAT7, item 1 ICCs
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Figure 12: LSAT7, item 2 ICCs
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Figure 13: LSAT7, item 3 ICCs

51



-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p

θ

Figure 14: LSAT7, item 4 ICCs
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Figure 15: LSAT7, item 5 ICCs
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Figure 16: Posterior means, 3QL vs 2PL
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Figure 17: NAEP, item 1 ICCs
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Figure 18: NAEP, item 2 ICCs
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Figure 19: NAEP, item 3 ICCs
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Figure 20: NAEP, item 4 ICCs
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Figure 21: NAEP, item 5 ICCs
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Figure 22: NAEP, item 6 ICCs
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Figure 23: NAEP, item 7 ICCs
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Figure 24: NAEP, item 8 ICCs
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Figure 25: NAEP, item 9 ICCs
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Figure 26: NAEP, item 10 ICCs
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Figure 27: NAEP, item 11 ICCs
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Figure 28: NAEP, item 12 ICCs
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Figure 29: NAEP, item 13 ICCs
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Figure 30: NAEP, item 14 ICCs
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Figure 31: NAEP, item 15 ICCs
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Figure 32: NAEP, item 16 ICCs
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Figure 33: NAEP, item 17 ICCs
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Figure 34: NAEP, item 18 ICCs
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Figure 35: NAEP, item 19 ICCs
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Figure 36: NAEP, item 20 ICCs
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Figure 37: NAEP, item 21 ICCs
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Figure 38: NAEP, item 22 ICCs
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Figure 39: NAEP, item 23 ICCs
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Figure 40: NAEP, item 24 ICCs
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Figure 41: NAEP, item 25 ICCs
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Figure 42: NAEP, item 26 ICCs
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Figure 43: NAEP, item 27 ICCs
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Figure 44: NAEP, item 28 ICCs
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Figure 45: NAEP, item 29 ICCs
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Figure 46: NAEP, item 30 ICCs
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