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1 Summary

The ability distribution is a fundamental concept in item response models,
and plays an important role in current NAEP reports: in particular, the
percentiles of this distribution are important in describing changes in this
distribution over time.

The information presented in NAEP reports about the percentiles is
based on the assumption that these percentiles are identifiable. The results
of previous research by the authors under project 1.3.301.2 of 2003/2004
(Final report on Identification of Ability Distributions in IRT models for
NAEP items) raised questions about the identifiability of the ability dis-
tribution, and therefore about the identifiability of its percentiles. In the
conclusions to that report, one point made was:

• Percentiles of the ability distribution are identifiable with any accuracy
only if the distribution is modelled parametrically – nonparametric
estimation does not provide any real accuracy in percentile estimation.

This report follows up that point by examining several parametric models
for the ability distribution. The conclusions of the present report are:

1. In the data simulated, with 10 2PL items and 1000 subjects, normal,
extreme value and reversed extreme value ability distributions could
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be discriminated when the true ability distribution was one of these
three.

2. Since the percentiles of these distributions are quite different, the re-
porting of percentiles from an assumed normal ability distribution is
unsound without an examination of the nature of this distribution.

3. This examination can be carried out by methods very similar to Gaus-
sian quadrature which can be readily implemented in available soft-
ware.

4. A generalization of the normal distribution allows the representation
of skewed distributions with varying amounts of skew, and the normal
distribution, in a location- and scale-parameter distribution (the log-

cubic distribution) with a third skewness parameter. This distribution
can be fitted with small modifications to available software.

5. In the simulated data with 10,000 subjects, slightly skewed distribu-
tions could be distinguished from normal, and approximate confidence
limits could be placed on the degree of skewness. Corresponding con-
fidence limits could be placed on the percentiles of the skewed distri-
bution.

6. In the simulated data with 1,000 subjects, a quite wide range of distri-
butions with moderate left and right skew could not be discriminated
– they were all consistent with the observed test scores.

7. The results of this percentile estimation approach applied to real NAEP
data will be reported in the second study.

2 Theoretical framework

Our approach to this project was based on the results from the previous
project, which showed that skewed ability distributions could be identified,
at least to some extent, by fully non parametric estimation of the ability
distribution. However the estimation of the percentiles of this distribution
could not easily be made from the discrete mass-point distribution resulting
from the non parametric estimate, nor could the imprecision in the locations
and masses be easily allowed for, so the aim of this project was to assess
the extent to which a parametric distribution model could be identified, in
which the percentiles had an explicit form.

This distribution needed to be sufficiently flexible to allow positive and
negative skewness as well as symmetry, and to have easily calculated per-
centiles. The initial choice for this distribution was the Box-Cox transformed
normal distribution, a three-parameter distribution in which the third trans-
formation parameter determines the magnitude and nature of the skewness.
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The general form and properties of this distribution were given by Box
and Cox (1964). A short description, with details of maximum likelihood
model fitting, can be found in Aitkin, Anderson, Francis and Hinde (1989
pp. 119-122). The essential point is that the response variable Y can be
transformed by the power λ to normality:

Y λ ∼ N(µ, σ2)

for some unknown λ, µ and σ. The data analysis treats λ as a parameter
to be estimated by maximum likelihood. Specific values of λ give well-
known transformations: λ = 1 is the no-transform case, λ = 0 is the log
transformation, λ = 1/2 is the square-root transformation, λ = −1 is the
reciprocal transformation. (Strictly speaking the transformation is

Y (λ) =
Y λ − 1

λ

which approaches log Y as λ → 0; for other values of λ the subtraction
of 1 and division by λ have no effect on the model.) This distribution
has been widely used in analysing skewed data; for λ > 1 the distribu-
tion is left-skewed, for λ < 1 it is right-skewed. The percentiles of the
Box-Cox transformed normal distribution are very easily calculated: if
Y λ ∼ N(µ, σ2), the 100α percentile for Y λ is µ + λασ, and hence that
of Y is [µ + λασ]1/λ. Standard errors of percentiles can then be obtained
from that of λ̂ by the delta method.

A particular difficulty which we encountered in trying to use this distri-
bution model is that it is not a location- and scale-parameter distribution,
although the normal distribution (the case λ = 1) is such a distribution.
This is important because of the latency of the ability distribution: in the
2PL model with a normal ability distribution the location and scale param-
eters µ and σ of the normal distribution are confounded with the intercept
and slope parameters of the logistic regression and so cannot be estimated.
This does not matter for the normal distribution as the shape of the dis-
tribution is not determined by these parameters. However for the general
Box-Cox distribution when λ is not 1, the shape of the distribution is de-
termined by the values of µ and σ as well as the value of λ.

It became clear in our attempts to fit the model that µ and σ had to be
specified in some arbitrary way to maximize the likelihood, but this meant
that the skewness was determined not just by λ but by the arbitrary choice
of the values of µ and σ, which could not be estimated from the test item
data. Even with this specification we were unable to find an effective method
for estimating the skewness parameter and maximizing the likelihood.

We therefore changed our approach. Instead of using a three-parameter
distribution with a single skewness parameter to be estimated which is not a
location- and scale-parameter distribution, we considered two two-parameter
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distributions which are location- and scale-parameter distributions with fixed

positive and negative skewness which does not have to be estimated. We fit-
ted these two distributions by maximum likelihood using numerical quadra-
ture (in a similar way to Gaussian quadrature), and compared them with the
normal distribution, fitted by Gaussian quadrature, using generated ability
data which came from one of these three distributions.

The skewed distribution we used is the extreme value distribution (de-
noted by ev), described on pp. 283-285 of Aitkin et al. The probability
density function (with argument y) is

f(y | θ, φ) =
1

φ
exp

[

y − θ

φ
− exp

(

y − θ

φ

)]

where θ is the location parameter and φ is the scale parameter. These
parameters are not the mean and standard deviation of the distribution,
though they are closely related to them; these are

µ = θ + φψ(1), σ = φ
√

ψ′(1),

where ψ(x) and ψ′(x) are the digamma and trigamma functions (the first
and second derivatives respectively of the log gamma function), with ψ(1) =
−0.5771 and ψ′(1) = 1.645. Thus the mean and standard deviation are

µ = θ − 0.577φ, σ = 1.283φ.

This distribution has fixed negative skew, given by

k3 =
µ3

µ
3/2

2

=
ψ′′(1)

[ψ′(1)]3/2
= −1.139,

where ψ′′(x) is the tetragamma function, the third derivative of the log
gamma function.

By changing the sign of the response variable, the extreme value dis-
tribution becomes the reversed extreme value distribution (denoted by rev),
described on pp. 285-286 of the same book, which has fixed positive skew
of the same magnitude. The ev and rev distributions with θ = 0 and φ = 1
are called standardized for consistency with the normal distribution; their
means are −0.577 and 0.577, and their standard deviations are 1.283. These
two distributions are shown with the standard normal distribution in Figure
1 (normal – solid curve, ev – dotted curve, rev – dashed curve).

The percentiles of these distributions are explicit functions of the location
and scale parameters, as for the normal distribution: for the ev distribution
the 100α percentile is θ + φ log[− log(1 − α)], while for the rev distribution
it is θ − σ log[− log(α)].

The aim of our analysis was to assess whether these distributions can be
discriminated when the abilities are generated from one of them. Since the
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percentiles of the three distributions are quite different (see Table 1 below),
it is important to know whether the unobserved ability distribution is skewed
(right or left) or symmetric. The three distributions cover this range, though
they are not members of a single family indexed by one skewness parameter.

Table 1: Table of percentiles for the three distributions
extreme value (ev), normal (N), reversed extreme value (rev)
(location parameter = 0, scale parameter = 1)

% 01 05 10 25 50 75 90 95 99

ev -4.60 -2.97 -2.25 -1.25 -0.37 0.33 0.83 1.10 1.53
N -2.33 -1.65 -1.28 -0.68 0.00 0.68 1.28 1.65 2.33
rev -1.53 -1.10 -0.83 -0.33 0.37 1.25 2.25 2.97 4.60

If the maximized likelihood is not much affected by the different ability
model assumptions, that is the three distributions fit about equally well,
then the percentiles of the ability distribution are essentially not estimable,
since all three distributions could be the true ability distribution, but with
quite different percentiles. However if we can discriminate between the dis-
tributions, we will need to use percentiles for the appropriate distribution –
the use of the normal percentiles will not be adequate if the ability distri-
bution can be clearly identified as skewed.

3 Fitting the ev and rev distributions

We fitted the two distributions by a slight modification of Gaussian quadra-
ture (GQ). In GQ, we replace the integral over the continuous normal dis-
tribution by a finite sum over a discrete approximation to the normal dis-
tribution. Tables of the discrete approximation are available, optimized for
closeness of agreement with the continuous normal distribution. However,
discrete integral approximations can be computed without any special ta-
bles. The simplest such approximation, which can be computed for any
distribution f(y), uses an equally spaced grid of K values yk, k = 1, . . . ,K
of y, calculates the density ordinates fk = f(yk), and normalizes these to
probabilities pk = fk/

∑K
k=1

fk. The probabilities pk and locations yk are
then used in exactly the same way as in Gaussian quadrature, replacing the
Gaussian masses and mass-points. We followed this approach for the ev and
rev distributions, using a K = 14 point grid. This approach is used in the
current NAEP analysis for the normal distribution, with 40 mass-points at
steps of 0.25 from −5 to 5, for the initial fitting of the large conditioning
model.
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4 Results

We fitted each of the three distributions to samples drawn from the standard
normal distribution, and then repeated this process for samples from the ev

and rev distributions. We report here the results from 50 samples from each
distribution. The model fitted is the 10-item 2PL model with 1000 subjects
and no person-level variables, used in previous simulation studies.

We report the average values of -2 log (maximized likelihood) under
each assumed fitted distribution, when the sample is drawn from one of
the three distributions. These values are reported as deviance differences

relative to the value of -2 log (maximized likelihood) for the true ability
distribution, and are denoted by “dd” in the table below. Large values
of dd represent clear discrimination in favour of the correct distribution.
We also report the proportion (prop < 0) of samples in which the deviance
difference was negative, indicating a better fit of the wrong distribution, and
the proportion (prop > 5) of samples with deviance differences greater than
5.0, representing strong evidence (a ratio of maximized likelihoods greater
than 12) in favour of the correct distribution.

Table of -2 log(maximized likelihood)

True distribution

ev normal rev

--------------------------------------------

ev mean dd 0 14.20 58.56

sd dd 8.00 15.69

prop < 0 0.02 0

prop > 5 0.90 1

Fitted normal mean dd 15.34 0 14.90

distri- sd dd 8.57 7.81

bution prop < 0 0.06 0.02

prop > 5 0.88 0.90

rev mean dd 58.61 16.21 0

sd dd 15.95 8.28

prop < 0 0 0

prop > 5 1 0.94

---------------------------------------------

The ev and rev distributions could always be distinguished from each
other, with deviance differences of 20 or more, and the intermediate normal
could be distinguished with high probability (.88-.94) from the ev or the rev.
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5 Conclusions

It is possible to clearly discriminate the skewed and the normal distributions
from each other, in samples of size 1,000 with the item parameters used. This
implies that normal percentiles should not be routinely used in reporting
without an assessment of the form of the ability distribution: in NAEP-size
samples it should be very clear whether a normal assumption is reasonable,
if the true distribution has skewness of the order of ev or rev.

An important question is whether a distribution could be found which is
of location -scale form and which has a single parameter controlling the skew-
ness which could be estimated, allowing confident reporting of percentiles of
the ability distribution. We now propose such a distribution.

6 The log-cubic distribution

Consider the form of the extreme value density:

f(y | θ, φ) =
1

φ
exp

[

y − θ

φ
− exp

(

y − θ

φ

)]

.

Taking logs, and expanding the second exponential term, we have

log f(y | θ, φ) = − log φ+
y − θ

φ
−

[

1 +
y − θ

φ
+

(y − θ)2

2!φ2
+

(y − θ)3

3!φ3
+ . . .

]

= − log φ− 1 −
(y − θ)2

2!φ2
−

(y − θ)3

3!φ3
+ . . . .

If we truncate the exponential series at the cubic term, and introduce a
parameter γ into the cubic term to represent the total effects of terms above
the cubic, we obtain the log-cubic distribution, which has the probability
density function

f(y | θ, φ, γ) = c · exp

[

−
1

2

(

y − θ

φ

)2

+ γ

(

y − θ

φ

)3
]

,

where the integrating constant c is a function of φ and γ. This distribu-
tion was proposed and used by Holland and Thayer (1986, 2000) together
with the more general log-quartic distribution which adds the fourth-degree
term. The log-cubic and log-quartic distributions are location- and scale-
parameter distributions like the normal and extreme value distributions.
They have the attractive feature that the first three (for the log-cubic) or
first four (for the log-quartic) sample moments are sufficient statistics for
the parameters, and a wide variety of distributional shapes can be fitted
with these distributions. They are not widely known or used because they
suffer from a serious theoretical difficulty: the integrating constants which
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make the distributions integrate to 1 are not known, and hence maximum
likelihood fitting of the distributions to observable data cannot be carried
out, because the way in which the parameters φ and γ (and the coefficient
δ of the fourth power in the log-quartic) appear in the likelihood through c
is unknown.

However, for our purposes for the log-cubic as an ability distribution, this
defect is irrelevant, because we integrate over this distribution numerically
by quadrature, and in the discrete form of the distribution the integrating
constant disappears when we divide each mass point ordinate by the sum
of the ordinates. The use of the distribution by Holland and Thayer also
avoided this problem in a similar way, by embedding it in a log-linear model
framework where the integrating constant did not need to be known. Ap-
plications of the same approach can be found in Lindsey and Mersch (1992)
and Aitkin (1995).

It is immediately clear from the form of the density that γ is a skewness
parameter: if it is zero, the distribution reduces to the normal. If it is
negative, the density is increased for y < θ and decreased for y > θ, giving
left skew, and conversely if γ is positive, giving right skew.

7 Percentiles of the log-cubic distribution

The log-cubic distribution does not have an analytic cumulative distribution
function, and so there is no immediate calculation of the percentiles of the
distribution. However for any given γ, we may again compute the density
ordinates, this time over a very fine mesh, and normalize them to sum to
1.0. They can then be cumulated to give a very fine mesh approximation to
the continuous cdf, sufficiently accurately to give any required percentiles
precisely.

We give below a table of moments and percentiles, computed over a 101-
point grid from y = −4(0.01)6 for γ = 0(0.01)0.06, for the standardized
distributions with θ = 0 and φ = 1, and include the rev distribution from
the table above. The positive range of γ is limited to 0.06; for greater values
of γ the cubic term in the density increases so rapidly for large y that it
diverges to infinity. The range of y covers the effective range of the right-
skewed distributions for positive γ. All these distributions have positive
skew; reversing the sign of γ reverses the skewness to negative.
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Table 2: Moments and percentiles of the log-cubic and rev distributions
γ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 rev

µ 0.000 0.030 0.061 0.094 0.131 0.173 0.240 0.577
σ 1.000 1.002 1.007 1.018 1.035 1.061 1.136 1.283

skew 0.000 0.061 0.125 0.198 0.291 0.437 0.736 1.139

01 -2.33 -2.30 -2.25 -2.19 -2.14 -2.10 -2.05 -1.53
05 -1.65 -1.65 -1.61 -1.58 -1.54 -1.50 -1.45 -1.10
10 -1.28 -1.30 -1.27 -1.23 -1.20 -1.18 -1.15 -0.83
25 -0.68 -0.70 -0.68 -0.66 -0.63 -0.61 -0.58 -0.33
50 0.00 -0.03 -0.01 0.01 0.03 0.06 0.10 0.37
75 0.68 0.65 0.67 0.71 0.74 0.78 0.84 1.25
90 1.28 1.27 1.31 1.37 1.42 1.50 1.62 2.25
95 1.65 1.65 1.71 1.77 1.86 1.96 2.15 2.97
99 2.33 2.35 2.45 2.57 2.72 2.97 3.51 4.60

We show in Figure 2 the normal and reversed extreme value distributions
and the log-cubic distributions for γ = 0.02, 0.04 and 0.06 (normal – solid
symmetric, γ = 0.02 – dotted, γ = 0.04 – dot-dash, γ = 0.06 – dashed, rev
– solid asymmetric).

The skew of the log-cubic distributions is mild compared to that of the
rev distribution. The median and lower percentiles vary less with γ than the
upper percentiles.

8 Fitting the log-cubic distribution, and estimat-

ing γ from sample data

To use this distribution for model fitting by quadrature, we need to specify
the value of γ. For this fixed γ, we proceed as for the extreme value distri-
butions: we define an equally spaced grid of K = 27 values yk, k = 1, . . . ,K
of y, calculate the log-cubic density ordinates fk = f(yk | θ, φ, γ), and nor-
malize these to probabilities pk = fk/

∑K
k=1

fk. The probabilities pk and
locations yk are then used in exactly the same way as in Gaussian quadra-
ture, replacing the Gaussian masses and mass-points.

By defining a grid of values of γ and repeating the quadrature over
the grid, the set of values of the maximized likelihoods for each γ gives
the profile likelihood in γ; the grid value of γ with the largest likelihood is
an approximation to the MLE γ̂ of γ. The approximation can be refined
by refining the grid around the approximate MLE. An approximate 95%
confidence interval for the true γ is the set of values of γ whose values of
the deviance −2 logLmax are within 3.84 of the value at γ̂. If this interval
contains the value 0, the normal ability distribution is consistent with the
observed test data – it is a possible representation of the ability distribution.
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If the confidence interval excludes 0, a skewed distribution is needed, though
the degree of skew may be small if the confidence interval nearly includes
zero.

This approach was implemented in GLLAMM and results are reported
below for a sample drawn from the distribution with γ = 0.03, giving a
skewness coefficent of 0.2. As can be seen from Figure 2, the distributions
with γ ≤ 0.4 are hard to distinguish from normal.

The log-cubic distribution is fitted over a grid of values −0.06(0.01)0.06,
and the ev and rev distributions are also fitted. The values of the de-
viance (dev = −2 logLmax) are given below (with 12,300 subtracted), and
are graphed in Figure 3, excluding the ev and rev values.

γ ev -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00
dev 105.58 94.16 91.14 90.00 89.32 88.86 88.56 88.36

γ 0.01 0.02 0.03 0.04 0.05 0.06 rev

dev 88.26 88.27 88.41 88.74 89.48 92.02 101.12

Taking 88.26 as the minimum deviance, the interval ±3.84 around the
minimum (shown by the straight line in Figure 3) includes all values of γ
in the range (−0.053, 0.060); the ev and rev distributions are both excluded,
but the normal is not. This range of possible values of γ does not provide
any great precision in the extreme percentiles, though the median is better:
for the median the corresponding interval is (−0.07, 0.10) (the true value is
0.01), while for the 75-th percentile it is (0.60, 0.84) (true value 0.71) and
for the 90-th percentile it is (1.17, 1.62) (true value 1.37). For the normal
distribution these percentiles are 0, 0.68 and 1.28 respectively.

Since NAEP sample sizes are typically much larger than 1000, these
results do not rule out the possibility of more precise estimation of ability
distribution percentiles in NAEP studies. To assess this we repeated the
simulation above, with a subject sample size of 10,000 instead of 1000. The
deviance table is given below, after subtracting 127,600, and the values are
graphed in Figure 4, excluding the ev and rev values.

γ ev -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00
dev 312.66 168.32 132.16 116.34 105.68 97.56 91.08 85.78

γ 0.01 0.02 0.03 0.04 0.05 0.06 rev
dev 81.50 78.12 75.78 74.78 76.44 90.82 158.18

The minimum deviance occurs close to γ = 0.04, and the approximate
95% confidence interval shrinks considerably, to (0.019, 0.055). This excludes

the normal distribution. The corresponding 95% confidence intervals for
the median, 75th and 90th percentiles are (−0.01, 0.08), (0.67, 0.81) and
(1.31, 1.56).
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9 Discussion

This project has established that ability distributions with substantially
different skew can be discriminated, in terms of their skewness, from modest
sample sizes (1000 here) with relatively small numbers of items (10 here).
Small to moderate differences in skew need larger sample sizes to identify;
with 10,000 subjects quite small differences in skew could be identified with
10 items.

These results will be evaluated on real NAEP data, and are important
for the reporting of ability distribution percentiles; these are currently based
on the empirical distribution of plausible values of ability generated from the
posterior distribution of individual ability assuming a normal distribution
of ability. The model-based approach proposed here replaces the plausi-
ble value generation by direct fitting of a model which allows ability to be
skewed; this is less general than non parametric estimation, but more general
than the single normal distribution currently used, and provides direct esti-
mates of percentiles, and the precisions of the estimates, from the estimated
log-cubic distribution (which the non parametric approach does not). This
distribution has the same scaling features (location and scale parameters)
as the normal, and allows the reporting of percentiles which do represent,
through the distribution family, the degreee of skewness of the underlying
abilities.

The information in actual NAEP data about the ability distribution
remains to be determined. This will be investigated in Project 2 of this
work.
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11 Figures
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Figure 1: Normal, ev and rev densities
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Figure 2: Normal, rev and log-cubic densities
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