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Abstract

We study once-reinforced biased random walk on Zd. We prove
that for sufficiently large bias, the speed v(β) is monotone decreasing
in the reinforcement parameter β in the region [0, β0], where β0 is
a small parameter depending on the underlying bias. This result is
analagous to results on Galton-Watson trees obtained by Collevecchio
and the authors.

1 Introduction

Reinforced random walks have been studied extensively since the introduc-
tion of the (linearly)-reinforced random walk of Coppersmith and Diaconis
[9]. In this paper we study (a biased version of) once-reinforced random
walk, which was introduced by Davis [10] as a possible simpler model of re-
inforcement to understand. While there have been recent major advances in
the understanding of linearly reinforced walks on Zd (see e.g. [1, 29, 11, 30]
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and the references therein), rather less is known about once-reinforced walks
on Zd.

When the underlying random walk is biased we expect the once-reinforced
random walk to be ballistic in the direction of the bias. On regular trees with
d offspring per vertex, the underlying walk has a drift away from the root
when d ≥ 2 and the ballisticity of the once-reinforced walk is a well known
result due to Durrett, Kesten and Limic [12] (see [6] for a softer proof, and
[25, 8] for further results). When one introduces an additional bias on the
tree (letting children have initial weight α), one must first clarify what one
means by once-reinforcement. Indeed, ballisticity depends on the sign of
dα− 1 in the setting of additive once-reinforcement, but a different criterion
reveals itself in the setting of multiplicative once-reinforcement (see [7], and
also [25]). It is also shown in [7], for sufficiently large d and sufficiently small
β0 > 0, depending on d, that the speed of the walk away from the root is
monotone in the reinforcement β ∈ [0, β0]. In this paper we prove analygous
monotonicity results on Zd, when the underlying bias is sufficiently large.

1.1 The model

Fix d ≥ 2. Let E+ = (ei)i=1,...,d denote the canonical basis on Zd, and
E = {e ∈ Zd : |e| = 1} denote the set of neighbours of the origin in Zd. Let
E− = E \ E+.

Given α = (αe)e∈E ∈ RE+ and β > 0, we define a once-edge-reinforced
random walk X on Zd with natural filtration (Fn)n∈Z+ (i.e. Fn = σ(Xk :
k ≤ n)) as follows. Set X0 = 0 almost surely. For any n ≥ 0, let En =
{[Xi−1, Xi] : 1 ≤ i ≤ n} denote the set of non-oriented edges crossed by X
up to time n. Define

We(n) := αe(1 + β1{[Xn,Xn+e]∈En}). (1)

The walk jumps to a neighbor Xn + e with conditional probability given by

Pβ (Xn+1 = Xn + e| Fn) =
We(n)∑
e′∈EWe′(n)

. (2)

Together, (1) and (2) correspond to multiplicative once-edge reinforcement,
with reinforcement parameter β. See Section 1.2 for other related models.

Without loss of generality we may assume that the direction of bias (if
any) is in the positive coordinate direction for every coordinate. Moreover,
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we assume that every direction has positive weight. Thus, up to a rescaling
of parameters, without loss of generality αe ≥ 1 for every e ∈ E .

Condition D. For every e ∈ E+, αe ≥ α−e ≥ 1.

Let α+ =
∑

e∈E+ αe and α− =
∑

e∈E− αe, and let α = α+ +α− =
∑

e∈E αe.
Our results depend upon a modification of an argument of [2] involving a
coupling with a 1-dimensional biased random walk. This general coupling
approach has also been utilised on Zd for biased random walk on random
conductances in [3] (see [7] as well).
For this reason, we will assume the following with κ� 1.

Condition κ. The parameters α and β0 are such that β0 ≤ 1/α+ and

α+

(1 + β0)2α2
−
> κ. (3)

If Condition κ holds with κ = 1 then a simple comparison with 1-
dimensional biased random walk shows that the walker is ballistic in direc-
tion `+ :=

∑
e∈E+ e (i.e. lim infn→∞ n

−1Xn · `+ > 0). In particular the walk
is transient in direction `+ (i.e. lim infn→∞Xn · `+ = ∞). Combined with
regeneration arguments (see e.g. [32, 31]), this allows one to prove that there
exists v ∈ Rd with v · `+ > 0 such that P(limn→∞ n

−1Xn = v) = 1. Since the
norm ‖x‖ :=

∑d
i=1 |xi| is a continuous function on Rd we also have that

‖v‖ = lim
n→∞

n−1‖Xn‖, almost surely.

Note that if X is a nearest neighbour walk on Zd then ‖X‖ is a nearest
neighbour walk on Z+. Therefore if v ·e ≥ 0 for each e ∈ E+ then v ·`+ = ‖v‖.
Assuming Condition D, it is intuitively obvious that if v exists then v · e ≥ 0
for each e ∈ E+. We conjecture that this is true however it does not seem
easy to prove.

Conjecture 1.1. Assume Condition D. Then for each β > 0 there exists
v = vβ ∈ Rd with v · e ≥ 0 for each e ∈ E+ such that P(n−1Xn → v) = 1.

Note that it is not at all obvious that v · e should be strictly positive for
all β when the underlying random walk (i.e. β = 0) has a positive speed
in direction e. In particular on regular trees there are settings where the
underlying random walk is ballistic but the multiplicative-once-reinforced
walk is recurrent [7]. On the other hand, we believe that on Z× F where F
is a finite graph vβ · e1 > 0 whenever v0 · e1 > 0.

We make the following conjecture about the behaviour of vβ as β varies.
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Conjecture 1.2. Assume Condition D. Then for β0 such that Condition κ
holds with κ ≥ 1, vβ · `+ is strictly decreasing in β ≤ β0.

There are at least 3 different strategies for proving monotonicity of the
speed for random walks on Zd: coupling, expansion, and Girsanov transfor-
mation methods, with the former usually being the weapon of choice, where
possible. When d = 1 there is a rather general coupling method [22, 18] for
proving monotonicity, however this argument completely breaks down when
d ≥ 2. We are not aware of any current technology that lets one resolve
Conjecture 1.2 for all κ ≥ 1.

If the bias in direction `+ is sufficiently large then for small reinforcements
the reinforced walker still has a large bias in direction `+ (e.g. when Condition
κ holds for large κ). Thus, what the walker sees locally almost all of the time
is a single reinforced edge in some direction −e ∈ E−, and no reinforced edges
in directions in E+. In this case it is again intuitively obvious that the speed
of the reinforced version of the walk in direction `+ is decreasing in β for
small β. Actually proving this is non-trivial.

We will prove a version of this result assuming one of the following:

Condition S. The parameters α satisfy αe = α+/d and α−e = α−/d for
each e ∈ E+.

Note that Condition S (which is a symmetry condition) together with
Condition κ (for κ ≥ 1) implies Condition D. Condition S implies that the
true direction of bias of the underlying random walk is `+. At the other
extreme, the following condition (with κ� 1) implies that the true direction
of bias of the underlying random walk is almost in direction e1.

Condition e1. The parameters α and β0 are such that β0 ≤ 1/α+ and satisfy

αe1
(1 + β0)2(α− αe1)2

> κ.

Note that this implies Condition κ.

Curiously, with the technique that we employ, it seems considerably
harder to prove our results for parameters α between the two extremes given
by Conditions S and e1.

Our main results are the following Theorems, which verify that if either
Condition S or Condition e1 (for small ε) hold for large drifts and small
reinforcement, increasing the reinforcement slows the walker down.
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Theorem 1.3. There exists κ0 < ∞ such that if Condition S holds and if
Condition κ holds for κ0, α and β0, then for all β ≤ β′ ≤ β0,

(vβ − vβ′) · `+ > 0 and ‖vβ‖ > ‖vβ′‖.

(Note that the second conclusion in Theorem 1.3 is immediate from the
first and Condition S.)

Theorem 1.4. Suppose that Condition D holds. There exists κ0 <∞ such
that if Condition e1 holds for κ0, α and β0 then for all β ≤ β′ ≤ β0,

(vβ − vβ′) · `+ > 0.

Note that if α− = 0 then there is nothing to prove in either case. Other-
wise αe > 0 for some e ∈ E− in which case by Condition D we have that

α− ≥ 1. (4)

1.2 Discussion

We have restricted ourselves to multiplicative-once-edge-reinforced random
walk. In the general α setting one can describe a rather general once-
reinforcement scheme as follows. Recall that En is the set of edges crossed by
the walk up to time n and let Vn = {X0, . . . , Xn} denote the set of vertices
visited up to time n. Then, given a parameter set (α,αV ,αE) ∈ (0,∞)2d×3,
define the law of a walk Pα,αV ,αE via (2) and the edge weights:

We(n) = αe1{Xn+e/∈Vn} + αVe 1{Xn+e∈Vn,[Xn,Xn+e]/∈En} + αEe 1{[Xn,Xn+e]∈En}.
(5)

This general setting includes multiplicative-once-edge-reinforced random walk
(this is the choice αVe = αe and αEe = (1+β)αe for each e ∈ E), additive-once-
edge-reinforced random walk (the choice αVe = αe and αEe = αe + β for each
e ∈ E), and vertex-reinforced versions of these models (by setting αVe = αEe
for each e ∈ E). It also includes hybrid models where the weight of a di-
rected edge depends on whether the undirected edge has been traversed, and
otherwise whether the other endvertex of the edge has been visited before.

The increased level of difficulty (for the coupling technique) that we en-
counter in studying models with α that are not at the “extremes” given by
either Conditions S or e1, seems (at first glance) to persist for expansion
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methods (see e.g. [16, 17, 23, 15]). We have not investigated the possi-
bility of proving such results using Girsanov transformation methods (see
e.g. [27, 28]).

In the setting of reinforcement for an unbiased walk, the velocity ~v is zero,
but one imagines that (e.g. in the case of once-reinforcement), monotonicity
in β still holds for various quantities such as E[|Xn|2], E[‖Xn‖] and the ex-
pected number of visits to 0 up to time n. Results of this kind hold in the
elementary setting where one only keeps track of the most recently traversed
edge (but can in fact fail in this setting with more general reinforcement
schemes than once-reinforcement), see e.g. [20, 19].

There is also a substantial literature on monotonicity (or lack thereof)
for random walks in random graphs, where one is often interested in the
monotonicity (or lack thereof) of the speed of the walk in some parameter
defining the bias of the walk or the structure of the underlying graph (see
e.g. [26, 2, 4, 13, 5, 21, 7, 3]).

Open problem: How much wood would Chuck chuck, if Chuck would
chuck wood? We conjecture that the correct answer is 42.

2 Preliminary results

We will need the concept of regeneration times. Let Y denote a nearest
neighbour simple random walk on Z with probability p > 1/2 of stepping to
the right. By the law of large numbers n−1Yn → 2p − 1 > 0 almost surely.
Moreover it is easily computed that

P(inf
n≥0

Yn ≥ Y0) = p−1(2p− 1). (6)

We say that N ∈ Z+ is a regeneration time of Y if supn<N Yn < YN ≤
infn≥N Yn. Letting DY denote the set of regeneration times for Y , and D0 =
{0 ∈ DY } we see from (6) that P(D0) = p−1(2p− 1) > 0. In fact |DY | =∞
almost surely and we write (τi)i∈N = DY ∩ N (with τi < τi+1 for each i) for
the ordered strictly positive elements of DY . Set τ0 = 0 (this may or may
not be a regeneration time).

More generally, for a walk X on Zd we say that N ∈ Z+ is a regeneration
time of X in the direction of x ∈ Rd \ {o} if supn<N Xn · x < XN · x ≤
infn≥N Yn · x. For n ≥ 1 let ∆X

n = Xn −Xn−1.
The following is Lemma 3.1 of [7].
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Lemma 2.1 (Lemma 3.1 of [7]). Suppose that Z′ and Z are nearest neighbour
walks on Z and that Y is a nearest neighbour simple random walk on Z with
P(Y1 = 1) = p > 1/2, all on the same probability space such that:

(i) ∆Z′
n = ∆Z

n = 1 whenever ∆Y
n = 1,

then the regeneration times τi of Y are also regeneration times for Z and Z′.
Moreover if

(ii) (Z ′τi+1
− Z ′τi)i∈N are i.i.d. random variables and (Zτi+1

− Zτi)i∈N are
i.i.d. random variables, with Z ′τi+1

−Z ′τi and Zτi+1
−Zτi being indepen-

dent of (τk : k ≤ i) for each i, and

(iii) E
[
Zτ1 − Z ′τ1

∣∣D0

]
> 0.

Then there exist v > v′ > 0 such that P(n−1Zn → v, n−1Z ′n → v′) = 1.

Let P(·) = P(·|D0). Let B =
{

1 ≤ i < τ1 : ∆Y
i = −1

}
denote the set of

times before τ1 when Y takes a step back. The following statement (and its
proof) is a trivial modification of Lemma 3.2 of [7].

Lemma 2.2. Let Z,Z′ be nearest neighbour walks on Z, and Y a biased
random walk on Z satisfying assumption Lemma 2.1(i). Suppose also that
P
(
|B| = 1, Zτ1 − Z ′τ1 < 0

)
= 0 and

P
(
|B| = 1, Zτ1 − Z ′τ1 ≥ 1

)
>
∞∑
k=2

2kP(|B| = k, Zτ1 − Z ′τ1 < 0). (7)

Then (iii) of Lemma 2.1 holds. Therefore if the assumption of Lemma 2.1(ii)
also holds then Lemma 2.1 holds.

To prove Theorem 1.3 it therefore suffices to prove the following theorem.

Theorem 2.3. There exists κ0 < ∞ such that if Condition κ holds for κ0,
α and β0, and Condition S holds, then for all β ≤ β′ ≤ β0, there exists a
probability space on which the conditions of Lemma 2.1 hold for Z = X(β)·`+

and Z′ = X(β′) · `+.

Similarly, to prove Theorem 1.4 it suffices to prove the following.

Theorem 2.4. Suppose that Condition D holds. There exists κ0 <∞ such
that if Condition e1 holds for κ0, α and β0 then for all β ≤ β′ ≤ β0, there
exists a probability space on which the conditions of Lemma 2.1 hold for
Z = X(β) · `+ and Z′ = X(β′) · `+.

In the next section we construct the probability spaces relevant to Theo-
rems 2.3 and 2.4.
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3 The coupling

This section adapts an argument of Ben Arous, Fribergh and Sidoravicius
[2].

In the construction of the coupling and verification of its properties we
will use various jargon as follows.

We say that a walk Y on Z jumps forward (at time n + 1) if ∆Y
n+1 = 1.

Otherwise, we say that Y jumps backwards.
For a walk X on Zd (which will have the law of a once reinforced biased

random walk on Zd), we will say that X jumps forward (at time n + 1) if
∆X
n+1 ∈ E+ and backwards otherwise. We will write that a (non-oriented)

edge e of Zd is reinforced at a given time n if it has already been crossed by
X, i.e. if e ∈ En. We will use the notation In := {e ∈ E : [Xn, Xn+ e] ∈ En},
and say that X jumps on its trace (at time n+ 1) if ∆X

n+1 ∈ In (i.e. it jumps
through an edge which is already reinforced), otherwise we say that it jumps
out of its trace. We call local environment of X at time n the collection of
weights of the edges adjacent to Xn.

Recall that we have defined E+ = (ei)i=1,...,d. We extend the notation to
ei+d = −ei ∈ E− for any i ∈ {1, . . . , d}. Moreover, we use the shorthand
αi = αei for any i ∈ {1, . . . , 2d}. For each I ⊂ [2d], for any i ∈ [2d] and for
each β ≥ 0, define

p
(β)
i,I :=

αi(1 + 1{i∈I}β)∑2d
j=1 αj(1 + 1{j∈I}β)

.

Note that if X is a biased ORRW on Zd with reinforcement parameter β,
then P(∆X(β)

n+1 = ei|Fn) = p
(β)
i,In(β) a.s.

Note that if β′ > β then for any I ⊂ [2d] we have

p
(β′)
i,I ≥ p

(β)
i,I , for any i ∈ I,

p
(β′)
i,I ≤ p

(β)
i,I , for any i /∈ I,

p
(β′)
i,I ∧ p

(β)
i,I ≥ pYi , for any i ∈ [d],

where

pYi :=
αi

α + β′(α− αi)
. (8)
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Let us also define

pY :=
d∑
i=1

αi, q
Y := 1− pY , and pYi+d := 0, ∀i ∈ [d]. (9)

Note that from summing (8) and using Condition κ and (4) we have β0 ≤
1/α+ and α+/α− > κ, and therefore

pY >
α+

(1 + β0)α
= 1− β0α+

(1 + β0)α
− α−

α
≥ 1− 2

κ
. (10)

In particular, pY can be taken arbitrarily close to 1 under Condition κ for
large κ.

The main idea is to couple three walks,X,X ′,Y satisfying the conditions
of Theorems 2.3 and 2.4:

(1) X = X(β) a biased ORRW on Zd with reinforcement parameter β;

(2) X ′ = X(β′) a biased ORRW on Zd with reinforcement parameter β′ > β;

(3) Y a biased random walk on Z.

In particular (see (7)) we must be able to control how each walk can make
gains on the other in direction `+. To this end, we will say thatX andX ′ are
still coupled at time n if (Xk)k≤n = (X ′k)k≤n, and that they decouple at time
n+1 if also Xn+1 6= X ′n+1. We will write δ = inf{n : Xn 6= X ′n} to denote the
decoupling time. We call discrepancy (at time n) the difference Xn−X ′n. We
say that the decoupling creates a negative discrepancy if (Xδ −X ′δ) · `+ < 0.

3.1 The dynamics

Fix β′ > β ≥ 0. Let (Ω,F ,P) denote a probability space on which (Ui)i≥1 is
an i.d.d. collection of U [0, 1] random variables. We will set X0 = X ′0 = o ∈ Zd
and Y0 = 0, and (Xn, X

′
n, Yn) will be Gn = σ(Uk : k ≤ n)-measureable.

We will use ′ notation to denote quantities depending on X ′ e.g. E ′n =
{[X ′k−1, X

′
k] : k ≤ n} and I ′n := {e ∈ E : [X ′n, X

′
n + e] ∈ E ′n}.

The coupling is given by the following rules, that we will explain in Section
3.2. Firstly,

(0Y ) for any n ∈ N, Yn =
∑n

i=1

(
1{Ui>qY } − 1{Ui≤qY }

)
.
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The above takes care of the marginal distribution of Y . Next, regardless of
the environment at time n,

(0X) If Un+1 ∈
(

1−
∑i

j=1 p
Y
j , 1−

∑i−1
j=1 p

Y
j

]
for i ∈ [d], then ∆X

n+1 = ∆X′
n+1 =

ei;

Otherwise we define the joint increments inductively, considering separately
the cases when the two walks X, X ′ have (∗) the same local environments
or (∗∗) different local environments.

(=) Suppose that In = I ′n, and let I = In. Denote k = |I|, write r1 < · · · <
rk for the elements of I listed in increasing order and r̄1 < · · · < r̄2d−k
for the elements of [2d] \ I in increasing order. Then,

(=I) If Un+1 ∈
(
qY −

∑i
j=1

(
p

(β)
rj ,I − p

Y
rj

)
, qY −

∑i−1
j=1

(
p

(β)
rj ,I − p

Y
rj

)]
for

i ∈ [k], then ∆X
n+1 = ∆X′

n+1 = eri ;

(=Ic) If

Un+1 ∈

(
qY −

k∑
j=1

(
p

(β)
rj ,I − p

Y
rj

)
−

i∑
j=1

(
p

(β′)
r̄j ,I − p

Y
r̄j

)
,

qY −
k∑
j=1

(
p

(β)
rj ,I − p

Y
rj

)
−

i−1∑
j=1

(
p

(β′)
r̄j ,I − p

Y
r̄j

)]
,

then ∆X
n+1 = ∆X′

n+1 = er̄i ;

(=I,Ic) If Un+1 ∈
(

0, 1−
∑k

j=1 p
(β)
rj ,I −

∑2d−k
j=1 p

(β′)
r̄j ,I

]
then

(i) if Un+1 ∈
(∑i−1

j=1

(
p

(β′)
rj ,I − p

(β)
rj ,I

)
,
∑i

j=1

(
p

(β′)
rj ,I − p

(β)
rj ,I

)]
for i ∈

{1, . . . , k}, then ∆X′
n+1 = eri ;

(ii) if Un+1 ∈
(∑i−1

j=1

(
p

(β)
r̄j ,I − p

(β′)
r̄j ,I

)
,
∑i

j=1

(
p

(β)
r̄j ,I − p

(β′)
r̄j ,I

)]
for i ∈

{1, . . . , 2d− k}, then ∆X
n+1 = er̄j .

(6=) Now, if I ′n 6= In then we follow:

( 6=X′) if Un+1 ∈
(∑i−1

j=1

(
p

(β′)
j,I − pYj

)
,
∑i

j=1

(
p

(β′)
j,I − pYj

)]
for i ∈ [2d]

then ∆X′
n+1 = ei;
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(6=X) if Un+1 ∈
(∑i−1

j=1

(
p

(β)
j,I − pYj

)
,
∑i

j=1

(
p

(β)
j,I − pYj

)]
for i ∈ [2d] then

∆X
n+1 = ei.

From now on, we denote (Gn) the natural filtration generated by the sequence
(Un) and note that the three walks are measurable with respect to this fil-
tration.

3.2 Properties of the coupling

Let us explain the coupling defined in Section 3.1. The proof that the
marginals of Y, X(β) and X(β′) have the correct distributions is left to the
reader. Let us simply emphasize that

0 ≤ qY −
k∑
j=1

(
p

(β)
rj ,I − p

Y
rj

)
−

d−k∑
j=1

(
p

(β′)
r̄j ,I − p

Y
r̄j

)
= 1−

k∑
j=1

p
(β)
rj ,I −

d−k∑
j=1

p
(β′)
r̄j ,I

=
d−k∑
j=1

(
p

(β)
r̄j ,I − p

(β′)
r̄j ,I

)
=

k∑
j=1

(
p

(β′)
rj ,I − p

(β)
rj ,I

)
.

For I ⊂ [2d] let αI =
∑

i∈I αi (so e.g. α+ = α[d]). We note that

k∑
j=1

p
(β)
rj ,I =

αI(1 + β)

αI(1 + β) + αIc
(11)

d−k∑
j=1

p
(β′)
r̄j ,I =

αIc

αI(1 + β′) + αIc
, (12)

and therefore that the quantity in the first interval of (=I,Ic) is

1−
k∑
j=1

p
(β)
rj ,I −

d−k∑
j=1

p
(β′)
r̄j ,I =

αIαIc(β
′ − β)

(αI(1 + β) + αIc)(αI(1 + β′) + αIc)
. (13)

So the first discrepancy by the walk will give us a (small) factor of (β′ − β).
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Similarly, letting I+ = I ∩ [d] and Ic+ = Ic ∩ [d] we see that the union of
the intervals in (=I,Ic) (i) over i ≤ |I+| gives the interval(

0,
αI+αIc(β

′ − β)

(αI(1 + β) + αIc)(αI(1 + β′) + αIc)

]
. (14)

Similarly, the union over i ≤ |Ic+| of the intervals in (=I,Ic) (ii) gives(
0,

αIc+αI(β
′ − β)

(αI(1 + β) + αIc)(αI(1 + β′) + αIc)

]
. (15)

Here are the main properties satisfied under the coupling:

(P1) Whenever Y jumps forward, so do X and X ′, and they take the same
step that is independent of the local environment (this holds by (0Y )
and (0X) of the coupling);

(P2) When X and X ′ have the same local environment, if X jumps on its
trace then X ′ also jumps on its trace and takes the same step (this
holds by ( 6=I) (and (0X)) of the coupling);

(P3) When X and X ′ have the same local environment, if X ′ jumps out of
its trace then X also jumps out of its trace and takes the same step
(this holds by (6=Ic) (and (0X)) of the coupling);

(P4) When X and X ′ have the same local environment and if the walks
decouple, then Y jumps backwards, X jumps out of its trace and X ′

jumps on its trace (this holds by (=I,Ic) (and (0Y )) of the coupling).

Items ( 6=X) and ( 6=X′) in the coupling are dealing with the case when X
and X ′ do not have the same local environment and Y jumps backwards.
For this case, we only define simple rules in order for the marginals to have
the good distributions.

3.2.1 Common regeneration structure

Let Z = X · `+ and Z′ = X ′ · `+. By property (P1) our coupling satisfies
Lemma 2.1(i). This implies that if t is a regeneration time for the walk
Y, then it is also a regeneration time for X and X ′. Recall that τ1, τ2, ...,
denotes the sequence of positive regeneration times of Y. Recall that D0 is
the event on which 0 is a regeneration time, and we defined P[·] := P[·|D0].

12



Using that Y is a biased random walk on Z with probability to jump on
the right equal to pY , these regeneration times are well defined as soon as
pY > 1/2 and (6) shows that P(D0) = (2pY − 1)/pY =: p∞.

Using classical arguments on regeneration times and taking advantage of
the common regeneration structure, we obtain the following result.

Proposition 3.1. For any β′ > β > 0 and (αi)i=1,...,2d such that pY > 1/2,

we have that, under P,
(
Yτk+1

− Yτk , Xτk+1
−Xτk , X

′
τk+1
−X ′τk , τk+1 − τk

)
,

k ≥ 0 are independent and (except for k = 0) have the same distribution
as
(
Yτ1 , Xτ1 , X

′
τ1
, τ1

)
under P.

Since this result is classical (see e.g. [32, 26], or [14]) and intuitively clear,
we only give a sketch proof.

Sketch proof of Proposition 3.1. Suppose that t ∈ DY , i.e. t is a regeneration
time for Y . Then ∆Y

t+1 = 1 so both X and X ′ take a forward step which is
chosen independent of the environment. Moreover, whenever (Xt+n − Xt) ·
`+ = 0 or (X ′t+n − X ′t) · `+ = 0 we must have that Yt+n = Yt and therefore
again ∆Y

t+n+1 = 1 and both X and X ′ take a forward step independent of
the environment. On the other hand, whenever both (Xt+n − Xt) · `+ > 0
and (Xt+n − Xt) · `+ > 0, we have that neither X nor X ′ are incident to
an edge reinforced before time t. This shows that for any possible paths
~yt, ~xt, ~x′t, the conditional distribution of (Yt+n − Yt, Xt+n − Xt, X

′
t+n − X ′t)

given ((Yk)k≤t, (Xk)k≤t, (X
′
k)k≤t) = (~yt, ~xt, ~x′t) and t ∈ DY does not depend

on t or (~yt, ~xt, ~x′t) and the result follows. �

4 Proofs of Theorem 2.3 and Theorem 2.4

Proposition 3.1 implies that item (ii) of Lemma 2.1 is satisfied by Y, Z′ =
X ′ · `+ and Z = X · `+. Hence, to prove Theorem 2.3 and Theorem 2.4, we
only need to check the requirements of Lemma 2.2.
Define the first time before τ1 the walksX andX ′ decouple as δ1 = inf {i ≤ τ1 : Xi 6= X ′i}.
Note that δ1 =∞ if the walks do not decouple before τ1.

Proposition 4.1. For any β′ > β > 0, and α such that pY > 1/2, we have
that

P
(
|B| = 1, Zτ1 − Z ′τ1 < 0

)
= 0.

13



Proof. The fact that pY > 1/2 guarantees that τ1 and P are well defined.
Note that, by property (P1), at any time n ∈ N such that ∆Y

n = 1, we have
that ∆Z

n = ∆Z′
n = 1 and thus Zn+1 − Z ′n+1 = Zn − Z ′n.

On the event {|B| = 1}, there exists only one time 0 < nb < τ1 such that
∆Y
nb

= −1 and thus Zτ1 − Z ′τ1 = (∆Z
nb
− ∆Z′

nb
) · `+. At time nb − 1, X and

X ′ are still coupled and thus have the same local environment, which is such
that Inb−1 = Inb−1 = {ed+i} for some i ∈ [d]. Thus by (P4) in order for the
walks to decouple on this step we must have δX

′
nb

= ed+i, which cannot create
a negative discrepancy. �

The last result together with the two following Propositions respectively
imply Theorem 2.3 and Theorem 2.4 by Lemma 2.2 and Lemma 2.1.

Proposition 4.2. There exists κ0 < ∞ such that if Condition κ holds for
κ0, α and β0, and Condition S holds, then for all 0 < β < β′ < β0, inequality
(7) is satisfied.

Proposition 4.3. Suppose that Condition D holds. There exist κ0 < ∞
and β0 > 0 such that if Condition e1 holds for κ0, α and β0, then for all
0 < β < β′ < β0, inequality (7) is satisfied.

4.1 Bounds on the decoupling events

Lemma 4.4. Assume that αi+d > 0 for any i ∈ [d]. There exists C0 > 0
such that: There exists κ0 such that for α, β0 satisfying Condition κ for κ0,
and all β, β′ satisfying 0 ≤ β < β′ < β0,

P
(
|B| = 1, Zτ1 − Z ′τ1 = 2

)
≥ C0

β′ − β
α+

.

Proof. Let A =
{
|B| = 1, Zτ1 − Z ′τ1 = 2

}
and note that

P(A) =
1

p∞
P (A,D0) .

Now, let us describe the following scenario (which is in fact the only possible
event on which the walks decouple) such that A ∩D0 holds:

(i) (Y1, Y2, Y3, Y4) = (1, 0, 1, 2) and τ1 = 4, so also D0 occurs;

(ii) ∆X
1 = ∆X′

1 ∈ E+, then X ′ steps back onto its trace (∆X′
2 = −∆X′

1 ),
while X steps forward (∆X

2 ∈ E+).

14



Now, following this scenario and conditional on ∆X
1 = ∆X′

1 = ei, we have
(from (=I,Ic)) that

P
(

∆X
2 ∈ E+,∆

X′

2 = ei+d
∣∣F2

)
=

α+

α + βαi+d
− α+

α + β′αi+d
(16)

=
(β′ − β)α+αi+d

(α + βαi+d)(α + β′αi+d)
(17)

≥ (β′ − β)α+

(α+ + (1 + β′)α−)2
(18)

=
(β′ − β)

α+

(
α+

(α+ + (1 + β′)α−)

)2

(19)

≥ (β′ − β)κ2
0

α+(κ0 + 1)2
≥ c

β′ − β
α+

. (20)

Hence, summing over i ∈ [d] and using Condition D we obtain

P(A) ≥ 1

p∞
× pY × cdβ

′ − β
α+

×
(
pY
)2 × p∞.

We conclude noting that for κ0 > 4, pY > 1/2 (by (10)). �

Lemma 4.5. There exists C1 > 0 such that: If Condition S holds then there
exists κ0 such that for α, β0 satisfying Condition κ for κ0, and all β, β′

satisfying 0 ≤ β < β′ < β0,

P
[
|B| = 2, Zτ1 − Z ′τ1 < 0

]
≤ C1(β′ − β)

α+κ0

.

Proof. Assume that, at a given time n, the walks are still coupled. Let J(I)
denote the right hand side of (13) and J1(I) and J2(I) denote the right
hand sides of the intervals in (14) and (15) respectively. Under Condition
S these quantities can be written as J(k+, k−), J1(k+, k−) and J2(k+, k−),
corresponding to the values above for given k+ and k−.

Then we can write item (=I,Ic) as:

(=I,Ic,S) If Un+1 ∈ (0, J(k+, k−)] then

(i) if Un+1 ∈ (0, J1(k+, k−)] then ∆X′
n+1 ∈ E+ and ∆X′

n+1 ∈ E− other-
wise;
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(ii) if Un+1 ∈ (0, J2(k+, k−)] then ∆X
n+1 ∈ E+ and ∆X

n+1 ∈ E− other-
wise.

On the event {|B| = 2, Zτ1 − Z ′τ1 < 0, D0}, the walk Y can only do one
of the following:

1. E1 = {{Y0, . . . , Y7} = {0, 1, 2, 1, 0, 1, 2, 3}, τ1 = 7};

2. E2 = {{Y0, . . . , Y6} = {0, 1, 0, 1, 0, 1, 2}, τ1 = 6};

3. E3 = {{Y0, . . . , Y7} = {0, 1, 0, 1, 2, 1, 2, 3}, τ1 = 7}.

Recall the remarks from Section 3.2. In particular, recall that, by (P1), when
Y steps forward, X and X ′ take the same step. Moreover, if X and X ′ have
the same local environment with only one reinforced edge and if this edge
is in one of the directions of E−, then, by (P4), X and X ′ cannot decouple
creating a negative discrepancy. It follows that no negative discrepancy can
be created the first time Y steps back, so the magnitude of any negative
discrepancy can only be 2. It also follows that on (E2 ∩ {δ = 4}) ∪ E3, X
and X ′ cannot create any negative discrepancy.

It therefore remains to consider the cases E1∩{δ = 3}, E2∩{δ = 2}, and
E1 ∩ {δ = 4}.

On (E1 ∩ {δ = 3}) ∪ (E2 ∩ {δ = 2}), X ′ jumps backwards on its trace at
time δ and one of the following happens:

• At time δ, X jumps forward, hence Zδ − Z ′δ = 2, thus Zτ1 − Z ′τ1 ≥
0 and the walks cannot create any negative discrepancy before the
regeneration time.

• At time δ, the X jumps backwards out of the trace, hence Zδ−Z ′δ = 0
but the two walks do not have the same local environment anymore.
Then, the second time Y jumps backwards, hence the two walks can
create a negative discrepancy.

Using the item (=I,Ic,S)-(ii) above (and (13),(15)) in the case k+ = 0 and
k− = 1, we have (by bounding only the conditional probability of the step
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taken at time δ) that

P
(
(E1 ∩ {δ = 3}) ∪ (E2 ∩ {δ = 2}), Zτ1 − Z ′τ1 < 0

)
≤ J(0, 1)− J2(0, 1) =

(d− 1)(α−)2(β′ − β)

(α−β + dα)(α−β′ + dα)

≤ (β′ − β)
(α−
α

)2

≤ (β′ − β)α+

α2κ0

≤ (β′ − β)

α+κ0

, (21)

where we have used Condition κ for the penultimate inequality.
Now, we want to study the probability of the event {E1, δ = 4} and

consider the cases when the discrepancy can be negative or not. One of the
following happens:

• If ∆X
3 = ∆X′

3 ∈ E+ then, the local environment I3 is made of one single
reinforced edge, in the direction E−, hence X and X ′ cannot decouple
creating a negative discrepancy;

• At time 3, both X and X ′ can jump backward on their trace. This
corresponds to the event E1,1 := {E1, δ = 4,∆X

3 = −∆X
2 }, which is

treated below;

• At time 3, both X and X ′ can jump backward out of their trace. This
corresponds to the event E1,2 := {E1, δ = 4,∆X

3 ∈ E−\{−∆X
2 }}, which

is treated below.

On the event E1,1, the local environment I3 of the walks is made of one
reinforced edge in some direction in E+ and one reinforced edge in some
direction in E−. By property (P4), in order to decouple, X ′ has to jump on
its trace and X out of its trace. More precisely, in order to create a negative
discrepancy, X ′ has to jump forward on its trace and X backwards out of its
trace. Now, note that, in the case k+ = k− = 1, J1(k+, k−) = J2(k+, k−) so
the two intervals of item (=I,Ic,S)-(i) and item (=I,Ic,S)-(ii) are equal. Hence,
on E1,1, we have that ∆X

δ · `+ = ∆X′

δ · `+. This implies that Therefore, we
have that

P
(
E1,1, Zτ1 − Z ′τ1

)
= 0. (22)

Note that this is not necessarily true if we do not assume Condition S, with
the prescribed ordering of I and Ic.
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On the event E1,2, the local environment I3 of the walks is made of one
single reinforced edge in some direction of E+. As the walks decouple, we have
thatX ′ jumps forward on the trace andX jumps out of the trace. The walks
create a negative discrepancy only if, furthermore, X jumps backwards: the
probability of this step is given by item (=I,Ic,S) above. Recalling that,
at time 3, Y steps backwards and using the item (=I,Ic,S)-(ii) above (and
(13),(15)) in the case k+ = 1 and k− = 0, we have that

P
[
E1,2, Zτ1 − Z ′τ1 < 0

]
≤ qY × (J(1, 0)− J2(1, 0))

≤ qY
dα−α+(β′ − β)

(α+β + dα)(α+β′ + dα)

≤ C
(1 + β0)α−

α+

× (β′ − β)× α−
α+

≤ C(β′ − β)

(
(1 + β0)α−

α+

)2

≤ C
(β′ − β)

α+κ0

,

where we used that, under Condition κ ,

qY ≤ 2
(1 + β0)α−

α+

.

This, together with (21) and (22), implies the conclusion. �

Lemma 4.6. There exist C2, C
′
2 > 0 such that: There exists κ0 such that for

α, β0 satisfying Condition κ for κ0, and all β, β′ satisfying 0 ≤ β < β′ < β0,
and all k ≥ 2,

P
(
|B| = k, Zτ1 − Z ′τ1 < 0

)
≤ C ′2k(β′−β)

(
α− α1

α
∧ 1

)(
C2

(1 + β0)α−
α+

)k−1

.

Proof. Denote Ak =
{
|B| = k, Zτ1 − Z ′τ1 < 0

}
.

Recall that δ is the time of decoupling. Note that Y necessarily starts by
jumping forward and that the two last steps before τ1 are also necessarily
forward (otherwise this contradicts the definition of τ1).
Following [2, Lemma 4.1] and adjusting it to the definition of the regeneration
times that we use here, one can prove (see e.g. Lemma 3.3 of [7]) that |B| =
k ⇒ τ1 ≤ 3k+ 1, almost surely, i.e. P

(
{|B| = k} \ {τ1 ≤ 3k+ 1}

)
= 0. Using

this fact, we have that

P(Ak) ≤ p−1
∞ P
(
2 ≤ δ ≤ 3k, |{1 ≤ n ≤ 3k − 2 : ∆Y

n+1 = −1}| ≥ k
)
.

(23)
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On the event {δ = n + 1} the walks are still coupled at time n and thus, in
particular, I := In = I ′n.
Denote k = |I|, I = {r1, . . . , rk} and {1, . . . , 2d} \ I = {r̄1, . . . , r̄2d−k}. Then
the event of decoupling at time n + 1 is controlled as follows, according to
the item (=I,Ic) of the coupling,

{δ = n+ 1} = {δ > n} ∩

{
Un+1 ≤ 1−

k∑
j=1

p
(β)
rj ,I −

d−k∑
j=1

p
(β′)
r̄j ,I

}

= {δ > n} ∩
{
Un+1 ≤ 1− (1 + β)αI

α + βαI
− αIc

α + β′αI

}
= {δ > n} ∩

{
Un+1 ≤

αIcαI(β
′ − β)

(α + βαI)(α + β′αI)

}
⊂
{
Un+1 ≤ (β′ − β)

(
α− α1

α
∧ 1

)}
,

where we have used the fact that either 1 ∈ I or 1 ∈ Ic to obtain the last
relation.

Thus, we have

P (Ak) ≤ p−1
∞

3k−1∑
n=2

P
(
Un ≤ (β′ − β)

(α− α1

α
∧ 1
)
,

|{j ∈ {1, . . . , 3k − 1} \ {n} : Uj ≤ qY }| ≥ k − 1
)

≤ ck(β′ − β)
(α− α1

α
∧ 1
)

×P
(
∃B ⊂ [3k − 2] : |B| = k − 1, Uj ≤ qY ∀j ∈ B

)
≤ ck(β′ − β)

(α− α1

α
∧ 1
)(3k − 2

k − 1

)
(qY )k−1

≤ c′k(β′ − β)

(
α− α1

α
∧ 1

)(
c′′qY

)k−1
(24)

≤ c′k(β′ − β)

(
α− α1

α
∧ 1

)(
c′′′(1 + β0)α−

α+

)k−1

, (25)

where we used the inequality e11/12(n/e)n ≤ n! ≤ e(n/e)n, which holds for
any n ≥ 1, see [24], and we also used that

qY ≤ C
(1 + β0)α−

α+

and p∞ ≥ 1/2.
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Lemma 4.7. There exist C3 > 0 such that: There exists κ0 such that for α,
β0 satisfying Condition κ for κ0, and all β, β′ satisfying 0 ≤ β < β′ < β0, we
have that

∞∑
k=3

2kP
[
|B| = k, Zτ1 − Z ′τ1 < 0

]
≤ C3(β′ − β)

α+κ0

.

Proof. Using Lemma 4.6, we have that

∞∑
k=3

2kP
[
|B| = k, Zτ1 − Z ′τ1 < 0

]
≤ C(β′ − β)

∞∑
k=3

k2

(
C2

(1 + β0)α−
α+

)k−1

≤ C ′(β′ − β)

(
(1 + β0)α−

α+

)2(
1− C2

κ0

)−3

≤ C ′
β′ − β
α+κ0

,

where we have used Condition κ for large κ0. �

Lemma 4.8. There exist C4 > 0 such that: There exists κ0 such that for α,
β0 satisfying Condition e1 and Condition D then, for all 0 < β < β′ < β0,
we have that

P
(
|B| = 2, Zτ1 − Z ′τ1 < 0

)
≤ C4

β′ − β
α+κ0

.

Proof. This is a direct consequence of Condition e1 and Lemma 4.6 for k =
2. �

4.2 Proofs of Proposition 4.2 and Proposition 4.3

Recall that Propositions 4.2 and 4.3 respectively imply Theorem 2.3 and
Theorem 2.4.

Proof of Proposition 4.2. By Lemma 4.4, Lemma 4.5 and Lemma 4.7, there
exists κ0 <∞ such that if Condition κ holds for κ0, α and β0 and if Condition
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S holds, then, for all 0 < β < β′ < β0, we have that

∞∑
k=2

2kP
[
|B| = k, Zτ1 − Z ′τ1 < 0

]
≤ 4P

[
|B| = 2, Zτ1 − Z ′τ1 < 0

]
+
∞∑
k=3

2kP
[
|B| = k, Zτ1 − Z ′τ1 < 0

]
≤ C

(β′ − β)

α+κ0

≤ C ′

κ0

P
(
|B| = 1, Zτ1 − Z ′τ1 ≥ 1

)
.

Hence, we can conclude that inequality (7) is satisfied as soon as κ0 is large
enough, which proves the Proposition. �

Proof of Proposition 4.3. Suppose Condition D holds. There exist κ0 < ∞
and β0 > 0 such that if Condition e1 holds for κ0, α and β0, then, for all
0 < β < β′ < β0, we conclude exactly as in the previous proof that (7) holds
by Lemma 4.4, Lemma 4.8 and Lemma 4.7. �
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