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Abstract

This paper is devoted to the study of the so-called WARM rein-
forcement models that are generalisations of Pólya’s urn. We show
that in the graph setting, once the exponent α of the reinforcement
function is greater than 2, the stable and critical equilibria can be sup-
ported only on spanning forests, and once α > 25, on spanning whisker
forests. Thus we prove the whisker forests conjecture from [6].

“The rich get richer” is a catchphrase that is often used to describe various
real-world reinforcement processes, such as the formation of social networks,
or market share. Random processes with reinforcement, where the outcomes
of the first steps of the process can heavily influence the asymptotic be-
haviour, have been studied for over a century. Their study continues to be a
highly active area of research (see e.g. [3, 10, 5, 11]). Perhaps the first such
model is the classical Pólya urn, where at each step of the process a ball is
chosen from an urn and replaced together with another of the same colour.

Various methods have been adopted or developed to study reinforcement
processes, depending on the particular model of interest [12]. One such
method involves approximating the stochastic dynamics by deterministic dy-
namics [2]. This method has proved to be useful in studying a large class of
reinforcement processes called WARMs [6], which include processes defined
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on graphs that are toy models for the formation of neuronal architecture in
the brain.

In this paper we consider a class of dynamical systems whose stable fixed
points are the possible limit points of WARMs. By studying a Lyapunov
function for the flow, we prove various properties of the set of stable fixed
points when the strength of reinforcement is large. In particular we verify a
conjecture of [6], showing that when the reinforcement is very strong, stable
fixed points of the dynamics are supported on forests whose components have
diameter at most 3.

1 Introduction and main results

A WARM (W,A-reinforcement model) is one of a class of reinforcement pro-
cesses introduced in [6]. One can consider some of these processes as toy
models for reinforcement of neuronal connections in the brain, or for compe-
titions between companies producing and selling different types of goods.

Roughly speaking, WARMs are urn models with interacting urns, where
each colour may be present in more than one urn. At each step t of the
process a random subset At of colours is chosen to compete against each
other for one step of a Polya urn process with weight/reinforcement function
W : N→ (0,+∞). In the context of neuronal connections the set of colours E
is the set of edges of a graph, and the set At is the set of (undirected) edges
incident to a randomly selected vertex Vt in that graph. In the setting of
competing companies, At is the set of companies selling a product of a given
type; successful selling makes the company larger and more competitive in
all of the markets where it acts.

One of the main problems of interest is to determine the possible limiting
vectors of proportions of balls of each colour in the urn. In the graph context
this describes the possible neuronal architectures that can result from the
process.

Asymptotically, the random dynamics of the reinforcement process can be
approximated by a dynamical system (as we discuss below, see Section 2). In-
deed it has been conjectured in [6] that the set of possible limits is supported
on the collection of linearly stable and critical equilibria of this system. This
has been proved for generic sets of parameters in [1].

In this paper we prove the other main conjecture of [6], describing the
linearly stable equilibria for any finite graph G, when W (n) = nα and at
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each step of the process we choose Vt uniformly at random from all vertices.
Among other things, we prove (i) for α sufficiently large all of the linearly
stable equilibria are supported on so-called whisker-forests (that is, forests
of trees of diameter at most 3; see Figure 1 and Definition 5 below), and
(ii) every whisker graph (and hence every whisker forest) supports a stable
equilibrium for α sufficiently large (see Theorem 2 below), thus confirming
[6, Conjecture 2].

1.1 The model

Let us now explicitly define a WARM, which consists of:

• a finite set E = {1, 2, . . . , n} of colours (or edges of a finite graph, or
axons);

• a probability distribution p = {pA}A⊂E on the nonempty subsets of E;

• a number α > 1, defining a reinforcement function W (x) = xα;

• initial counts (N
(i)
0 )i∈E for all the colours (or excitations of axons).

The process (N
(i)
s )i∈E, s∈Z+ is then a random evolution of a vector ~Ns =

(N
(i)
s )i∈E, containing these counts, that is defined as follows:

• Take a family of i.i.d. random variables (As)s∈N, distributed with the
prescribed law: P(As = A) = pA for all nonempty A ⊂ E (p∅ = 0).

• At every time s ∈ N, select a random color Is ∈ As to be reinforced,
with the probability of taking i ∈ As proportional to W (N

(i)
s ). In other

words, at time s conditional on Fs−1 ≡ σ( ~Nτ , Ar : τ ≤ s − 1, r ≤ s),
the probability that we select a ball of colour i ∈ As is given by

P(Is = i | Fs−1) =


W (N

(i)
s−1)∑

j∈AsW (N
(j)
s−1)

, if i ∈ As

0, otherwise.

(1)

• The count N (Is) is then increased by one, while the others are un-
changed:

N (i)
s =

{
N

(i)
s−1 + 1, if i = Is

N
(i)
s−1 otherwise.
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The main quantity of interest is the random vector ~Xs = (X
(i)
s )i∈E of

proportions

X(i)
s =

N
(i)
s∑

j∈E N
(j)
s

, (2)

or more specifically, the limiting behaviour of this vector as the number of
iterations of this process goes to infinity, that is, the limit limt→∞ ~Xs.

Remark 1. A particular choice of the initial counts (N
(i)
0 )i∈E is not impor-

tant for the purposes of this paper (provided that all of these numbers are

positive), so henceforth we take N
(i)
0 = 1 for each i ∈ E.

Remark 2. Note that we lose no generality assuming that for each i ∈ E =
{1, . . . , n} there exists A 3 i such that pA > 0, since if some i has no
probability of ever being chosen we can just remove it from E and relabel
the remaining colours as {1, . . . , n− 1}.

Of particular interest is the graph setting, where E is the set of undirected
edges of a finite graph G. Here we will typically assume (as in [6]) the
following condition:

Condition G: For a finite graph G = (V,E) with edge set E and vertex
set V we take At to be the set of edges incident to a uniformly chosen vertex
in V .

Occasionally we will also consider the situation where At is still the set
of edges incident to a vertex V in a graph G, but where the vertex selection
is not uniform. We refer to this situation as the generalized graph setting.

Note that the fact that the edges are undirected is what gives an interact-
ing model on a graph. Indeed, using directed edges in this context (where a
directed edge (x, y) is only reinforced when vertex x is selected) would reduce
the problem to a collection of independent urns (vertices).

1.2 Main results

Let p and α > 1 be fixed. We are going to study the asymptotic behaviour
of the (W,A)-reinforcement model using a specific deterministic autonomous
flow

ẋi = −xi +
∑
A3i

pA
xαi∑
j∈A x

α
j

, i ∈ E. (3)
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This flow is considered on the space of probability distributions (i.e. propor-
tions vectors)

∆n(p) =

{
~u ∈ Rn : ui ≥ 0,

n∑
i=1

ui = 1

}
∩ B(p),

where

B(p) :=

{
~u ∈ Rn :

∑
j∈A

uj > 0 for each A ⊂ E such that pA > 0

}
.

In a sense, this deterministic flow corresponds to the expected/average
dynamics of the random process. Relating the properties of the deterministic
and random systems is in general a non-trivial problem. The relation is
provided by Theorem 0 below (see e.g. [1, 4, 6]). For completeness of the
exposition we also present a rough sketch of the arguments linking these two
systems in Section 2.

We denote by F the vector field defined by the right hand side of (3):

F (~x)i = −xi +
∑
A3i

pA
xαi∑
j∈A x

α
j

. (4)

Though it is natural to define F only for ~x ∈ ∆n(p), we extend this definition
(by (4)) to the full (hyper)octant [0,+∞)n ∩ B(p).

Definition 1 (Equilibrium). For fixed n, a vector ~x ∈ ∆n(p) is an equilibrium
distribution for the WARM if F (~x) = ~0, i.e. if

xi =
∑
A3i

pA ·
xαi∑
j∈A x

α
j

, for each i ∈ E. (5)

We let E denote the set of equilibria for a given WARM.

Intuitively (5) says that for each i, the proportion of balls of colour i in
the urn is equal to the probability that the next selected ball is of colour i.

Together with the flow (3) and the set of its equilibria, it is natural to
study their stability, and in the first instance, the linear approximation. To
do so, let J(~x) be the Jacobian matrix of partial derivatives of F , that is, let
Ji,k(~x) = ∂F (~x)i/∂vk. We then have the following standard definition:
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Definition 2 (Stable equilibrium). An equilibrium distribution ~x ∈ E is: a
linearly-stable equilibrium if all eigenvalues of J(~x) have negative real parts; a
linearly-unstable equilibrium if some eigenvalue of J(~x) has positive real part;
and a critical equilibrium otherwise. We denote the set of linearly-stable
equilibria for a given WARM by S0, and its union with the set of critical
ones by S.

Our results concern the structure of the set S for fixed p, as α varies.
In particular we are interested in the sets of edges on which such equilibria
can be supported, i.e. the edges that are chosen a positive proportion of the
time (see Definition 6 and Theorem 2 below). As we have already mentioned,
the link between the deterministic and random systems is expressed in the
following theorem (and conjecture), which is proved for example in [1] (see
also [6]).

For a given WARM, let A denote the (random, nonempty) set of accu-

mulation points of the sequence ~Xt.

Theorem 0 (Accumulation structure, [1, 6]). Let p and α > 1 be fixed.
Then

(i) almost surely A ⊂ E and A is a connected subset of ∆n(p),

(ii) P( ~Xt → ~x) > 0 for every ~x ∈ S0.

It follows from Theorem 0(i) that if the flow (4) admits only finitely many
equilibria (|E| < ∞) then almost surely the same holds for the number of
accumulation points of the process Xt, and hence (due to the connectedness

of A) this process almost surely converges. Moreover, if |E| = 1 then ~Xt

converges almost surely to this unique equilibrium.
We believe that the conclusion of this theorem can be strengthened:

Conjecture 1 (Convergence to equilibrium). Fix p and α > 1. Then there

exists a random vector ~X = (X(i))i∈E, whose law is supported on the set of

linearly-stable and critical equilibria, such that P( ~Xt → ~X) = 1.

Conjecture 1 is proved in [1] for generic sets of parameters p, α (i.e. for
an open set of parameters of full Lebesgue measure). The following is also
proved therein:

Theorem 1 (non-convergence to unstable equilibria [1]). Fix p and α > 1.

If ~x is a linearly unstable equilibrium then P( ~Xt → ~x) = 0.
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Note that the classical Polya urn with two colours is the case where
pA = 1 for A = {1, 2} and α = 1. This model admits a continuous family of
equilibria (any point (u, 1− u) ∈ ∆2 is a critical equilibrium). The existence
of the (random) limit is usually proved using the martingale convergence
theorem (and thus requires a different argument compared to the situation
with a finite E). In general the behaviour for α = 1 is quite different from
the “cruel world” setting α� 1, as will be shown in [8, 9] and also [7].

Our first main result (Theorem 2 below) is to resolve and extend the main
conjecture of [6] (the so-called WARM whisker conjecture [6, Conjecture 2])
that takes place in the graph setting, under Condition G. In order to state
this result we introduce the notion of (marked) whisker graphs.

Figure 1: A (5, 2)-whisker graph, which has n = 5 + 1 + 2 edges

Definition 3. A whisker graph is a tree graph with diameter at most 3.

A whisker graph of diameter three can be viewed as two star graphs pieced
together by an edge between the respective central vertices, see Figure 1. If
the two star graphs had r and s edges respectively then the result of adding
a connecting edge (let us henceforth call this edge the central edge) between
the two central vertices is called an (r, s)-whisker graph, and it is a graph
with r + s+ 1 edges.

The cases of diameter 2 and 1 can be seen as degeneracies where one or
both r and s are equal to zero, and correspond to a single star graph and a
single-edge graph respectively. Finally, we will introduce a marking of the
whisker graph.

Definition 4. A marked whisker graph is a whisker graph on which one of
its edges, to which we refer as ∗, is marked. This edge is the central one for
a non-degenerate (i.e. diameter 3) whisker graph and can be any of its edges
for a degenerate one.
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∗ ∗ ∗

∗

Figure 2: An illustration of Theorem 1 for the complete graph G on 4 vertices
(left). For large α the set of edges chosen a positive proportion of the time
by the WARM process on G is up to a permutation (a random) one of the
whisker forests on the right. Note that in the star graph case any of the
edges could be marked.

This definition might seem strange at first glance; it has a more “univer-
sal” formulation: in a marked whisker graph any non-marked edge is attached
to a leaf. This notion appears in the description in Theorem 2(b) below —
and is exactly how the marking appears in the study of such equilibria.

We will need the standard definition of a spanning forest; combining it
with the definition of a whisker, we obtain the definition of a whisker forest :

Definition 5. For fixed G, a collection G = (Gi)
k
i=1 of disjoint (i.e. Vi∩Vj =

∅ if i 6= j) trees Gi = (Vi, Ei) ⊂ G such that ∪ki=1Vi = V is called a spanning
forest. For a spanning forest G we let E = ∪ki=1Ei. If every component Gi

of a spanning forest G is a whisker graph then G is called a whisker forest.

As our goal is to describe the structure of equilibria that are not linearly
unstable, we will in particular consider the supports of such equilibria:

Definition 6. For ~x ∈ ∆n(p) we denote the support of ~x by

σ(~x) = {j ∈ E : xj > 0}.

Also, given a whisker forest G, we say that ~x is supported on G, if σ(~x) is
exactly the union E of edges of G.

We can now state our first main result (see Figure 2) for an illustration:

Theorem 2 (WARM Whisker theorem). Assuming Condition G:

(a) There exists αW ≤ 25 such that for any finite graph G and any α > αW ,
every not-linearly-unstable equilibrium ~x ∈ S of (4) is supported on a
whisker forest.
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(b) For any marked whisker graph G there is an αG > 1 such that for all
α > αG, G supports a unique linearly stable equilibrium ~x ∈ S0, such
that x∗ > xi for every i ∈ E \ {∗}.

In [6] it was shown that any symmetric (i.e. s = r) whisker G (and any
star graph G) supports a linearly stable equilibrium for sufficiently large α,
from which it follows as in [6, Theorem 3] that for any G, any spanning
forest G consisting of components that are (non-empty) stars and symmet-
ric whiskers supports a stable equilibrium (for α sufficiently large). Theo-
rem 2(b) (together with [6, Theorem 3]) shows that in fact any (spanning)
whisker forest supports a stable equilibrium for large α.

Theorem 2(a) is in fact stronger than [6, Conjecture 2(ii)] since here αW
does not depend on the graph G. When combined with [6, Proposition 3 and
Theorem 6], Theorem 2(b) is a slightly stronger statement than [6, Conjec-
ture 2(i)] since it further characterises the stable equilibrium in terms of a
marked edge.

As in the following example, the conclusion of Theorem 2(a) fails in the
generalised-graph setting if one allows differing vertex selection probabilities.

Example 1. Set p{1} = 1/15, p{1,2} = 2/15, p{2,3} = 3/15, p{3,4} = 4/15,
p{4} = 5/15, and pA = 0 otherwise. This is equivalent to a simple path graph
with 4 edges and 5 vertices (see Figure 3) in which vertices are chosen with
increasing probabilities from left to right (instead of uniformly at random).
One can prove (as in the proof of Theorem 2(b)) that for all α sufficiently
large there is a linearly stable equilibrium ~x with σ(~x) = {1, 2, 3, 4} (in fact
~x ≈ (1, 2, 3, 9)/15).

x1 ≈ 1
15 x2 ≈ 2

15 x3 ≈ 3
15 x4 ≈ 4+5

15

1
15

2
15

3
15

4
15

5
15

Figure 3: A simple path graph with edges E = {1, 2, 3, 4} with non-uniform
vertex selection probabilities (1, 2, 3, 4, 5)/15 respectively (see Example 1).
For large α there exists ~x ∈ S with xi > 0 for all i ∈ E.

Our other main results are for the more general setting, described by
E = {1, . . . , n} and p = (pA)A⊂E. In this general setting, we introduce the
following definition:
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Definition 7. A set A∗ ⊂ E is said to be p-leaf free if for every A ⊂ E with
pA > 0, |A∗ ∩ A| 6= 1.

The name is motivated by the generalized (i.e. where vertex selection need
not be uniform) graph setting: if A is the set of edges incident to a vertex V
such that |A ∩A∗| = 1, then V is a leaf (i.e. a vertex of degree 1) for the set
of edges A∗. We then have the following.

Theorem 3. Fix p. Then for α > 2 the support of any non-linearly-unstable
equilibrium does not contain a leaf-free subset, i.e. for every ~x ∈ S, if A∗ ⊂
σ(~x) then A∗ is not p-leaf free.

When applied to the generalized graph setting Theorem 3 yields the fol-
lowing corollary.

Corollary 1. For any α > 2 and for any finite graph G, any stable equilib-
rium of (4) is supported on a (spanning) forest.

Indeed, it is easy to see that a graph is a forest if and only if it contains no
cycles, and any cycle in the support of σ(~x) would provide a leaf-free subset,
forbidden by Theorem 3.

It is not clear how the notion of a cycle should be extended to a non-graph
setting, where a colour can appear in more than two urns (for the reader
familiar with this terminology, this setting can considered as a hypergraph
one). For instance, the following example shows that if one considers a cycle
to be a cyclic sequence of sets Ai (“vertices”) such that Ai ∩ Ai+1 6= ∅, then
containing a cycle is not the same as containing a leaf-free subset.

Example 2. Let E = {1, 2, 3}, and p be such that pA > 0 if and only if
A ∈ {A1, A2, A3, A4}, where A1 = {1, 2}, A2 = {2, 3}, A3 = {3, 1}, A4 = {1}
(see Figure 4).

Then E contains a p-cycle in the sense that 2 ∈ A1∩A2, 3 ∈ A2∩A3 and
1 ∈ A3 ∩ A1, but E contains no p-leaf-free subset as follows: If 1 ∈ A then
A∩A4 = A∩{1} = {1}. If 1 /∈ A but 2 ∈ A then A∩A1 = A∩{1, 2} = {2}.
Similarly if 1 /∈ A but 3 ∈ A then A ∩ A3 = A ∩ {1, 3} = {3}.

It turns out that for large α, all colours (edges) that “survive” in a stable
equilibrium have a tendency to dominate urns (vertices). To be more precise,
we introduce the following.
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A2

2 3

A1 A3

A4

1

Figure 4: Three colours {1, 2, 3} reinforced by four urns; the colour 1 appears
in three urns and is shown by a triangle.

Definition 8 (Champions and ordered equilibria). Fix α > 1 and p. Let ~x
be an equilibrium for p and pA > 0. We say that i ∈ A is an ~x-champion for
A if (A = {i} or)

xαi >
∑

j∈A\{i}

xαj .

If such an i exists (for a given pair (~x,A)), denote it by i(A). We write

γ(~x) = {i(A) : pA > 0, A has a champion}

for the set of ~x-champions. Finally, an equilibrium ~x is said to be p-ordered
if every A with pA > 0 has a champion.

Note that if i is a champion for A then xi > xj for each j ∈ A \ {i}.
Theorem 4. Fix p. Then

1. for α > 2, if ~x ∈ S then every ~x-supported colour is a champion
(i.e. γ(~x) = σ(~x)), and

2. there exists α(p) such that for all α > α(p), every ~x ∈ S is p-ordered.

1.3 Further examples

Let us consider some further examples in a general (non-graph) setting. Both
Examples 3 and 4 below are quite symmetric. As we will see, increasing
of α leads to a “breaking of symmetry”: while the system itself is obviously
symmetric, individual stable equilibria for large α are not symmetric at all.
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Example 3. Fix m ≤ n and choose At from all subsets of size m, uniformly

at random, i.e. pA =
(
n
m

)−1
for all A of size m and pA = 0 otherwise. For any

α, and any stable equilibrium ~x we have |σ(~x)| ≥ n −m + 1 since at least
n−m+ 1 colours are each drawn a positive proportion of the time. The set
of equilibria includes several symmetric ones: for any k ≥ n−m+ 1,

~x =
1

k
( 1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
n−k

) ∈ E .

As α increases, they gradually lose stability: it was shown in the original
version of [6]1 that such an equilibrium is stable if and only if α < α0(m,n)
for some explicit α0(m,n). At the same time, the behaviour of equilibria for
large α’s is described by the following simple corollary of Theorems 3 and 4.

Corollary 2. Fix n ≥ 3 and 2 ≤ m ≤ n− 1 in Example 3, let ~x ∈ S. Then

1. for all α > 2, |σ(~x)| = n−m+ 1, and

2. for all α sufficiently large, all non-zero components of ~x are distinct.

Example 4. Fix p ∈ (0, 1); independently choose each colour to be in At with
probability p, and condition on At being nonempty, that is, let

pA = δ−1p|A|(1− p)n−|A|

for every nonempty A, where δ−1 = (1 − (1 − p)n)−1 is the normalisation
constant.

The above gives an easy example of where every colour is chosen a positive
proportion (at least δ−1p(1−p)n−1) of the time. At the same time, since every
subset {i, j} of size two has p{i,j} > 0, the following “symmetry breaking” is
an immediate consequence of Theorem 4.

Corollary 3. Fix n ≥ 2 and p ∈ (0, 1) in Example 4 and let ~x ∈ S. Then
for all α sufficiently large, all components of ~x are distinct and non-zero.

1See: arXiv:1406.0449v1, Corollary 3.1
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1.4 Open problems

Apart from Conjecture 1, which as stated remains open, there are various
natural generalisations of these models that we believe warrant further study.
Examples include:

Question 1. What can be said about the equilibria on finite graphs for α < 2?

Question 2. What happens if we add colour dependent (and possibly random)
numbers of balls of various colours when colour i is chosen?

Question 3. Can one relax the assumption that the subset selections At
should be identically distributed? For instance, what happens if the laws
{pA(t)}A⊂E converge to {pA}A⊂E? Change quasi-periodically in t?

Question 4. For the particular case of W (n) = nα, the reinforcement prob-
abilities depend in fact not on the number of the balls of different colours
in the reinforced urn, but only on the proportions. What happens if we
alter the model, taking instead of a function W : N → [0,+∞) a function
w : [0, 1] → [0,∞), reinforcing the color i in an urn A with the probabil-

ity w(X(i))∑
j∈A w(X

(j))
, where X (i) = N (i)/

∑
j∈E N

(j) are the relative proportions of

colours in the urn?

Question 5. One of the key arguments of the paper is that the averaged flow
F becomes a gradient flow after a change of variables. This is checked below
using explicit computations; is there a deeper reason behind that?

Question 6. Is α = 1 the only case where E might be infinite?

Question 7 (C. Hirsch). One can generalize the WARM model to infinite
graphs by attaching a Poisson clock independently at each vertex and rein-
forcing one of the edges adjacent to a vertex A when the clock at A rings.
What can be said about the asymptotic behaviour of such a process on Z,
Zd, or regular trees?

Organisation

The remainder of the paper is organised as follows. Section 2 is devoted to
the averaged flow and its properties. In Section 3 we prove the general result,
Theorem 3. In Section 5 we restrict ourselves to the graph setting assuming
Condition G and prove Theorem 2. In Section 4 we prove Theorem 4.
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2 Discussion and properties of the flow

In this section we discuss the relevance of the deterministic flow to the
stochastic system, and properties of this flow. The reader who is already
familiar with the former may wish to skip Section 2.1 and proceed directly
to Section 2.2.

2.1 Averaging flow

Fix the probabilities distribution p and the power α > 1 defining the re-
inforcement probabilities. Let us approximate the (random) dynamics of
the vector Xs of proportions by a deterministic flow. Namely, take a small
δ > 0, a large t and consider the change of proportions between the two times
s1 = et − n0 and s2 = et+δ − n0, where n0 :=

∑
i∈E N

(i)
0 is the initial total

count for all the colours. Due to the relation
∑

i∈E N
(i)
s = s + n0, the total

count at time s2 is exactly eδ times that at time s1.
Now note that the proportions X

(i)
s change at most by δ during this time.

Indeed, for any s ∈ [s1, s2] we have

X(i)
s =

s1 + n0

s+ n0

X(i)
s1

+
s− s1
s+ n0

X̃
(i)
[s1,s]

= X(i)
s1

+
s− s1
s+ n0

(X̃
(i)
[s1,s]
−X(i)

s1
), (6)

where

X̃
(i)
[s1,s]

:=
1

s− s1
#{τ ∈ (s1, s] | Iτ = i} (7)

is the proportion of the time that edge i is reinforced between the time
moments s1 and s. The fact that X̃

(i)
[s1,s]
∈ [0, 1] for all s and i, the inequality

s1+n0

s+n0
≥ s1+n0

s2+n0
= e−δ, the inequality s−s1

s+n0
≤ s2−s1

s2+n0
= 1 − e−δ and (6) then

imply

X(i)
s ∈ [e−δX(i)

s1
, X(i)

s1
+ (1− e−δ)(1−X(i)

s1
)] ⊂ [X(i)

s1
− δ,X(i)

s1
+ δ] (8)

(the last inclusion uses δ > 1− e−δ).
Now, the proportion (7) is an arithmetic mean of s−s1 Bernoulli random

variables 1{Iτ=i}. Though they are not independent, a coupling argument
shows that when s − s1 is large, this arithmetic mean is very likely close to
its expected value (which is the mean of the expectations). We have

P(Iτ = i| ~Nτ−1) =
∑
A3i

pA
(N

(i)
τ−1)

α∑
j∈A(N

(j)
τ−1)

α
=
∑
A3i

pA
(X

(i)
τ−1)

α∑
j∈A(X

(j)
τ−1)

α
, (9)
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and asX
(i)
τ do not change much on [s1, s2] due to (8), the arithmetic mean X̃

(i)
[s1,s]

is very likely close to the ith component of the vector f(Xs1), where the map
f from ∆n(p) to itself is defined by

f(~x)i =
∑
A3i

pA
(xi)

α∑
j∈A(xj)α

. (10)

Finally, substituting this into (6) for s = s2, we get

X(i)
s2
≈ X(i)

s1
+ (1− e−δ)(−X(i)

s1
+ f(Xs1)i) ≈ X(i)

s1
+ δ(−X(i)

s1
+ f(Xs1)i).

The above informal argument motivates the consideration of a vector field
F and an autonomous flow on ∆n(p), defined by

ẋi = F (x)i := −xi + f(x)i = −xi +
∑
A3i

pA ·
xαi∑
j∈A x

α
j

,

that is exactly the flow (4). We cite in the next section the results formally
linking this flow to the WARM reinforcement model.

2.2 Lyapunov function and other properties of the flow

Repeating the arguments from [6], note, that the flow (4) admits a global Lya-
punov function, and moreover, up to a coordinate change, is an (anti)gradient
one. Namely, consider the function

L(~x) :=
n∑
i=1

xi −
1

α

∑
A⊂E

pA log

(∑
j∈A

xαj

)
. (11)

An easy computation then shows the following.

Lemma 1. The vector field F on the full (hyper)octant [0,+∞)n∩B(p) can
be represented as

F (~x)i = −xi
∂

∂xi
L. (12)

Proof. For any i ∈ E and A 3 i, denote by qiA the part of the reinforcement
coming from the urn A that gets the colour i:

qiA = qiA(~x) :=
xαi∑
j∈A x

α
j

. (13)
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Then,

qiA(~x) =
1

α
xi ·

∂

∂xi
log
∑
j∈A

xαj . (14)

Multiplying (14) by pA and summing over all A 3 i, we get the desired (12).
�

Corollary 4. The function L is indeed a Lyapunov function for the flow
generated by the vector field F : it decreases strictly along the trajectories
that are not the equilibrium points.

Proof. Indeed, from (12) for any non-constant solution ~x(t) we get

d

dt
L(~x(t)) = −

∑
i∈E

ẋi
∂L

∂xi
= −

∑
i∈E : xi>0

ẋ2i
xi

< 0.

�

Also, we get

Lemma 2. The flow (4) after a change of coordinates yi = 2
√
xi becomes

exactly the anti-gradient flow, associated to the function L (re-written in
these coordinates).

Proof. Indeed,

ẏi =
ẋi√
xi

=
√
xi
∂L

∂xi
=
dxi
dyi

∂L

∂xi
=
∂L(~x(~y))

∂yi
.

�

The eigenvalues of the gradient flow at an equilibrium point are always
real, as the corresponding Jacobian matrix is symmetric. The change of
coordinates does not change the eigenvalues of the linearization, and thus we
conclude the following.

Corollary 5. The eigenvalues of the Jacobian matrix J(~x) at any equilibrium
point ~x ∈ E are real.

Finally, we note that there is no difference between considering the stabil-
ity of an equilibrium ~x ∈ E in the simplex ∆n(p) and in the full (hyper)octant
[0,+∞)n ∩ B(p). This is immediate for the eigenvalues (and this is the only
conclusion that we will need for this paper):
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Lemma 3. Let ~x ∈ E be an equilibrium. The eigenvalues of J(~x) in the full
(hyper)octant [0,+∞)n ∩ B(p) are then the eigenvalues of its restriction on
the tangent plane to ∆n(p) and an additional eigenvalue that is always equal
to (−1).

Proof. For ~x ∈ E and any r > 0 we have f(r~x) = f(~x) = ~x. The ray
{r~x | r > 0} is thus invariant, and the restriction of the flow F on it gives
ṙ = −r+1, providing the additional eigenvalue (−1) (with the corresponding
eigenvector that is equal to ~x). �

3 Proof of Theorem 3

Recall (13). The following proposition is one of the key steps of this paper:

Proposition 1. Let p and α > 1 be fixed, and assume that ~x ∈ S. Then for
any i ∈ σ(~x) there exists A such that

qiA(~x) ≥ 1− 1

α
. (15)

Proof. Assume that an equilibrium ~x ∈ E is not linearly-unstable. Then, the
eigenvalues of its linearization are nonpositive. Such a statement is invariant
under the change of coordinates in Lemma 2, and due to that Lemma the
flow F in the {yi} coordinates is the anti-gradient flow, associated to the
function L. In the latter coordinates, the Jacobian matrix of F is in fact
the (symmetric) Hessian matrix of second partial derivatives of (−L). Its
eigenvalues are nonpositive if and only if this matrix defines a non-positive
quadratic form. In particular, the second derivative of (−L) in any direction
should be non-positive.

Assuming that xi > 0, let us check the sign of the second derivative of L
in the direction of xi. Note that this number has the same sign as

xi
∂

∂xi

(
xi

∂

∂xi
L

)
= x2i

∂2L

∂x2i
+ xi

∂L

∂xi
= x2i

∂2L

∂x2i
, (16)

where the later equality is due to the fact that as an equilibrium, the point ~x is
critical for L. (The left hand side of (16) can be seen as the second derivative
in the logarithmic coordinate yi = log xi.)
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Let us evaluate the left hand side of (16). Namely, for any A 3 i we have

xi
∂

∂xi
qiA = −xi

∂

∂xi
(1− qiA) = −xi

∂

∂xi

( ∑
j∈A\{i} x

α
j

xαi +
∑

j∈A\{i} x
α
j

)

=

∑
j∈A\{i} x

α
j

xαi +
∑

j∈A\{i} x
α
j

· αxαi
xαi +

∑
j∈A\{i} x

α
j

= αqiA(1− qiA).

Thus, we have

xi
∂

∂xi

(
xi

∂

∂xi
L

)
= xi

∂

∂xi

(
xi −

∑
A3i

pAqiA

)
= xi − α

∑
A3i

pAqiA(1− qiA).

(17)
As ~x is an equilibrium point, we have xi =

∑
A3i pAqiA, and thus (17) can

be rewritten as

xi − α
∑
A3i

pAqiA(1− qiA) =
∑
A3i

pAqiA(1− α(1− qiA)).

As previously noted, a necessary condition for ~x ∈ S is that all these
second derivatives are non-positive. Hence, for any i ∈ σ(~x) we have∑

A3i

pAqiA(1− α(1− qiA)) ≥ 0, (18)

and thus for any i with xi > 0 there exists Ai 3 i with pAi > 0 such that
α(1− qiAi) ≤ 1. For any such Ai, we have the desired

qiAi ≥ 1− 1

α
. (19)

�

For α > 2, this immediately implies the following.

Corollary 6. Let p and α > 2 be fixed, and assume that ~x ∈ S. Then any
colour i ∈ σ(~x) is a champion of some Ai 3 i, that is,

xαi >
∑

j∈Ai\{i}

xαj . (20)
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Proof. Indeed (20) is equivalent to qiAi >
1
2
, and we have 1 − 1

α
> 1

2
when

α > 2. �
For B ⊂ σ(~x) we say that i is a colour of least weight in B if xj ≥ xi

for each j ∈ B. The following statement roughly says that “a least weight
colour can be a champion only if there are no other competitors”, and it
immediately implies Theorem 3:

Lemma 4. Fix p and let α > 2 and ~x ∈ S. Let B ⊂ σ(~x), and let i be any
colour of least weight in B. Then, i is attached to a leaf of B, i.e.

∃A : pA > 0 and A ∩B = {i},

and in particular B is not leaf free.

Proof. Take Ai 3 i for which i is a champion as given by Corollary 6.
From (19) we have qiAi ≥ 1 − 1

α
> 1

2
. If Ai is not a leaf of i in B, (i.e. if

Ai ∩B 6= {i}) then there exists j 6= i, j ∈ Ai ∩B. As xj ≥ xi, we thus get

qiAi ≤
xαi

xαi + xαj
≤ 1

2
,

giving a contradiction. Thus Ai ∩B = {i} and we are done. �

The above arguments also imply a lower bound for the proportions of
colours that survive in the limit. Namely, let ~x be an equilibrium. Consider
a connected component C of its support σ(~x):

Definition 9. A connected component of a set D ⊂ E of colours is a maximal
(by inclusion) subset of E such that between any two colours i, i′ ∈ D there
exists m ≥ 0 and a sequence i0, . . . , im with i0 = i, im = i′, and a sequence
A1, . . . , Am with

ik−1, ik ∈ Ak and pAk > 0, ∀k = 1, . . . ,m.

Now, let i be any colour of least weight in C, and denote by L the
collection of leaves of j in this component given by Lemma 4:

L = L(C, j) = {A0 : pA0 > 0, A0 ∩ C = {j}}.

Finally, denote
pL := max

A∈L
pA.

We then have the following lower bound.
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Corollary 7. Under the assumptions of Lemma 4, for any connected com-
ponent C of σ(~x), and any colour j of least weight in C we have

xi ≥ pL(C,j) ∀i ∈ C,

with equality if and only if C is a one-colour component belonging to one urn
(vertex) only.

Proof. We automatically have xj ≥ pL, as any leaf of a connected component
of the support of ~x reinforces only the unique surviving colour that is adjacent
to it. Now, as j was a least weight colour in the component C, we have xi ≥ xj
for any i ∈ C. �

4 Proof of Theorem 4

The first claim of the theorem is already proven by Corollary 6. In order
to prove the second one, for any i ∈ E denote by ri the maximal possible
proportion of reinforcements that the colour i may get:

ri :=
∑
A3i

pA.

Then for any equilibrium ~x ∈ E we automatically get xi ≤ ri for all i ∈ E.
Now, for any equilibrium ~x ∈ S, joining this upper bound for xi with the

fact that (17) must be non-negative, we get

ri − α
∑
A3i

pAqiA(1− qiA) ≥ xi − α
∑
A3i

pAqiA(1− qiA) ≥ 0,

and thus for any A 3 i we have an upper bound

qiA(1− qiA) ≤ ri
α pA

. (21)

Denoting the right hand side of (21) by ciA and solving the quadratic in-
equality we see that either

qiA <
1−
√

1− 4ciA
2

or qiA >
1 +
√

1− 4ciA
2

, (22)

provided that ciA ≤ 1
4
. The second possibility in (22) would imply that

qiA >
1
2
, and hence that the colour i is a champion of the urn A.
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Now, for any A with pA > 0 and for any i ∈ A, the value ciA = ri
αpA

tends

to 0 as α → ∞. Hence, so does the value 1−
√
1−4ciA
2

in the first possibility
in (22). In particular, this quantity is less than |A|−1 for α sufficiently large.
If for each i ∈ A the first possibility in (22) takes place, then their finite sum∑

i∈A

1−
√

1− 4ciA
2

(23)

is an upper bound for the sum
∑

i∈A qiA = 1. On the other hand the sum
(23) is less than |A| × |A|−1 = 1 for α sufficiently large. Hence, for all α
sufficiently large (so that the sum in (23) for each A with pA > 0 is less
than 1) each urn A with pA > 0 has a champion. This completes the proof
of the second claim of the theorem. �

5 Proof of Theorem 2

5.1 Part (a): whisker forests

We now restrict ourselves to the graph setting with uniform vertex selection
probabilities; thus, pA = 1

nv
for any vertex A of the graph, where nv is the

number of the vertices. It will be easier (and more natural) to work with the
quantities nvxi.

Let C be a connected component of σ(~x), where ~x ∈ S. The part (a) of
the theorem will follow from the next three lemmas. The first of them claims
that for each colour i ∈ C, the re-normalized weight nvxi is close to 1 or 2:

Lemma 5. If α > 20.25, then for each i ∈ C

nvxi ∈ [1, 1 +
2.25

α
) ∪ (2− 4.5

α
, 2]. (24)

This motivates the following

Definition 10. Say that an edge i ∈ C is an edge of small weight (resp., of
large weight) if

nvxi ∈ [1, 1 +
2.25

α
)

(
resp., if nvxi ∈ (2− 4.5

α
, 2]

)
.

The second of the three lemmas claims that “the only chance of survival
for an edge of a small weight is to be attached to a leaf”:
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Lemma 6. If α > 25, any edge i ∈ C of small weight is incident to a leaf
of C.

The third and final lemma states that large weight edges are isolated:

Lemma 7. If α > 25 and i is an edge of C of large weight, then all the edges
of C that are adjacent to i are of small weight.

These three lemmas indeed imply the part (a) of Theorem 2.

Proof of Theorem 2(a). If in the component C there is at least one edge i of
large weight, then all the edges that are adjacent to it are of small weight
(by Lemma 7) and hence are incident to a leaf (by Lemma 6). Thus C is
the union of i and of edges adjacent to it, and hence the diameter of C is at
most 3.

If all the edges of C are of small weight, they are all adjacent to leaves,
and hence C is a star graph. �

Remark 3. In fact, for any d there exists αd > 25 such that for graphs G
of maximal degree d the second possibility in the above proof (all edges of
small weight) becomes impossible. Indeed, the sum of

∑
i∈C nvxi should be

equal to the number of vertices in C, that is, |C| + 1, while if all the edges
are of small weight, it is at most |C| · (1 + 2.5

α
). Hence, one should have

|C|+ 1

|C|
≤ 1 +

2.5

α

If the degrees of vertices do not exceed d, we have |C| ≤ d for any star graph,
and thus a contradiction once α > max(2.5d, 25) =: αd.

Thus, once α is sufficiently large, on any component C of any equilibrium
~x ∈ S there is exactly one edge of large weight. This is where Definition 4 of
a marked whisker comes from: the ∗ marks this edge (to which all the others
are adjacent).

To prove the three above lemmas, we will need the following easy com-
putation:

Lemma 8. Denote cα :=
√

1− 8
α

. Then for any α > 20.25 we have

cα > 1− 4.5

α
.
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Proof. We have
√

1− 8
α
> 1 − 4.5

α
, as (1 − 4.5

α
)2 = 1 − 9

α
+ 4.52

α2 , and for

α > 4.52 = 20.25 the right hand side is less than 1− 8
α

. Substituting it into
the definition of cα, we obtain the desired lower bound. �

Proof of Lemma 5. Note first that as we are in the graph setting with the
uniform selection of the vertices, we have

ciA =
ri
αpA

=
2/nv

α · 1/nv
=

2

α

for any edge i and any vertex A to which it is incident. Hence, for any such i
and A one has

√
1− 4ciA =

√
1− 8

α
= cα.

Hence, combining (22) with a lower bound for
√

1− 4ciA from Lemma 8, we
get for any α > 20.25,

qiA ≤
2.25

α
, or qiA ≥ 1− 2.25

α
. (25)

As each edge i of the graph is adjacent to exactly two vertices, we denote
these vertices by Bi,1 and Bi,2. Then, for any colour i ∈ C and for any
equilibrium ~x we can re-write the equilibrium condition as

nvxi = qiBi,1 + qiBi,2 ; (26)

As both qiBi,1 and qiBi,2 belong to [0, 2.25
α

)
⋃

(1− 2.25
α
, 1], we have for their sum

nvxi = qiBi,1 + qiBi,2 ∈ [0,
4.5

α
) ∪ (1− 2.25

α
, 1 +

2.25

α
) ∪ (2− 4.5

α
, 2].

Finally, Corollary 7 applied to the graph case says that the least positive
weight xiC of any connected component C of σ(~x) is greater than 1/nv, hence
for each i we actually have

nvxi ∈ [1, 1 +
2.25

α
) ∪ (2− 4.5

α
, 2]. (27)

�
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Proof of Lemma 6. Let i ∈ C be an edge of small weight. Then by (25),
for one of its endpoints A we have qiA > 1 − 2.25

α
. Indeed, otherwise we

would have qiBi,1 , qiBi,2 <
2.25
α

< 1
2
, what would imply nvxi < 1, providing a

contradiction.
Let us show that A is then a leaf of C. Indeed, if there exists j ∈ A \ {i}

with xj > 0, then nvxj ≥ 1 and hence

qiA ≤
(1 + 2.25

α
)α

(1 + 2.25
α

)α + 1α
= 1− 1

(1 + 2.25
α

)α + 1
≤ 1− 1

e2.25 + 1
, (28)

where the last inequality is due to (1 + s
a
)a < es for all a, s > 0. Now, to

obtain the desired contradiction with qiA > 1− 2.25
α

, it suffices to check that

2.25

α
<

1

e2.25 + 1
,

what holds once
α > 2.25 · (e2.25 + 1) = 23.59 . . .

�

Proof of Lemma 7. Let j ∈ C be an edge adjacent to an edge i ∈ C of
large weight, and let A be their common vertex (without loss of generality,
A = Bj,1). Then, qjA <

1
2

(as xj < xi). Thus,

nvxj = qjA + qj,Bj,2 ≤
1

2
+ 1.

Hence, xj cannot be an edge of large weight, and therefore is of small weight.
�

5.2 Part (b): constructing the equilibria

Let us now prove the second part, starting with the existence of a stable
equilibrium of a given (marked) type. Let G = (V,E) be a whisker graph
with n edges (and nv = n+1 vertices). Let ∗ denote a marked edge (any edge
if G is a star graph, otherwise it is the central edge of the non-degenerate
whisker graph). Let a sufficiently small ε > 0 be fixed, and consider the set
Dε of distributions ~x ∈ ∆n(p) such that

nvx∗ ∈ [2− ε, 2] , and nvxj ∈ [1, 1 + ε] for all j 6= ∗.
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Recall (see (10)) that the proportions in which the reinforcements are divided
between colours are given by the map

f(~x)i =
∑
A3i

pA
xαi∑
j∈A x

α
j

,

so that we have F (~x) = f(~x)−~x. The existence part will be established once
we prove the following:

Lemma 9. There exists ε > 0 such that for any α sufficiently large the
map f is contracting map from Dε to itself.

Proof. Let us first check that f indeed sends Dε to itself. Namely, let ~x ∈ Dε.
Note first that any edge j of E \ {∗} is adjacent to a vertex A that is not
adjacent to any other edge, and hence qjA = 1. Hence,

nvf(~x)j ≥ nvpAqjA = qjA = 1. (29)

On the other hand, any j 6= ∗ has a vertex B in common with ∗ (i.e. B 3 ∗, j)
thus we have

qjB ≤
(

1 + ε

2− ε

)α
<

(
5

7

)α
, when ε <

1

4
. (30)

As the right hand side of (30) tends to 0 as α → ∞, for all α sufficiently
large we have

nvpBqjB = qjB ≤ ε.

It follows that
nvf(~x)j ≤ 1 + ε. (31)

In the same way, we get that for α > α(ε,G) and any endpoint B of ∗

q∗B = 1−
∑

j∈B\{∗}

qjB ≥ 1− n
(

5

7

)α
≥ 1− ε

2
.

Hence for all α > α(ε,G) we have

nvf(~x)∗ = q∗B∗,1 + q∗B∗,2 ∈ [2− ε, 2] . (32)

Thus, for all α sufficiently large f sends Dε to Dε.
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Now let us show that for sufficiently large α the map f is contracting. It
suffices to show that its partial derivatives tend to 0 uniformly on Dε as α
tends to infinity (this will imply that df |~x has norm less than 1 at any point
~x ∈ Dε). Moreover, as pA are constant for all vertices A, it suffices to show
the same for all the qiA.

Let y∗ := 1. Then the values qiA can be represented in terms of n − 1
quotients yj := (xj/x∗)

α, where j ∈ E \ {∗}, as

qiA =
yi∑
j∈A yj

.

Thus, qiA = hA(g(r(~x)))i where

hA(~y) =
~y∑
j∈A yj

, g(~u)i = uαi , and r(~x) =
~x

x∗
.

Now for each i one has nvxi ∈ [1, 2] so for i 6= ∗ the ratios ui = xi/x
∗

are between 1/2 and 5/7 (the latter holds provided that ε < 1/4). The
partial derivatives of r are bounded by a constant (independent of α), with
derivatives of r(~x)∗ all equal to zero. The derivatives of hA are bounded in
absolute value by 1, and the derivatives of g are all either 0 or αuα−1i . The
latter converges to 0 uniformly on [1

2
, 5
7
] as α→∞ for i 6= ∗, so by applying

the chain rule to the derivatives of qiA we are done. �

Lemma 9 implies that the vector field (4) possesses a unique equilibrium
~x in Dε (by the Banach fixed point Theorem). It is also easy to see that
it is linearly stable. Indeed, we have chosen α sufficiently large so that the
differential df |~x at any point ~x ∈ Dε, in particular at the point ~x, would be
a linear contraction. The eigenvalues of df |~x are thus less than 1 in absolute
value; the eigenvalues of dF |~x = − Id +df |~x, that differ from eigenvalues of
df |~x by addition of (−1), hence have negative real part.

Finally, Remark 3 implies that for any sufficiently large α an equilibrium
x ∈ S satisfying x∗ > xj for all j 6= ∗ should belong to Dε, and thus coincide
with v. �
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reinforced Pólya urns with graph-based competition. Annals of Applied
Probability, 26(4):2494–2539 (2016).

[7] Hirsch, C., Infinite WARM graphs I: sublinear reinforcement.
manuscript.

[8] Holmes, M., and Kleptsyn, V., Infinite WARM graphs II: linear rein-
forcement. manuscript.

[9] Hirsch, C., Holmes, M., Kleptsyn, V., Infinite WARM graphs III: strong
reinforcement. manuscript.

27



[10] Kious, D. and Sidoravicius, V. Phase transition for the once-reinforced
random walk on Zd-like trees. Preprint, (2016).
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