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Abstract

We study a class of reinforcement models involving a Poisson pro-
cess on the vertices of certain infinite graphs G. When a vertex fires,
one of the edges incident to that vertex is selected. The edge selection
is biased towards edges that have been selected many times previously,
and a parameter o governs the strength of this bias.

We show that for various graphs (including all graphs of bounded
degree), if & > 1 (the very strong reinforcement regime) then the
random subgraph consisting of edges that are ever selected by this
process does not percolate (all connected components are finite).

Combined with results appearing in a companion paper, this proves
that on these graphs, with « sufficiently large, all connected compo-
nents are in fact trees. If the Poisson firing rates are constant over the
vertices, then these trees are of diameter at most 3.

The proof of non-percolation relies on coupling with a percolation-
type model that may be of interest in its own right.

1 Introduction

Pélya-type urn models are random processes where balls are repeatedly sam-
pled from an urn, and additional balls are added depending on the colours
of the sampled balls. Since their introduction in 1931 [17], there have been
many generalisations of Pdlya urn models (see e.g. [15]), and many more
examples of random processes with reinforcement (see e.g. [16]). Some of
these models take place on (hyper-)graphs and have been introduced as toy



models for market competition or for neuronal connections in the brain (see
e.g. [1,2,7]).

In this paper we study a version of the so-called WARMSs introduced in
[7], but defined on infinite graphs. These models involve a parameter «,
which in this paper will always be larger than 1, and typically much larger.
For finite graphs o > 1 has been studied in [7, 8]. Situations (infinite or
finite graphs) with o = 1 and o < 1 are studied in [9] and [5] respectively.

The fact that the underlying graphs G = (V, E') are infinite means that
the definition of the model is more technical. Time ¢ € [0, 00) in this paper is
continuous (note that ¢ € Z, in [7, 8]), and N;(e) € N denotes the edge count
of edge e € E at time t. Starting with edge counts Ny(e) = 1 for each e € F,
the dynamics is induced by Poisson-based firings with rates Ay := (\,)per
at the vertices V' as follows:

1. When a firing occurs at v € V', choose an edge from those incident to v
with probability proportional to the current count raised to the power
a, i.e., choose e ~ v with probability proportional to N.(e)®. (If there
are no edges incident to v, do not choose an edge).

2. Increment the count of the chosen edge (if one was chosen).

When the graph G is finite and all vertices fire at the same rate, the jump
process of our model is the discrete-time WARM process studied in [7, 8]. In
general in the infinite graph setting, because of possibly infinite dependencies,
some restrictions (see Definition 1 below) are required on G,Ay to even
ensure that the process is well-defined.

In this paper we are interested in the random subset of edges N = {e €
E : sup;~q Ni(e) = 1} that are never reinforced, or more precisely it’s com-
plement N = £\ N.

Given G, a, and Ay, let Pg 4 2, denote a probability measure on a mea-
sureable space under which Ng := (Ni(e))t>0.ccr has the law of a WARM
on GG with firing rates Ay and reinforcement parameter a.

The following is straightforward to prove.

Lemma 1. Let G = (V, E) be a graph on which the process is well defined,
and a > 1. Then Pg o, (e € N) =0 <= e is incident to a leaf of G.

This shows that except on star graphs, A is non-empty with positive
probability. Our main result is that on various natural infinite graphs, when «



is sufficiently large, all connected components of N¢ are finite. In preparation
for that result we define the following.

For a graph G = (V, E), let d, = d,(G) denote the degree of z € V. A
graph G is said to have bounded degree if 0 = O(G) = sup,y d,. is finite.
Standard examples include Z? (where 9 = 2d).

In this paper G = (V, £) denotes a random graph with law v. Examples
will include Galton-Watson (G-W) trees and the so-called Gilbert spatial
graph. The latter is defined as follows. Let ® be a homogeneous Poisson
point process in R? with intensity p > 0. That is, the expected number of
points in a region of volume 1 is . Then, the Gilbert spatial graph is the graph
G with vertex set V = ® and edge set £ = {(v,y) : v,y € V,|v —y| < 1}.

We will assume throughout this paper that the firing rates satisfy the
following condition.

Condition 1. There exists a constant L > 0 such that v-almost surely,
0< A, <L for eachv e V.

Condition 1 is of course implied by the following.
Condition 2. A\, =1 for each v € V, v-almost surely.
Our main result is the following.
Theorem 1. Let Ay satisfy Condition 1, where G is one of the following:
(a) a G-W tree with offspring distribution having finite mean, or

(b) any random (connected) graph for which the mazimal degree is at most
a constant 0 < oo, v-almost surely, or

(¢) a Gilbert spatial graph.

Then v-almost surely, for any a > 0 the WARM process on G is well defined.
Moreover, there exists ag > 1 such that for every a > aq: for v-almost every
G, all connected components of G\ N are finite, Pg 4 a,,-almost surely.

Examining the proof of Theorem 1 reveals that the parameter g can
be taken to only depend on: (a) the offspring distribution; (b) the degree
bound 9; and (c) the spatial dimension and the intensity of the Poisson point
process, respectively. Note that if G = Z then ag = 1 (see Lemma 6 below).

In a companion paper [6], the finite clusters of (finite or infinite) graphs
are studied. As a consequence of Theorem 1 and the results of [6, 8], we have
the following corollary, in which £, = {e € & : sup,., Vi(e) = oo}.
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Corollary 1. Let G, Ay be as in Theorem 1.

(1) If @ > max(«,2), then for v-almost every G, all connected components
of £ are (finite) trees, Pg o x,,-a.s.

(i1) If Condition 2 holds, then for o > max(ayg,25), for v-almost every G
all connected components of £ are of diameter at most 3, Pg o a,,-a.s.

The conclusion of (ii) fails in general if Condition 2 does not hold.

The rest of the article is structured as follows. In Section 2 we show
that the WARM process on any graph that “does not grow too fast” is well
defined, and we show that v-almost surely our graphs G in Theorem 1 do not
grow too fast. In Section 3 we couple the cluster N¢ of a WARM process on
a graph G with a percolation-type model whose open clusters dominate N©.
In Section 4 we use this coupling/domination to prove Theorem 1.

2 Construction of the process

In this section, we fix a a graph G = (V, E) with vertices of finite degrees,
and give an explicit construction of a probability space on which the WARM
process on (G exists. Our construction is more elaborate than what is required
to prove existence, however the additional complexity is used e.g. in the proof
of Theorem 1. Since disjoint components of G do not interact, we lose no
generality in assuming that G is connected in this section.

Let M = {(X,,,T,,) }n>1 be a Poisson point process on G (to be precise,
on V x [0,00)) with intensity field Ay indicating the vertex-specific firing
rates. Here, we use an arbitrary enumeration of the Poisson point process,
and note that the times {T},},>1 are not increasing in n. The construction
of the WARM process relies on the concept of descending chains [3, 12].

Definition 1. Let M be a Poisson point process on G, and m > 2.
A sequence {(Xy,, T,,)}icjm) such that for every i € [m — 1],

(i) X, is adjacent to X, ., and

(i) T, > T,

i1
i1

is called a descending chain of length m.



M admits infinite descending chains if there exists an infinite sequence
{(Xn,, T};) }i>1 such that (i) and (ii) above hold for every i > 1.

A graph G is good if it has vertices of finite degrees, and the associated
Poisson point process with A\, = 1 for every v € V' a.s. does not admit
infinite descending chains.

Note that for any G' with vertices of finite degrees, and Ay bounded, G
is good if and only if a Poisson point process M on G with firing rates Ay
does not admit infinite descending chains.

Let E, = {(v,v") € E} denote the set of edges incident to v € V. For each

z €V and n, = {n(e)}ecp, we first define a total ordering =< of the edges
incident to the vertex x. This ordering depends on an initial edge ordering
<o and the edge counts {n(e)}ecp,. It is defined by imposing that

e < ¢if n(e) < n(¢'), or if n(e) = n(¢’) and e < ¢'.
That is, fatter edges are preferred. We then define the selection function
sel, (+;{n(e)}eer,) : [0,1] = E,

such that sel, (u; {n(e)}ee Ez) is the uniquely determined edge e € E, satis-
fying

e (@) (&) 4 Y e n(e'>a)
S MO Sopep, ()"

That is, higher values of u correspond to choosing fatter edges. This property
is convenient for coupling constructions appearing in Lemma 3.

ve

Lemma 2. Let G be good, o > 0, and suppose that there exists L > 0 such
that A\, < L for every v € V. Then the Pg o, -WARM process exists.

Proof. Fix GG, a good graph. Since nothing happens when there is a firing at
an isolated vertex v € V, by removing such vertices we may assume that GG
has no isolated vertices (i.e. every vertex v € V' has an edge incident to it).

Let (£2, F,P) denote a probability space on which M = {(X,,,T,,) }n>1 is a
Poisson point process on V' x [0, co) with intensity Ay, and U = {U,,,(z) }mez, sev
is a family of i.i.d. standard uniform random variables that are independent
of M. Since \, < L for every v € V', M does not admit descending chains.



We construct a family of approximations (Ni(e))i>04ez, and first set
Npo(e) = 1 for all e € E. Then, letting Vx,, denote the set of vertices
consisting of X, and all adjacent vertices, the initial layer

Ly={(Xp, T) €M : M (Vy, % [0,T)) = 0}

consists of all firing events such that no firing event has occurred earlier either
at the considered vertex or at one of its neighbouring vertices. Then, £; is
non-empty because there are no infinite descending chains.
For every (X,,,T,,) € L1 and e € Ex, define
Nt;1<€) = Nt;O(e) + ]1{

t>Tom, selx,, (UO(X,,L);(NTm7;0(6/))6,€Exm ) :e}

For other edges, we put Nyj(e) = Nyole).
For i > 1 we proceed recursively and define the (i + 1)th layer

Liv1={(Xn,Ty) € M: MN (Vx,, x [0,T,)) C L;}

as the family of all firing events such that all earlier firing events at this or
adjacent vertices are in layer £;. Let Q(z) denote the event that an edge in
E, has been reinforced before the first firing time of x and

Note that U = (U, (2))sevms1 are iid. since U was an i.i.d. collection, and
that Q(z) is independent of Uy (x), Up(x).
For every (X, T}) € Li11\ £; and e € EY,, we put

Nyiv1(e) = Nyile) + ]1{

> 9
12T, 5615, (U () X )i (N () vy, ) :e}

where S, () = #{(Tk, Xx) € M : T}, < T,,, Xy = x} denotes the number of
times that z has fired up to (and including) time 7,,. Again, for other edges
there are no changes. Note that, we use the Uy(X,,) variable to determine
the chosen edge at time 7,, if and only if Ny, _;(e’) = 1 for every ¢’ € Ex,,
(otherwise we use Ug, (X,,)).

Since Ny;(e) is increasing in ¢, and Ny;(e) < #{( X, Tn) = T < t, Xy ~
e}, the limiting count

Ni(e) := lim Ny;(e)

1—00
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is well-defined, and a.s. finite. Finally, as the Poisson point process does not
admit descending chains, we have U;>¢L; = M. That is, every Poisson firing
event is indeed accounted for in this dynamics. |

Based on the above construction, we now provide an upper bound on the
probability that a firing at a vertex leads to a new edge being selected. Let

T.(z) =inf{t > 0: #(MnN ({z} x [0,t])) =n}
be the nth firing time of the vertex x € V', for n € N. Then,
Fom = U(((Xm,Tm) : T < To(x)), U\ Un(a:))

denotes the o-algebra generated by M up to time T),(x) and all selection
variables except for U, (x). Moreover, K, (x) = #{e € E, : Np,(2)-(e) = 1}
denotes the number of edges adjacent to x that are not reinforced before time
T, (z). Finally define,

Wan = Peaxy (N1, ) (€) = 2 # Nr, 2 (€) for some e € Ey|Fyp).

Lemma 3. Fiz G, Ay so that the process is well defined. Let n > 1 and
x €V be arbitrary, and o > 0. Then,
d, —1

Won < , a.s. on the event { K, (x) < d,}.
’ dm —1+ MaXeck, NTn(a:)—(e)a { ( ) }

Proof. Fix x,n and let k, = {e € E, : N, (»—(e) = 1}. Letting m > 1 be
such that T),(x) = T,,, the construction described above shows that on the
event {K,(x) < d,} we have U,(z) = U,(x), which is independent of F,,.
Therefore, almost surely on {K,,(z) < d,},

Wz,n = ]P)G,a,}\v (Selx(Un(x)v (NTn(m)—<€))e€Ez) € "in|fx,n)

T Ku(r) + ZeeEz\Nn N, @)~ (€)
~ Ky(x) + maxeeg, N7, (2)—(€)*
dy, — 1

< .
~ dy — 1+ maxcep, Nr,(2)-(€)”



For a graph G = (V, E), let ¢, , denote the number of self-avoiding walks
of length n > 1 in G started from z € V. We will use the following lemma
to show that all of the graphs in Theorem 1 are good, r-almost surely.

Lemma 4. Let G = (V,E) be a graph for which there exist r > 1 and
non-negative constants {Cy}rev such that

Cnoe < Cypr”,  foralln>1andx V.
Then G is good.

Proof. The fact that ¢, , is finite for every = implies that G has finite degrees.

Next, note that for a fixed finite set Vy C V the probability that there
is an infinite descending chain {(X,,,T,,)}:>1 with X,,, € V; for each i is 0.
Since GG is countable, the probability that there exists a finite subset of G
on which an infinite descending chain can be found is zero. Thus, (almost
surely) an infinite descending chain exists if and only if an infinite descending
chain {(X,,, T»,) }i>1 with {X,,, }i>1 all distinct exists.

Let t > 0 and v € V be arbitrary. From the above, it suffices to show
that the expected number of descending chains of length n > 1 starting at
v before time t consisting of n distinct vertices, tends to 0 as n — oo. Let
v = (v1,...,0,) be a fixed self-avoiding path of length n in G starting from
vy = v. Then, we let £, denote the number of n-tuples {(Xy,, T%,) }icp of
points from M such that: (Xj,,..., Xy, ) =~y and t > T}, > Ty, , for every
i € [n—1]. By the multivariate Mecke formula [13, Theorem 4.4}, applied to
the Poisson point process M and the mapping

((3717 tl)a sy (xna tn)) = ]]-{mi:'ui for every i < n}:ﬂ-{t1>t2>--->tn}
we arrive at

: tL)"
EG,O&)\V [‘C“/] = H )\Ui /[0 | ]l{t1>t2>“.>tn}dt1 e dt, < ( ) .
i=1 A"

n!

Thus, the expected number of descending chains of length n starting from v
with all vertices distinct, is at most ¢, (tL)"/n!. By assumption there exist
Cy,r > 1 such that ¢, , < Cyr" for every n. Therefore

lim sup Cna(EL)" < C, limsup (rtL)" =

N—00 n! Nn—00 n:

0,

as required. [ ]



Proposition 1. All of the graphs in Theorem 1 are good, v-almost surely.

Proof. For any graph G with maximal degree 0, the number of walks of
length n started from any x € V' is at most 9", so by Lemma 4 G is good.
This verifies the claim for G almost surely having maximal degree at most 0.

For G-W trees with offspring distribution having mean p € (0, 00), M,, :=
pu " K, is a positive martingale (where K, is the number of individuals in gen-
eration n), so it converges almost surely. Thus, we have that sup,, p " K, < C
for some (random) finite C' > 0, v-almost surely. In a tree, the number of
self-avoiding walks of length n started from x is precisely the number of ver-
tices of distance n from x. Since x is some distance k, from the root, every
vertex that can be reached from z in n steps can be reached from the root
in at most k, + n steps. Therefore, v-almost surely on the event that x € V),
there exists a C' > 0 such that

n+ke n+kg

Cra < Y KGO Yl < Coph,
j=0 j=0

and the result follows by Lemma 4.
For the Gilbert spatial graph with intensity u let

N, =#{(X1,..., X,) € ®" : X; € [-1/2,1/2]*, {X; }1<i<n all distinct
and |X; — X; 1| < 1forallie[n—1]},

denote the number of self-avoiding paths of length n starting from the unit
cube. In particular, ¢, < N/ for every x € ® N [-1/2,1/2]¢, so that by
stationarity, it suffices to show that (r-almost surely) there exists C' > 0
such that N/ < Cr™ for every n.

Write By(x) for the Euclidean ball of radius 1 centered at z € R? and
kq for the volume of the d-dimensional unit ball in the Euclidean metric.
Applying the multivariate Mecke formula [13, Theorem 4.4] to the mapping

(xb s 7xn) = 1{116[71/2,1/2}’1}1{%_‘_1GBl(xi) for every ¢ <n —1}-

we obtain

E,[N]] < ,u”/ / . / 1dz,, - - - deodzy
[-1/2,1/2]¢ J B1(x1) Bi(zn-1)

n

J 1dx,, - - - dzoday

/[1/2»1/2]d By (z1) Bi(zn—2)

n, n—1
12 K“d .



In particular, writing r = (max{2, ux4})?, the Markov inequality gives that

1
V(N! > ") < —p 2,

Rq

Hence, by the Borel-Cantelli lemma, r-almost surely there exists a random
C' > 0 such that N} < Cr™ for every n. [ |

Lemma 4 amounts to a bound on the rate of growth of the number of
self-avoiding walks on a graph, started from fixed locations. It would be of
interest to consider what happens when Condition 1 is dropped, while still
assuming that the process M on G almost surely does not admit descending
chains. The latter condition puts restrictions both on the growth of the graph
and the firing rates. In particular it would be of interest to consider what
happens when ()\,),cy is an (unbounded) i.i.d. sequence, whence the model
becomes a reinforcement model in a random firing environment.

3 Corrupted compass models

In order to prove our main result, we couple our highly dependent WARM
process with an independent percolation-type model that we call a corrupted
compass model on a graph G.

Definition 2 (Corrupted Compass Model on G = (V, E)). Let {p(s) }zev
be a collection of elements of [0,1]. Every non-isolated vertex x € V is
independently and with probability p¢,, called corrupted. Let K C V denote
the set of corrupted vertices. Independently at each non-isolated vertex y €
V', choose an edge 7, from E, uniformly at random, and define

C=JEu{n:yeV}cE (1)

e

The uncorrupted compass model is the choice py,, = 0 for each z.

Corrupted compass models may be of interest in their own right, as on
regular lattices they can be viewed as examples of “degenerate random envi-
ronments” [10, 11], which are generalisations of directed percolation models.
Of particular interest is the case where pg;} = pq, (@), where d, is the degree
of z, po(a) = 0 and for d > 1,

d—1 had

by (d) = ITTrpvEe and  pa(a) =1 - [](1 - bu(d)).

n=1
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We have the following elementary lemma.

Lemma 5. Let d > 1 and a > 1. Then, pg(a) < 1 and limyoo pa(e) = 0.

Proof. Using the inequality log(z) > 1 —1/z for all x > 0 we obtain for each
a > 0, and each {j,}n>1 C (0,00)

a In In 1
1— — | = _ :exp{ log( , )}zexp{—a —}
(-5 =T oo { st 23,

n>1

If j, = (2V (n/d))* then the above sum is finite for a > 1, which proves the
first claim. Moreover, for this choice of j,, the sum is at most

2d 0o

1 1 2d >~ 1 d 1
— 4+ d° — < —+4d° —dz = 1
St Y o<t [ o= g 1)
n=1 n=2d+1
which approaches 0 as o 1 co. This proves the second claim. [ |

For the graphs appearing in Theorem 1 we prove that for large a the
(random) set of edges in the corrupted compass model almost surely has
finite clusters. Therefore, the following result is fundamental to our analysis.

Proposition 2. On the probability space of Section 2 one can define a cor-
rupted compass model (with pr.y = pa, (o) as above) such that N¢ C C.

Proof. Recall the probability space of Section 2. Let n, = sel, (Uy(z); (1) ek, )
and
S*={m:xeV}CE.

Let 7, = inf{t > 0: Ny(e) > 1 for some e € E,} denote the first time that an
edge incident to x is reinforced. A vertex x € V is bad if there exists a firing
time T,,(x) > 7, at x that reinforces a previously unreinforced edge e € E,,
i.e. Ny, (2)-(e) =1 and Ny, (e) = 2 (note that since T,,(x) > 7, this means
that there was at least one e’ € E, with Np, ;)—(€’) > 2). Define

c=svu |J E.
x is bad

We now define a corrupted compass model on the probability space of Sec-
tion 2. The compass at (non-isolated) z € V is defined to be the edge
e = sely (Up(); (1) sep, ). The vertex x is corrupted if and only if U,(z) <
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b, (d,) for some n € N. Note that these corruption events are independent
over x and are also independent of the compass selection process. Thus, the
above does indeed define a corrupted compass model on G with pgy = pa, ()
for each z. Let C denote the set of edges of this corrupted compass model,
as per (1). Then, to complete the proof it suffices to show that

N¢cC Cr, and (2)
CcrccC. (3)

To prove (2), suppose that e = (z,2') € N¢ Then, without loss of
generality, the first time that e was reinforced was at a firing time 7,,(z) at
x for some n. If e € §* then e € C*. Otherwise e ¢ S* so in particular
e # sel, (Up(2); (1) ek, ), so there must be some other edge ¢’ € E, that was
already reinforced before time 7),(z). Thus, = is a bad vertex, so e € C*.

To prove (3), note that by construction S* C C is trivially true. Suppose
that x € V is bad. Then, at some firing time T,,(x) at x there was an edge
¢ in E, such that Ng, ,)—(e’) > 2 but an edge e € E, with Ng,(;)—(e) =1
was chosen. Hence, recalling the notation and proof of Lemma 3,

Un(z) < K,(x) < d, — 1
n\r) > < .
Kn<l’) -+ ZeeEz\nn NTn(z)_(e)a dy, — 1+ MaXeecp, NTT,,(m)_(«E)a

It also implies that max.cg, Nz, (2)-(€) > 2V (n/d,), since at least one edge
is already reinforced, and after n clock rings at = at least one edge in E,
must have count at least n/d,. Thus,

. d, — 1
=d,— 1+ (2V (n/d)

Un(x) o bn<dx)a

so z is corrupt. This proves (3). [

Remark 1. Notice that the construction (and hence the law) of the corrupted
compass model in the proof of Proposition 2 does not depend on Ay at all.
In particular, the conclusion of the Proposition holds as long as Ay is such
that the construction of the WARM process on GG in Lemma 2 is valid.

4 Proof of Theorem 1

We let C, C V denote the connected cluster of x € V in C. In view of
Proposition 2, the proof of Theorem 1 reduces to establishing that connected
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clusters C, with the choice py,3 = pa, (@) for each z, are finite almost surely
for « sufficiently large. The latter is the content of the following Proposition.

Proposition 3. Let G be any of the graphs in Theorem 1. Then there exists
ag > 1 such that for all o > ag: v-almost surely, all connected clusters of
C(G) (with the choice piyy = pa,(cv)) are finite, Pg q x, -almost surely.

The following lemma illustrates this approach in the simplest setting.

Lemma 6. If G = Z then for a > 1, all components of G\ N are finite.

Proof. By Proposition 2, it suffices to show that all connected components of
C are finite. Let J; = {{2i,2¢4 1} € C°}. Then J; is the event that: neither
vertex in V' := {2¢,2i + 1} is corrupt, and ny; = (20 — 1,24), and 7941 =
(20 + 1,2i + 2). Therefore P(J;) = ¢(a) > 0 since o > 1. However, since
the vertex sets V/ for i € Z are disjoint, the events (.J;);cz are independent.
Thus, we encounter an edge in {{2¢,2i+1} : ¢ € Z} NN after examining the
status of at most a Geometric(c(ar)) number of edges in {{2i,2i+1} : i € Z}
to the right of 0 (and similarly to the left). [

In the following subsections we will verify that (for every x € V') C, is
almost surely finite for each the 3 different settings in the proposition.

4.1 Galton-Watson trees

Let V* = {(ng,n1,...,nx) : k,ng,ny,...,ng € Zy}. Let & = (& )vev+ be
i.i.d. random variables taking values in Z,, with probability mass function
f and having finite mean p = > nf(n). Let U = (U,)pev+ and U’ =
(UNpevs, and U" = (U!"),ey~ be families of mutually independent standard
uniform random variables that are also independent of €.

We label the root (the unique vertex of generation 0) of our tree as (1),
and for any vertex v = (1,n; ..., ny) of generation k, its children are labelled
(v,1),(v,2),.... If v is not the root then its parent is denoted by v=!. Let
V,, denote the vertices of generation n.

One could generate a Galton-Watson tree G with a corrupted compass
model on it iteratively over n by using the variables & to generate the chil-
dren (v,1),...,(v,&) of each v € V,, and then deciding whether or not each
vertex of generation n is corrupted and whether or not its compass points
towards the root. Corruption occurs with probability pgi1(a) if the number
of children of v is k (unless v is the root in which case corruption occurs with
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probability pi(«)). Similarly (unless v is the root) the compass at v points
towards the root with probability 1/(k+1). We do not generate the tree and
corrupted compass this way.

Instead we generate the tree G and the corrupted compass model on it
as follows (also iteratively over n > 0). Given V,, for each v € V,, decide
whether v is corrupted, and (if not) decide on whether 7, is the edge to
the parent or some other edge. Then generate the number of children of v
conditional on these events.

To be precise, let n > 1. Given that v € V,,:

e v e Kif U, <qc, where
qc ‘= an-i-l(a)f(n)
n=0

e v ¢ K and 7, is the edge to v~ if U, > gc and U} < qp/(1—qc), where

e otherwise v ¢ K and 7, is not the edge to v™'.

The respective probabilities of these events (given that v € V,) are qc, qp
and gr := 1 — qc — qp respectively.

Given that v € K, v has exactly & > 0 children if U/ € (Zf;é gc(j), Z?:o gc(4)],
where

go(k) = g5 prs () f (k).

Similarly, given that v ¢ K and 7, is the edge to v~
children if U/ € (Zf;é g5(7), Zf:o gB(7)], where

1 v has exactly k > 0

gn() = g5 TPt g

Otherwise, v has exactly £ > 0 children if U}’ € (Zf;é gr (), Z?:o gr(5)];
where

k(1 — prsr(a))
kE+1

gr(k) == qz' f(k), fork>1
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The case n = 0 (i.e. the corruption status and number of children etc. of the
root) is slightly different. It is a simple but tedious exercise to verify that
this construction defines a Galton-Watson tree G with offspring distribution
having probability mass function f, together with a corrupted compass model
(with pzy = pa, (a) for each x € V) on it.

Proof of Proposition 3 — Galton-Watson trees. Let mg, mp, mp be
the means of random variables with probability mass functions g¢, g, gr
respectively. Let C,, B,, F,, denote the number of vertices in generation
n that are (respectively) corrupted, uncorrupted and have their compass
pointing to their parent, and uncorrupted with the compass pointing to a
child. Fix L € (0,00) and let A be such that A\, < L for each v € V*.

Let P, x denote the annealed/averaged measure defined by

Pa,)\(g € A,Ng < B) = / Pg7a7)\v(Ng c B)dl/(g)
A

Under the annealed measure, conditional on v € V,,, and on the compass type
of v (C=corrupted, B=uncorrupted with edge to parent, or F'=uncorrupted
with edge to child), the expected number of children of type a € {C, B, F'}
when v is of type 8 € {C, B, F'} is mgq,. Let ¢,,b,, f, denote the expected
number of vertices of each type in C(;) NV, under the annealed measure.
Then,

Cn+1 mcqc Mmpqc Mrpqc Cn
bpy1 | = | megs mBgs Mmrgn b,
frt1 meqr 0 qr In

Most of the entries of the update matrix are obvious, and correspond to cases
where every child of a given type is also in C(1)NV,41. The entry 0 is because
if the compass of v € V, N C(;y N K¢ points to its parent then any child v’
of v that is uncorrupted and whose compass does not point towards v is not
in C(y). Similarly, if v € V, N C(y N K¢ and its compass points to a child
v" of v then v can have at most one child (it would have to be v’) that is
uncorrupted and whose compass points away from v. The probability that
this child v has this property is gp.

To show that E, »[|Cp)|] < oo for a sufficiently large, it is sufficient to
show that the eigenvalues of the update matrix have absolute values strictly
less than 1 for a sufficiently large (since then E, z[|Cny N V,|] is decreasing
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exponentially in n and is therefore summable). The eigenvalues are the
solutions to the cubic equation

0= (A—mpgs)(qgr — A+ meqeA[mpgr — (gr — N)).
Now .
mege = Y kprsi (@) f (k).
k=0
Since p is finite, and pgy1(a) — 0 as @ — oo for each k, we have that mege —

0 as & — oo. Similarly, as o — oo, the quantities ¢(a), gr(a), mp(a), mp(a)
converge respectively to

— f(n) o nf(n)

00) = =
q5(00) nZ:O ) qr(0) nZO ntl’

oo kf(k) oo Ek2f(
Zk 0 k+1 mF(OO) . Zk} 0 k—‘rl

o~ f(n : o  nf(n
Zn:O n(+1) ano n—i(-l)
which are all finite and positive. It follows that as o — oo the eigenvalues of
our update matrix approach the solutions to

0= (A —mp(00)gp(o0))(gr(oc) — A)A.

The solutions are A = 0, A = gp(o0) € (0,1) and A = mp(c0)gp(c0)
qr(00) € (0,1). This proves that there exists oy > 1 such that E, z[|C(y)|]
oo for all & > ap. From this one can conclude that E,A[|C,|1ze1y] <
for a > ay.

mp(00) ==

I8/\|I

4.2 Bounded-degree graphs

Here we fix a graph GG with degrees bounded by 0, and let P = P¢ 4 5, , and
E the corresponding expectation. Since pg, () < py(a) for every x € V', it is
sufficient to show that for the corrupted compass model with p, = ps(«a) for
every y € V the expectation of the size of the component of x is finite.

Proof of Proposition 3 — bounded degrees. Set p = p, = ps(«) (which
can be made arbitrarily small by taking « sufficiently large) for every y € V.
Fix x € V. Then

E[C.(a)] <1+) ) > P(ycO),

n21veV ~iz—v
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where the interior sum is over the simple paths v from x to v of length n
(i.e. containing n edges), and v C C means that the edges of v are all in C.

For neighbours z, 2, write + — 2" if n, = {z,2'} or x € K, and © -» 2’
otherwise. Clearly, for any simple path v of length n > 1 from 7y = z to
Yo = v we have

P(y Cc C) =P(y C C,v € K)
+P(yC Cv ¢ K, vp1 — v)
+P(yC C,v ¢ K,v— Y1, Yuo1 = V).

Define

cn(a) == Z Z P(v Cc C,v € K).

veV yiz—sv

fo(a) ::Z Z P(yCc C,v ¢ K, V-1 = ),

veV yiz—sv

bo(a) == Zdv Z P(yC C,v ¢ K,v = Y1, Yno1 = V),

veV yiz—sv

We claim that all these three sequences are exponentially decreasing for
sufficiently large a. We are going to show that each component of the vector
(bpt1, bpi1, cni1) does not exceed the corresponding component of the vector

@-1p (O-1p Ztp\ [cn
0—1 o1 0 fal. (4)
0 o0-1 %) \b,

Note that for p sufficiently small, all the eigenvalues of the above matrix are
less than 1 in absolute value, since as p — 0, this matrix tends to

0 0 0
o-1 21 0 |,
0 o-1 &t

and its eigenvalues are %, % and 0. Thus, iterations of this matrix are

exponentially decreasing, and we get the desired upper bound.
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We have now to establish the upper bound for ¢, 11, fni1, bns1. Note that

an:Z Z P(v Cc C,v € K)

vev W:xﬂv

= Z Z Z ﬂ{vgw*}]}b(’}/* cCve ,C)

ueV i Mg VU

Now
P(y* € C,v € K) = pa,()P(y" C C) < pP(y" C C).
Thus,
Cnt1 < PZ Z P(y* C C) Z]l{v@*}
uGVW*mim vU
<pY(d=1) Y [PhHCCuek)
ucV i —u
TPy CcCud Ky =)
+ P(’Y* - C, U ¢ ’C, u — 727177;71 - U)]
0-—1
< p<a - 1>[Cn + fn] +prn
Similarly,

an:Z Z Py Cc C,v ¢ K, v, = v)

vev 'y:x@v

< Z Z Zl{v¢7*}P(7* Cc C,u—v)

ueV * g, VU

=Y > > L[PG CCueK)+P(y" C Cou g Kyu— o)

ueV VU

* . n
y*ix—u

<3 > Y e [P( C CueK) +P(y" € Coud Koy — u)dy'].

uEVq/*:z T VU

18



The first term is bounded by
 (d—1) > PR CCuek)< (91
ueV v ir—u

The second term is bounded by

ueV 'y*:xi>u

Finally,

b1 :Z Z dy - P(y CC,v & K,0 = Y, Yo = V)

vev 'y:zri%v

- Z Z Zdv]l{U%Y*}P(’y* - Cau ¢ ]Cau - U>]P)(U ¢ IC>U - u)

ueV * g, VU

<D D D LugPO CCud Kous o).

UEV g Ty U
The interior probability is at most
PHy*cCug K,y »uu—»v)+PH* CCudg K,y | » u,u—7r_4)
<PH* CcCug K,y g —u)+PHy* CCoud K,y = uu—v,_).
Thus,

b1 < Z Z (dy — D[Py € Cou & K, yp—1 — u)

uev’y*:xim
+ HD(W* C C,U ¢ K:/Yn—l - U, U — /yn—l)]-
It follows that 9_1
bpy1 < (0 —1)fn + Tbn-

This gives us exactly the matrix in (4). [
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4.3 Gilbert spatial graph

In the Gilbert spatial graph, it is convenient to introduce additional structure
to the Poisson point process, so that we consider an augmented state space.
All the events of interest in the corrupted compass model will be defined on
this particular space.

In our proof we will make use of the Slivnyak-Mecke formula [13, Theorem
4.1] in the following form, where {(X;, U;, U/)};>1 is a Poisson point process
on R? x [0, 1]? with intensity p under the measure v:

B, | Y (X0 Ui, UD A, U3, U Yio) (5)

i>1

N M/Rd [0,1]2 E[f (2, u,u), {(Xi, Ui, U) biz1 U A{ (2, w, u) })|dedud’, (6)

where f: (R? x [0,1]%) x (R? x [0,1]*)™ — [0,00) is a non-negative Borel-
measurable function and where (R? x [0, 1]*)*F denotes the space of locally
finite subsets of R? x [0,1]?. Note that when viewed as a space of o-finite
measures (assigning mass 1 to each point in the set) (R? x [0, 1]*)™ equipped
with the metric [4, A.2.6.1] is a metric space.

Given a set of points H = (x;,u;, u})ie; € (R x [0,1]*)" we let Hy =
(x;)ier, and we say that x; and x, (with ¢ # i) are neighbours if and only if
|z —x;| < 1. The vertex set H; together with the edge set Ey, = {{z;,z;} €
H? : 0 < |z; — xj] < 1} defines a graph. Let n; denote the number of
neighbours of z;. If v, < p,.(a) then we declare z; to be corrupt and we
write x; — x, for every neighbour z, of z;. If u} > p,,(«a) then we write
x; — xy if x; and z, are neighbours and (j — 1)/n; < w; < j/n; where x; is
the jth neighbour of x when the neighbours of x; are enumerated from closest
to farthest (with some fixed but arbitrary tie-breaking rule in the case of tied
Euclidean distances).

Let H = {(X;,U;, U!)};>1 be a Poisson point process on R? x [0, 1]*> with
intensity p, and let H; = {X;}i>1. Let G = (H1, By, ) be the graph defined
as in the previous paragraph. Note that H; ~ @, so this graph is a Gilbert
spatial graph. The (U;);>1, (U]):>1 are independent standard uniform random
variables that are independent of (X;),>1. It follows that the system of arrows
(as introduced in the previous paragraph, but applied to H) is a corrupted
compass model on G with p(z} = pg, (a) for each x € H;. Let C denote the
set of edges in this corrupted compass model.
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To prove Proposition 3, we use a re-normalisation argument to prove
absence of percolation in this corrupted compass model for large o > 1.
To describe the normalisation, for z € Z¢ and M > 2 we say that a cube
Qu(z) =2+ [-M/2, M/2]% is M -nice if

1. all connected clusters C, starting from vertices x in @Q/(z) are con-
tained in Qq5n/(2), and

2. every vertex in Qap/(z) is uncorrupted.

The cube Qp(z) is M-nasty if it is not M -nice. Note that whether Qy/(z)
is nice can be determined by {(X;,U;,U;) € H : X; € Qam+1)(2)}-

To prove Proposition 3, we show that nice cubes occur with high proba-
bility.

Fix L € (0,00) and let A = (\;),ere be such that A, < L for every
v € R?%. As in Section 4.1, we write P, » for the annealed/averaged measure.

Lemma 7. It holds that

lim liminf P, x(Qa(0) is M-nice) = 1.
M—o00 a—00
Before establishing Lemma 7, we discuss how it can be used to complete
the proof of Proposition 3.

Proof of Proposition 3 — Gilbert spatial graph. Fix G and C, and sup-
pose that C contains an unbounded component. Then there is some infinite
self-avoiding path (y;)icz, in C such that |y; — y;11| < 1 and |y;| — oo as
i — oo. For each y; we have that C,, is unbounded and y; € Qu(Mz;)
for some z; € Z?. Clearly z; — oo as i — oo. Moreover, since M > 1 and
|y —yit1] < 1, we see that Qur(Mz)NQnr(Mziy1) # D, 1e., ||zi—2ig1]|oo < 1,
where we write || - || for the ¢-norm. Therefore for M € N, the family
of M-nasty cubes of the form {Qy/(Mz2) : z € Z} percolates in the sense
that there exists a sequence (2;);>1 in Z¢ such that |z;| — oo as i — oo,
lzi — zit1|loo < 1 for i > 1 and Qp(Mz;) is M-nasty for every i > 1.

Next, assuming Lemma 7 we show that M-nasty cubes cannot perco-
late as above when « is large, by using the theory developed in [14]. Note
that since M > 2, the fact that niceness (or otherwise) of Q(z) can
be determined by {(X;,U;,U]) € H : X; € Qam+1)(2)} means that the
niceness of the cube @y (Mz) is independent of the niceness of the cubes
{Qu(M2') 1 ||z — || > 2,2" € Z%}. In other words, the niceness of cubes
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is 2-dependent. Now think of sites z € Z¢ such that Qy;(Mz) is M-nice as
carrying the label 1, whereas sites z € Z¢ such that Qy/(Mz) is M-nasty
carry the label 0. In particular, an application of [14, Theorem 0.0] together
with Lemma 7 shows that for M sufficiently large, for all « sufficiently large
(depending on M), the family of M-nasty cubes does not percolate [in the set-
ting of [14, Theorem 0.0] this is achieved by ensuring that the complement of
the 1-labeled sites does not percolate|. Therefore, for all « sufficiently large,
P, x-almost surely, all connected clusters C(G) are finite. In other words,
for v-almost all G, we have that all connected clusters of C(G) are finite
Pg o,x,-almost surely. |

Proof of Lemma 7. Let ¢ > 0. We show that for all M sufficiently large
liminf P, x(Qn(0) is M-nice) > 1 —e. (7)
a—00

Let
E.(M) = {every vertex in H; N Qapr (M z) is uncorrupted}.

Since H; is almost surely finite and lim,_,o, pa(cr) = 0 we conclude that for
each z € Z4, M € N,

P.\(E.(M)) =1, asa— oo.

Now, given a set of points H = (2, u;, u})ier € (R x [0, 1]*), we define
for each x = x;, € Hy the forward cluster F, = F| (H) to be the

(@ig g ui, )
set containing x as well as every ' € H; for which there eX(i)sts n € Z, and
T, ..., x;, = 2’ such that (for eachr =0,...,n—1) z; , z; ., are neighbours
and (j — 1)/n;, < w;, < j/n;, where z; ., is the jth neighbour of z; . In
particular, the forward clusters F here do not depend on the quantities
(ul)ier at all. Let EZ(M) be the event that for every vertex © € H1NQap (M 2)
the forward cluster F consists of at most M /9 vertices.

It follows that if both E,(M) and E.(M) occur then for every vertex
' in Qp(Mz), the connected cluster C,/ is contained in Q1 5y(Mz), and
Qr(Mz) is M-nice. Hence, using translation invariance of the Poisson point
process, and applying the Slivnyak-Mecke formula (5) with the function

f((z,u,'), H) = Wz € Qony (M2) JU{#F, 0y (H U{(z, u,0)}) > M/9},
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we see that 1 — P, x(E.(M)) is equal to

PCV)\(#F(,XZ-,UZ-,U{) > M/9 for some X, € Q2M<MZ)) (8)
<Eaa| Y U#Fxu®) > M/9Y] (9)
X;€Q2nm(0)

- ,u/ / Pox(#F oy (H U { (2, u,0)}) > M/9) dudu'da
Qanm(0) J[0,1]?
(10)

— p(2M)° /[0 1] Pos(#F, 0y (H U {(0,u,1)}) > M/9)du. (11)

Writing Fy = F{,, ,y(H U {(0,u,1)}), we will prove that there exist C\,c > 0

o,u,1)

(not depending on «, u) such that,
Poa(#FF > M/9) < Ce VM, (12)
From this it follows that
1 — P A(EL(M)) < "MV,

hence we may choose M, sufficiently large so that P, x(EL(M)) > 1 —¢/2
for every M > Mj. But for each M > My, Py a(E.(M)) — 1 as a — 00 s0

liminf P, x(Qa(0) is M-nice) > liminf P, x(E,(M)NEL(M)) >1—¢

a— o0 a—0o0

as required.

Thus it remains to prove (12). Let Ej;g denote the event that all vertices
in Qsp(0) have degree at most VM. Writing 4 for the volume of the d-
dimensional unit Euclidean ball By, another application of (5) gives that

1= P A(ESE) < BM)'u D Paa(#(HNBy) = k)
k>VM
k

< (3M)d,u Z e#“d%'
k>VM ’

Hence, by the Stirling formula, 1 — P, A(Ef\;g) decays exponentially in v/ M.
It therefore suffices to show that Py x(ES% N {#F* > M/9}) decays expo-
nentially in v/ M. Conditioning on the spatial locations H; NQ3y/(0), at each
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1/2

forward hop in F); there is a chance of at least M ~"/“ to backtrack. Hence,

P A(BSEO{#F > M/9}) = Eox [L{ENE} Poa(#F > M/9[H1 N Qsu(0))]

<(1- \/LM)MN,

which decays at exponential speed in v M. [
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