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Abstract

A decomposition of the independence empirical copula process into a finite num-
ber of asymptotically independent sub-processes was studied by Deheuvels. Starting
from this decomposition, Genest and Rémillard recently investigated tests of inde-
pendence among random variables based on Cramér-von Mises statistics derived
from the sub-processes. A generalization of Deheuvels’ decomposition to the case
where independence is to be tested among continuous random vectors is presented.
The asymptotic behavior of the resulting collection of Cramér-von Mises statistics
is derived. It is shown that they are not distribution-free. One way of carrying out
the resulting tests of independence then involves using the bootstrap or the permu-
tation methodology. The former is shown to behave consistently, while the latter
is employed in practice. Finally, simulations are used to study the finite-sample
behavior of the tests.

Key words: Empirical process; Möbius decomposition; Cramér-von Mises statistic;
Bootstrap; Permutation.

1 Introduction

Inspired by the work, among others, of Blum, Kiefer and Rosenblatt [1], Dugué
[2] and Deheuvels [3], Genest and Rémillard [4] recently studied a test of
multivariate independence based on a Möbius decomposition of the empirical
copula process. Given d ≥ 2 continuous random variables X1, . . . , Xd with
marginal cumulative distribution functions (c.d.f.s) F1, . . . , Fd respectively, it
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is well-known that their joint c.d.f. F can be uniquely represented by means
of a function C : [0, 1]d → [0, 1], called a copula, such that

F (x1, . . . , xd) = C[F1(x1), . . . , Fd(xd)], (x1, . . . , xd) ∈ Rd.

This representation, due to Sklar [5], has become of central importance for
the study of the notion of dependence among variables. Indeed, essentially
all nonparametric measures of dependence can be expressed in terms of the
function C; see e.g. [6,7,8] for a comprehensive introduction to copulas. Notic-
ing that independence occurs when C(u1, . . . , ud) =

∏d
k=1 uk, u ∈ [0, 1]d, it

appears natural to consider, as statistics for testing the mutual independence
of X1, . . . , Xd, Kolmogorov-Smirnov or Cramér-von Mises functionals derived
from the process

√
n

[
Cn(u)−

d∏
k=1

uk

]
, u ∈ [0, 1]d, (1)

where Cn, known as the empirical copula, is an estimate of the unique copula
C based on a random sample (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd) from c.d.f.
F . Initially studied in [9], it is usually defined by

Cn(u) =
1

n

n∑
i=1

d∏
j=1

1[Fj,n(Xij) ≤ uj], u ∈ [0, 1]d,

where, for any j ∈ {1, . . . , d},

Fj,n(x) =
1

n

n∑
i=1

1[Xij ≤ x], x ∈ R,

is the empirical c.d.f. ofXj. This amounts to working on the ranks (R11, . . . , R1d),
. . . , (Rn1, . . . , Rnd) associated with the random sample as, for any i ∈ {1, . . . , n},
and any j ∈ {1, . . . , d}, Rij = nFj,n(Xij). In this context, it is also convenient

to define the pseudo-observations Ûij, depending on the ranks and the sample
size, by

Ûij = Fj,n(Xij) =
Rij

n
, ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . , d}. (2)

The empirical copula is then merely the empirical c.d.f. calculated from the
pseudo-observations:

Cn(u) =
1

n

n∑
i=1

d∏
j=1

1[Ûij ≤ uj], u ∈ [0, 1]d. (3)

The mathematical beauty of the test suggested by Deheuvels [3] and stud-
ied in [4,10] comes from the fact that, under the mutual independence of
X1, . . . , Xd, the empirical process (1) can be decomposed, using the Möbius
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transform [11], into 2d − d − 1 sub-processes
√
nMA(Cn), A ⊆ {1, . . . , d},

|A| > 1, that converge jointly to tight centered mutually independent Gaus-
sian processes. One fundamental property of this decomposition, whose form
will be precisely defined in Section 2.4, is that mutual independence among
X1, . . . , Xd is equivalent to having MA(C)(u) = 0, for all u ∈ [0, 1]d and all
A ⊆ {1, . . . , d} such that |A| > 1. Instead of one test statistic based on (1),
this leads one to consider 2d − d− 1 test statistics of the form∫

[0,1]d
[
√
nMA(Cn)(u)]2du or sup

u∈[0,1]d
|
√
nMA(Cn)(u)|,

where A ⊆ {1, . . . , d}, |A| > 1, that are asymptotically mutually independent
under the null hypothesis of independence. Working with the above Cramér-
von Mises versions of the test statistics, Genest and Rémillard [4] showed how
to compute quantiles from their asymptotic and small-sample distributions.
Furthermore, they investigated how these 2d − d− 1 statistics could be com-
bined to obtain a global statistic for testing independence, thereby leading to a
potentially more powerful test. More recently, Genest, Quessy and Rémillard
[10] compared the asymptotic power of the Cramér-von Mises test derived
from the copula process (1) with tests involving different combinations of the
2d−d−1 Cramér-von Mises statistics derived from the Möbius decomposition
of (1).

The main theoretical aim of this paper is to extend the Möbius decomposition
proposed by Deheuvels [3] to the situation where one wants to test the mu-
tual independence of p continuous random vectors using the empirical copula
process. A more general objective was recently pursued by Beran, Bilodeau
and Lafaye de Micheaux [12] using a characterization of mutual independence
defined from probabilities of half-spaces. Being based on the empirical prob-
ability distribution, their test of independence between random vectors can
be applied in a wide variety of situations (purely discrete, purely continuous
or mixed setting). However, the characterization of mutual independence em-
ployed in their test results in a very high computational cost [12, §6]. The
approach considered in this work is less ambitious and merely leads to an ex-
tension of the empirical copula-based procedures studied in [3] and [4]. As a
consequence, the resulting rank-based procedures are only applicable to the
situation where mutual independence among continuous random vectors is to
be tested. One important advantage however, that follows from the rank-based
nature of the studied tests, is their speed, which will allow us to investigate
their finite-sample properties. The extension of this work to the continuous
multivariate time series setting can be found in [13].

The paper is organized as follows. The second section is devoted to the em-
pirical copula process for testing independence among random vectors and
to its Möbius decomposition. The resulting processes, unlike in the “univari-
ate” case studied by Deheuvels, are shown to be distribution-dependent. In
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the third section, we give the expressions of the Cramér-von Mises statistics
derived from these processes in terms of the pseudo-observations and show
that the bootstrap methodology, which can be used to practically carry out
the tests, behaves consistently. The last subsection is devoted to a straightfor-
ward adaptation of the solutions proposed in [4] to practically implement the
tests. Finally, simulations are presented in the last section.

Note that all the empirical copula-based tests studied in this paper are imple-
mented, along those studied in [4], in the R package copula [14] available on
the Comprehensive R Archive Network (http://cran.r-project.org).

2 The independence empirical copula process and its Möbius de-
composition

2.1 Notation and setting

We want to test the mutual independence of p continuous random vectors X1,
. . . , Xp of dimensions d1,. . . ,dp respectively. Let S = {1, . . . , p} and let d =
d1 + · · ·+dp be the dimension of the random vector (X1, . . . ,Xp). Furthermore,
define the integers b1, . . . , bp as

bj =
j∑

k=1

dk, ∀j ∈ S,

with the convention that b0 = 0. Clearly, bj = bj−1 + dj for all j ∈ S. These
integers will be used to name the components of the random vectors X1, . . . ,
Xp: for any k ∈ S, the dk components of the random vector Xk will be denoted
by Xbk−1+1, Xbk−1+2, . . . , Xbk respectively.

The copula of the random vector (X1, . . . ,Xp) = (X1, . . . , Xd) will be denoted
by C. Moreover, given a vector u ∈ [0, 1]d and a subset B of S, the vector
uB ∈ [0, 1]d is defined, for any i ∈ {1, . . . , d}, by

uBi =

ui, if i ∈ ⋃j∈B{bj−1 + 1, . . . , bj},

1, otherwise.

For any k ∈ S, the marginal copula of Xk is then given by C(u{k}), u ∈ [0, 1]d,
and mutual independence among X1, . . . , Xp occurs when

C(u) =
p∏

k=1

C(u{k}), ∀u ∈ [0, 1]d.
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As we continue, we shall assume that we have at hand n independent copies of
the random vector (X1, . . . ,Xp) = (X1, . . . , Xd) that are denoted by (X11, . . . , X1d),
. . . , (Xn1, . . . , Xnd) with associated pseudo-observations defined by (2). A nat-
ural extension of the independence copula process (1) based on this random
sample is then

√
n

[
Cn(u)−

p∏
k=1

Cn(u{k})

]
, u ∈ [0, 1]d, (4)

where the empirical copula Cn is defined as in (3).

Before studying the asymptotic behavior of the above process, let us recall
recent results on the estimation of the empirical copula.

2.2 Asymptotic behavior of the empirical copula

Let `∞([0, 1]d) be the space of all bounded real-valued functions on [0, 1]d

equipped with the uniform metric. The asymptotic behavior of the empirical
copula defined by (3) is classically studied through the empirical copula pro-
cess. The most modern treatment seems to be due to Fermanian, Radulovic
and Wegkamp [15] and Tsukahara [16] whose results are summarized in the
following theorem.

Theorem 1 Suppose that C has continuous partial derivatives. Then, the em-
pirical copula process

√
n[Cn(u)− C(u)], u ∈ [0, 1]d,

converges weakly in `∞([0, 1]d) to the tight centered Gaussian process

G(u) = B(u)−
d∑
i=1

∂iC(u)B(1, . . . , 1, ui, 1, . . . , 1), u ∈ [0, 1]d,

where ∂iC denotes the i-th partial derivative of C and B is a tight centered
Gaussian process on [0, 1]d with covariance function

E[B(u)B(u′)] = C(u ∧ u′)− C(u)C(u′),

i.e., B is a multivariate tied-down Brownian bridge.
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2.3 Independence empirical copula process

In order to study the asymptotic behavior of the empirical process (4), we
consider the map I : `∞([0, 1]d)→ `∞([0, 1]d) defined by

I(f)(x) = f(x)−
p∏

k=1

f(x{k}), x ∈ [0, 1]d. (5)

Lemma 2 The map I is Hadamard differentiable tangentially to `∞([0, 1]d)
and its derivative (a continuous linear map from `∞([0, 1]d) to `∞([0, 1]d)) at
f ∈ `∞([0, 1]d) is

I ′f (a)(x) = a(x)−
p∑
i=1

a(x{i})
p∏
j=1
j 6=i

f(x{j}), x ∈ [0, 1]d.

Proof. Let f ∈ `∞([0, 1]d) and let tn be a sequence of reals converging to 0.
Let an ∈ `∞([0, 1]d) be a sequence of functions converging to a ∈ `∞([0, 1]d)
such that f + tnan ∈ `∞([0, 1]d) for every n. Then, uniformly in x ∈ [0, 1]d,

I(f + tnan)(x)− I(f)(x)

tn

=
(f + tnan)(x)−∏p

k=1 (f + tnan) (x{k})− f(x) +
∏p
k=1 f(x{k})

tn

→ a(x)−
p∑

k=1

a(x{k})
p∏
j=1
j 6=k

f(x{j}).

2

The following result extends that presented in [3, §2] and establishes, under
independence, the asymptotic behavior of the independence empirical copula
process (4).

Theorem 3 Suppose that C has continuous partial derivatives. Then, when

I(C)(u) = C(u)−
p∏

k=1

C(u{k}) = 0, u ∈ [0, 1]d,

i.e., when X1,. . . ,Xp are mutually independent, the empirical process
√
nI(Cn)(u),

u ∈ [0, 1]d, converges weakly in `∞([0, 1]d) to the tight centered Gaussian pro-
cess

I ′C(G)(u) = B(u)−
p∑

k=1

B(u{k})
p∏
j=1
j 6=k

C(u{j}), u ∈ [0, 1]d.
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For u, v ∈ [0, 1]d, the covariance function E[I ′C(G)(u)I ′C(G)(v)] is given by

p∏
k=1

C(u{k}∧v{k})−
p∑

k=1

C(u{k}∧v{k})
p∏
j=1
j 6=k

C(u{j})C(v{j})+(p−1)
p∏

k=1

C(u{k})C(v{k}).

Proof. From Theorem 1 and the application of the functional delta method
[17, Theorem 3.9.4] with the Hadamard differentiable map I (see Lemma 2),
we have that the empirical process

√
n [I(Cn)(u)− I(C)(u)] , u ∈ [0, 1]d,

converges weakly in `∞([0, 1]d) to the tight centered Gaussian process

I ′C(G)(u) = G(u)−
p∑

k=1

G(u{k})
p∏
j=1
j 6=k

C(u{j}), u ∈ [0, 1]d.

The first claim then follows from the fact that, under independence, for any
k ∈ S and any j ∈ {1, . . . , dk},

∂bk−1+jC(u) = ∂bk−1+j

[ p∏
l=1

C(u{l})

]
=

p∏
l=1
l 6=k

C(u{l})∂bk−1+jC(u{k}), u ∈ [0, 1]d.

For the second claim, fix u, v ∈ [0, 1]d. Then E[I ′C(G)(u)I ′C(G)(v)] is equal to

E[B(u)B(v)]−
p∑
l=1

E[B(u)B(v{l})]
p∏

m=1
m 6=l

C(v{m})

−
p∑

k=1

E[B(v)B(u{k})]
p∏
j=1
j 6=k

C(u{j})+
p∑

k=1

p∑
l=1

E[B(u{k})B(v{l})]
p∏
j=1
j 6=k

C(u{j})
p∏

m=1
m 6=l

C(v{m}).

Using the expression of the covariance function of the process B given in The-
orem 1 and the fact that mutual independence among X1, . . . ,Xp is assumed,
this is equal to

C(u∧v)−C(u)C(v)−2
p∑

k=1

[C(u{k}∧v{k})−C(u{k})C(v{k})]
p∏
j=1
j 6=k

C(u{j})C(v{j})

+
p∑

k=1

p∑
l=1

[C(u{k} ∧ v{l})− C(u{k})C(v{l})]
p∏
j=1
j 6=k

C(u{j})
p∏

m=1
m 6=l

C(v{m}).

The last term is clearly zero if k 6= l in the summand. The desired result is
then immediately obtained after simplification. 2
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In the general situation where at least one of the random vectors X1, . . . ,Xp

is of dimension two or more, it follows from the previous result that, unlike
in the “univariate” case considered in [4], any test statistic derived from the
independence empirical copula process (4) will not be distribution-free.

2.4 Möbius decomposition of the independence process

The aim of this subsection is to generalize the decomposition presented in [3,
§2] and used in [4] and [10]. This will eventually enable us to consider 2p−p−1
statistics that are asymptotically mutually independent under the assumption
of independence among X1, . . . ,Xp, instead of one statistic derived from (4).

Let PS = {B ⊆ S : |B| > 1}. Since |S| = p, PS contains 2p − p− 1 elements.
Let A ⊆ S and consider the map MA : `∞([0, 1]d)→ `∞([0, 1]d) defined by

MA(f)(x) =
∑
B⊆A

(−1)|A|−|B|f(xB)
∏

k∈A\B
f(x{k}), x ∈ [0, 1]d. (6)

Lemma 4 For any A ∈ PS, the map MA is Hadamard differentiable tangen-
tially to `∞([0, 1]d) and its derivative (a continuous linear map from `∞([0, 1]d)
to `∞([0, 1]d)) at f ∈ `∞([0, 1]d) is

M′
A,f (a)(x) =

∑
B⊆A

(−1)|A|−|B|

f(xB)
∑

k∈A\B
a(x{k})

∏
i∈A\B
i6=k

f(x{i}) + a(xB)
∏

k∈A\B
f(x{k})

 ,
where x ∈ [0, 1]d.

Proof. Fix A ∈ PS and f ∈ `∞([0, 1]d), and let tn be a sequence of reals
converging to 0. Let an ∈ `∞([0, 1]d) be a sequence of functions converging to
a ∈ `∞([0, 1]d) such that f + tnan ∈ `∞([0, 1]d) for every n. Then, uniformly
in x ∈ [0, 1]d,

1

tn
[MA(f + tnan)(x)−MA(f)(x)]

=
∑
B⊆A

(−1)|A|−|B|

tn

(f + tnan)(xB)
∏

k∈A\B
(f + tnan)(x{k})− f(xB)

∏
k∈A\B

f(x{k})


→

∑
B⊆A

(−1)|A|−|B|

f(xB)
∑

k∈A\B
a(x{k})

∏
i∈A\B
i 6=k

f(x{i}) + a(xB)
∏

k∈A\B
f(x{k})

 .
2
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The 2p − p − 1 functions {MA(C) : A ∈ PS} (resp. empirical processes
{MA(Cn) : A ∈ PS}) are known as the Möbius decomposition of I(C) (resp.
I(Cn)).

The two following lemmas are immediate extensions of known results. We
include the proofs for completeness.

Lemma 5 Let H be a c.d.f. on [0, 1]d and let A ∈ PS. Then,

MA(H)(u) =
∑
B⊆A

(−1)|A|−|B|I(H)(uB)
∏

k∈A\B
H(u{k}), u ∈ [0, 1]d.

Proof. Since
∑
B⊆A(−1)|A|−|B| = 0, for any u ∈ [0, 1]d, we can write

MA(H)(u) =
∑
B⊆A

(−1)|A|−|B|H(uB)
∏

k∈A\B
H(u{k})−

∏
k∈A

H(u{k})
∑
B⊆A

(−1)|A|−|B|

=
∑
B⊆A

(−1)|A|−|B|

H(uB)−
∏
k∈B

H(u{k})(u{k})

 ∏
k∈A\B

H(u{k}).

2

Lemma 6 Let H be a c.d.f. on [0, 1]d. Then,∑
A∈PS

MA(H)(u)
∏

k∈S\A
H(u{k}) = I(H)(u), u ∈ [0, 1]d.

Proof. For any u ∈ [0, 1]d, Lemma 5 yields∑
A∈PS

MA(H)(u)
∏

k∈S\A
H(u{k}) =

∑
A∈PS

∑
B⊆A

(−1)|A|−|B|I(H)(uB)
∏

k∈S\B
H(u{k}).

Interchanging the sums, we obtain,∑
A∈PS

MA(H)(u)
∏

k∈S\A
H(u{k}) =

∑
B⊆S

∑
A∈PS
A⊇B

(−1)|A|−|B|I(H)(uB)
∏

k∈S\B
H(u{k})

=
∑
B⊆S
I(H)(uB)

∏
k∈S\B

H(u{k})
∑
A∈PS
A⊇B

(−1)|A|−|B|

=
∑
B(S
I(H)(uB)

∏
k∈S\B

H(u{k})
∑
A∈PS
A⊇B

(−1)|A|−|B| + I(H)(u).

Using the fact that
∑

A∈PS
A⊇B

(−1)|A|−|B| = 0 when B ( S, we obtain the desired

result. 2
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The following proposition, again an immediate generalization of a known re-
sult (see e.g. [18]), is of central importance as it will be used to provide an
alternative characterization of mutual independence among X1, . . . ,Xp.

Proposition 7 Let H be a c.d.f. on [0, 1]d. The two following statements are
equivalent:

(i) I(H)(u) = 0 for all u ∈ [0, 1]d,
(ii) MA(H)(u) = 0 for every A ∈ PS and u ∈ [0, 1]d.

Proof. The fact that (ii) implies (i) follows from the previous lemma, while
the fact that (i) implies (ii) follows from Lemma 5. 2

The following result generalizes Theorem 1 in [3]. It shows that, under inde-
pendence, the empirical processes arising from the Möbius decomposition of
the independence empirical copula process (4) are asymptotically mutually
independent.

Theorem 8 Suppose that C has continuous partial derivatives. Then, under
mutual independence of X1,. . . ,Xp, the vector of 2p−p−1 empirical processes
{
√
nMA(Cn)(u), u ∈ [0, 1]d : A ∈ PS} converges weakly in `∞([0, 1]d) to the

corresponding vector of tight centered Gaussian processes {M′
A,C(G)(u), u ∈

[0, 1]d : A ∈ PS}, where

M′
A,C(G)(u) =

∑
B⊆A

(−1)|A|−|B|B(uB)
∏

k∈A\B
C(u{k}), u ∈ [0, 1]d.

For u, v ∈ [0, 1]d and A,A′ ∈ PS, the cross-covariance function is given by

E[M′
A,C(G)(u)M′

A′,C(G)(v)] = 1(A = A′)
∏
k∈A

[C(u{k}∧v{k})−C(u{k})C(v{k})].

Proof. Let ~MS : `∞([0, 1]d) → (`∞([0, 1]d))2p−p−1 denote the (Hadamard
differentiable) map whose 2p − p− 1 components are the maps MA, A ∈ PS.
From Theorem 1 and the application of the functional delta method with the
Hadamard differentiable map ~MS, we obtain that

√
n ~MS(Cn)(u), u ∈ [0, 1]d

converges weakly in (`∞([0, 1]d))2p−p−1 to ~M′
S,C(G)(u), whose corresponding
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components are defined by

M′
A,C(G)(u) =

∑
B⊆A

(−1)|A|−|B|

C(uB)
∑

k∈A\B
G(u{k})

∏
i∈A\B
i 6=k

C(u{i})

+G(uB)
∏

k∈A\B
C(u{k})

 .
Using the expression of the process G given in Theorem 1, for any u ∈ [0, 1]d,
M′

A,C(G)(u) is given by

∑
B⊆A

(−1)|A|−|B|

C(uB)
∑

k∈A\B

B(u{k})−
bk∑

i=bk−1+1

∂iC(u{k})B(1, u
{k}
i , 1)

 ∏
i∈A\B
i 6=k

C(u{i})

+

B(uB)−
∑
k∈B

bk∑
i=bk−1+1

∂iC(uB)B(1, uBi , 1)

 ∏
k∈A\B

C(u{k})

.
Using the fact that X1, . . . ,Xp are mutually independent, we get thatM′

A,C(G)(u)
is equal to

∑
B⊆A

(−1)|A|−|B|

 ∑
k∈A\B

B(u{k})−
bk∑

i=bk−1+1

∂iC(u{k})B(1, u
{k}
i , 1)

 ∏
i∈A
i6=k

C(u{i})

+B(uB)
∏

k∈A\B
C(u{k})−

∑
k∈B

bk∑
i=bk−1+1

∂iC(u{k})B(1, u
{k}
i , 1)

∏
i∈A
i 6=k

C(u{i})

 .
The first claim then follows from the fact that

∑
B⊆A

(−1)|A|−|B|
∑
k∈A

bk∑
i=bk−1+1

∂iC(u{k})B(1, u
{k}
i , 1)

∏
i∈A
i 6=k

C(u{i}) = 0,

as the main summand does not depend on B, and from the fact that

∑
B⊆A

∑
k∈A\B

(−1)|A|−|B|B(u{k})
∏
i∈A
i6=k

C(u{i}) =
∑
k∈A

∑
B⊆A\{k}

(−1)|A|−|B|B(u{k})
∏
i∈A
i6=k

C(u{i})

=
∑
k∈A
B(u{k})

∏
i∈A
i6=k

C(u{i})
∑

B⊆A\{k}
(−1)|A|−|B| = 0.

FixA,A′ ∈ PS and u, v ∈ [0, 1]d. Using Theorem 1,E[M′
A,C(G)(u)M′

A′,C(G)(v)]

11



is equal to

E

 ∑
B⊆A

(−1)|A|−|B|B(uB)
∏

k∈A\B
C(u{k})

 ∑
B′⊆A′

(−1)|A
′|−|B′|B(vB

′
)

∏
k′∈A′\B′

C(v{k
′})


=
∑
B⊆A

∑
B′⊆A′

(−1)|A|−|B|+|A
′|−|B′|[C(uB ∧ vB′)− C(uB)C(vB

′
)]

∏
k∈A\B

C(u{k})
∏

k∈A′\B′
C(v{k}).

Let A ∩ A′ = R 6= ∅. Then, this is equal to

∑
K⊆A\R

∑
L⊆R

∑
K′⊆A′\R

∑
L′⊆R

(−1)|A|−|K|−|L|+|A
′|−|K′|−|L′|

×[C(uK∪L∧vK′∪L′)−C(uK∪L)C(vK
′∪L′)]

∏
k∈A\(K∪L)

C(u{k})
∏

k′∈A′\(K′∪L′)
C(v{k

′}).

By construction, K ∩ (L∪L′ ∪K ′) = ∅ and similarly for K ′. The assumption
of mutual independence then gives

E[M′
A,C(G)(u)M′

A′,C(G)(v)] =
∑
L⊆R

∑
L′⊆R

(−1)|L|+|L
′|[C(uL∧vL′)−C(uL)C(vL

′
)]

×
∏

k∈A\L
C(u{k})

∏
k′∈A′\L′

C(v{k
′})

∑
K⊆A\R

(−1)|A|−|K|
∑

K′⊆A′\R
(−1)|A

′|−|K′|,

whence the covariance is zero unless A = R = A′. In this case, using (−1)m =
(−1)−m and (−1)2m = 1, we see that E[M′

A,C(G)(u)M′
A,C(G)(v)] is equal to

∑
B⊆A

∑
K⊆A\B

∑
L⊆B

(−1)|B|+|K|+|L|[C(uB∧vK∪L)−C(uB)C(vK∪L)]
∏

k∈A\B
C(u{k})

∏
k∈A\(K∪L)

C(v{k})

=
∑
B⊆A

∑
L⊆B

(−1)|B|+|L|[C(uB∧vL)−C(uB)C(vL)]
∏

k∈A\B
C(u{k})

∏
k∈A\L

C(v{k})
∑

K⊆A\B
(−1)|K|,

the summand being zero when B 6= A. Thus, E[M′
A,C(G)(u)M′

A,C(G)(v)] is
equal to

∑
L⊆A

(−1)|A|+|L|[C(uA ∧ vL)− C(uA)C(vL)]
∏

k∈A\L
C(v{k})

=
∑
L⊆A

(−1)|A|+|L|[C(uL ∧ vL)− C(uL)C(vL)]
∏

k∈A\L
C(u{k})C(v{k})

=
∑
L⊆A

(−1)|A|−|L|

∏
j∈L

C(u{j} ∧ v{j})−
∏
j∈L

C(u{j})C(v{j})

 ∏
k∈A\L

C(u{k})C(v{k}).

This is the difference of two terms, the second of which is zero since
∏
k∈AC(u{k})C(v{k})

is independent of L and
∑
L⊆A(−1)|A|−|L| = 0. Using the multinomial formula

on the first term, we obtain the desired result. 2

12



3 Tests for independence

A natural next step consists of considering, as measures of departure from inde-
pendence, Kolmogorov-Smirnov or Cramér-von Mises statistics derived from
the previously studied processes. The first two subsections give the expres-
sions of the corresponding Cramér-von Mises statistics in terms of the pseudo-
observations as well as some simple convergence results. As these statistics are
not distribution-free, the bootstrap or the permutation methodology can be
used to obtain approximate p-values and critical values. The former approach
is shown to be consistent in the third subsection, while the latter is used in
practice. The last subsection is devoted to the practical implementation of the
tests, which mainly consists of transposing the solutions proposed in [4] to the
current context.

3.1 Statistic derived from the independence empirical copula process

The Cramér-von Mises statistic derived from the empirical process (4) is given
by

In = n
∫

[0,1]d

[
Cn(u)−

p∏
k=1

Cn(u{k})

]2

du = n
∫

[0,1]d
I(Cn)(u)2du. (7)

The following result is an immediate consequence of Theorem 3 and the con-
tinuous mapping theorem.

Corollary 9 Suppose that C has continuous partial derivatives. Then, un-
der mutual independence of X1,. . . ,Xp, the random variable In converges in
distribution to ∫

[0,1]d
I ′C(G)(u)2du.

We now give the expression of the statistic in terms of the pseudo-observations.

Proposition 10 We have

In =
1

n

n∑
i=1

n∑
l=1

d∏
j=1

[1− Ûij ∨ Ûlj]−
2

np

n∑
i=1

p∏
k=1

n∑
l=1

bk∏
j=bk−1+1

[1− Ûij ∨ Ûlj]

+
1

n2p−1

p∏
k=1

n∑
i=1

n∑
l=1

bk∏
j=bk−1+1

[1− Ûij ∨ Ûlj].
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Proof. For any u ∈ [0, 1]d, we have[
Cn(u)−

p∏
k=1

Cn(u{k})

]2

= Cn(u)2 − 2Cn(u)
p∏

k=1

Cn(u{k}) +
p∏

k=1

Cn(u{k})2.

Integrating the first term over [0, 1]d, we obtain

∫
[0,1]d

Cn(u)2du =
∫

[0,1]d

 1

n

n∑
i=1

d∏
j=1

1[Ûij ≤ uj]

 1

n

n∑
l=1

d∏
j=1

1[Ûlj ≤ uj]

 du

=
1

n2

n∑
i=1

n∑
l=1

d∏
j=1

∫
[0,1]

1[Ûij ≤ uj]1[Ûlj ≤ uj]duj =
1

n2

n∑
i=1

n∑
l=1

d∏
j=1

[1− Ûij ∨ Ûlj].

Similarly, for the last term, it is easy to verify that

∫
[0,1]d

p∏
k=1

Cn(u{k})2du =
1

n2p

p∏
k=1

n∑
i=1

n∑
l=1

bk∏
j=bk−1+1

[1− Ûij ∨ Ûlj].

Finally, for the second term, we have

∫
[0,1]d

Cn(u)
p∏

k=1

Cn(u{k})du =
∫

[0,1]d

 1

n

n∑
i=1

p∏
k=1

bk∏
j=bk−1+1

1[Ûij ≤ uj]

 p∏
k=1

Cn(u{k})du

=
∫

[0,1]d

1

n

n∑
i=1

p∏
k=1

Cn(u{k})
bk∏

j=bk−1+1

1[Ûij ≤ uj]

 du

=
∫

[0,1]d

1

n

n∑
i=1

p∏
k=1

 1

n

n∑
l=1

bk∏
j=bk−1+1

1[Ûij ≤ uj]1[Ûlj ≤ uj]

 du

=
1

np+1

n∑
i=1

p∏
k=1

n∑
l=1

bk∏
j=bk−1+1

[1− Ûij ∨ Ûlj].

2

3.2 Statistics derived from the Möbius decomposition of the independence
process

The 2p− p− 1 Cramér-von Mises statistics obtained from the Möbius decom-
position of the independence empirical copula process are given by

MA,n = n
∫

[0,1]d
MA(Cn)(u)2du, A ∈ PS.

The following result is an immediate consequence of Theorem 8 and the con-
tinuous mapping theorem.
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Corollary 11 Suppose that C has continuous partial derivatives. Then, un-
der mutual independence of X1,. . . ,Xp, the random vector {MA,n : A ∈ PS}
converges in distribution to the random vector{∫

[0,1]d
M′

A,C(G)(u)2du : A ∈ PS
}
,

whose components are mutually independent.

The following lemma will be useful to establish the expression of the statistics
in terms of the pseudo-observations. It is a simple adaptation of a known
result; see e.g. [18].

Lemma 12 Let A ∈ PS. Then, for any u ∈ [0, 1]d, we have

MA(Cn)(u) =
1

n

n∑
i=1

∏
k∈A

 bk∏
j=bk−1+1

1[Ûij ≤ uj]− Cn(u{k})

 .

Proof. For any u ∈ [0, 1]d, starting from (6), we can write

MA(Cn)(u) =
∑
B⊆A

 1

n

n∑
i=1

∏
k∈B

bk∏
j=bk−1+1

1[Ûij ≤ uj]

 ∏
l∈A\B

(−1)|A|−|B|Cn(u{l})

=
1

n

n∑
i=1

∏
k∈A

 bk∏
j=bk−1+1

1[Ûij ≤ uj]− Cn(u{k})

 ,
where the last equality follows from the multinomial formula. 2

In terms of the pseudo-observations, the statistics can be expressed as follows.

Proposition 13 For any A ∈ PS, we have

MA,n =
1

n

n∑
i=1

n∑
l=1

∏
k∈A

 bk∏
j=bk−1+1

[1− Ûij ∨ Ûlj]−
1

n

n∑
m=1

bk∏
j=bk−1+1

[1− Ûij ∨ Ûmj]

− 1

n

n∑
m=1

bk∏
j=bk−1+1

[1− Ûlj ∨ Ûmj] +
1

n2

n∑
r=1

n∑
s=1

bk∏
j=bk−1+1

[1− Ûrj ∨ Ûsj]

 .

Proof. Starting from Lemma 12, for any u ∈ [0, 1]d, we can write

MA(Cn)(u)2

=
1

n2

n∑
i=1

n∑
l=1

∏
k∈A

 bk∏
j=bk−1+1

1[Ûij ≤ uj]− Cn(u{k})

 bk∏
j=bk−1+1

1[Ûlj ≤ uj]− Cn(u{k})

 ,

15



which is equivalent to

MA(Cn)(u)2 =
1

n2

n∑
i=1

n∑
l=1

∏
k∈A

 bk∏
j=bk−1+1

1[Ûij ≤ uj]1[Ûlj ≤ uj]

−
bk∏

j=bk−1+1

1[Ûij ≤ uj]Cn(u{k})−
bk∏

j=bk−1+1

1[Ûlj ≤ uj]Cn(u{k}) + Cn(u{k})2

 .
Using the expression for the empirical copula, the term between brackets be-
comes

bk∏
j=bk−1+1

1[Ûij ≤ uj]1[Ûlj ≤ uj]−
1

n

n∑
m=1

bk∏
j=bk−1+1

1[Ûij ≤ uj]1[Ûmj ≤ uj]

− 1

n

n∑
m=1

bk∏
j=bk−1+1

1[Ûlj ≤ uj]1[Ûmj ≤ uj]+
1

n2

n∑
r=1

n∑
s=1

bk∏
j=bk−1+1

1[Ûrj ≤ uj]1[Ûsj ≤ uj].

Integrating over [0, 1]dk , we obtain

bk∏
j=bk−1+1

[1− Ûij ∨ Ûlj]−
1

n

n∑
m=1

bk∏
j=bk−1+1

[1− Ûij ∨ Ûmj]

− 1

n

n∑
m=1

bk∏
j=bk−1+1

[1− Ûlj ∨ Ûmj] +
1

n2

n∑
r=1

n∑
s=1

bk∏
j=bk−1+1

[1− Ûrj ∨ Ûsj].

2

3.3 Practical computation of the statistics

In order to increase the speed of the calculations of the statistics MA,n, A ∈ PS,
it is convenient to first compute the quantity

J(Û , i, l, k) =
bk∏

j=bk−1+1

[1− Ûij ∨ Ûlj], i, l ∈ {1, . . . , n}, k ∈ S,

that depends on the pseudo-observations, and then, for any i ∈ {1, . . . , n} and
any k ∈ S, the quantities

K(Û , i, k) =
1

n

n∑
l=1

bk∏
j=bk−1+1

[1− Ûij ∨ Ûlj] =
1

n

n∑
l=1

J(Û , i, l, k),

and

L(Û , k) =
1

n2

n∑
i=1

n∑
l=1

bk∏
j=bk−1+1

[1−Ûij∨Ûlj] =
1

n2

n∑
i=1

n∑
l=1

J(Û , i, l, k) =
1

n

n∑
i=1

K(Û , i, k).
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The statistics are then given by

In =
1

n

n∑
i=1

n∑
l=1

p∏
k=1

J(Û , i, l, k)− 2
n∑
i=1

p∏
k=1

K(Û , i, k) + n
p∏

k=1

L(Û , k),

and by

MA,n =
1

n

n∑
i=1

n∑
l=1

∏
k∈A

[
J(Û , i, l, k)−K(Û , i, k)−K(Û , l, k) + L(Û , k)

]
, A ∈ PS.

3.4 Bootstrap of the test statistics

As already noted, in the current multivariate setting, the Cramér-von Mises
test statistics under consideration are not distribution-free (see Theorems 3
and 8). In such a situation, a sensible way of obtaining critical values and
p-values involves using the bootstrap methodology.

Under the assumption of independence among X1, . . . ,Xp, a natural estimate
of the copula C is given by

∏p
k=1Cn(u{k}), u ∈ [0, 1]d. It is then natural to

consider that the bootstrap sample is constructed by sampling independently
from the empirical marginal c.d.f. of each vector Xi, i ∈ S; see e.g. [12,19]. Let
Fn denote the joint empirical c.d.f. of X1, . . . ,Xp computed from the available
data. The bootstrap sample is therefore a random sample drawn from the
empirical c.d.f.

∏p
k=1 Fn(x{k}), x ∈ Rd, where, for any k ∈ {1, . . . , p}, x{k} is a

d-dimensional vector defined, for any i ∈ {1, . . . , d}, by

x
{k}
i =

xi, if i ∈ {bk−1 + 1, . . . , bk},

∞, otherwise.

The aim of this subsection is to verify that the bootstrap distributions con-
verge appropriately. Before presenting the main results, we introduce some
definitions and notation, and state two lemmas.

For any c.d.f. G : R→ [0, 1], define its generalized inverse by

G−(u) = inf{x ∈ R : G(x) ≥ u}.

Also, let D([0, 1]d) (resp. C([0, 1]d)) be the space of càdlàg (resp. continuous)
functions on [0, 1]d equipped with the Skorohod (resp. uniform) topology.

The following result is due to Fermanian, Radulovic and Wegkamp [15].

Lemma 14 Let G be a c.d.f. with compact support [0, 1]d and marginal c.d.f.s
G1, . . . , Gd that are continuously differentiable on [0, 1] with strictly positive
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densities. Furthermore, assume that G is continuously differentiable on [0, 1]d.
Then, the map φ : D([0, 1]d)→ `∞([0, 1]d) defined by

φ(G)(u) = G(G−1 (u1), . . . , G−d (ud)), u = (u1, . . . , ud) ∈ [0, 1]d, (8)

is Hadamard differentiable tangentially to C([0, 1]d).

Let F denote the c.d.f. of (X1, . . . ,Xp) = (X1, . . . , Xd), and, for any i ∈
{1, . . . , d}, let Fi denote the marginal c.d.f. of the random variable Xi. De-
fine the random vector (U1, . . . , Ud) by Uj = Fj(Xj), j ∈ {1, . . . , d}, and let
H be its c.d.f. Notice that (U1, . . . , Ud) has uniform marginals. Similarly, let
(U11, . . . , U1d),. . . ,(Un1, . . . , Und) be the n independent copies of (U1, . . . , Ud)
obtained from the available sample (X11, . . . , X1d), . . . , (Xn1, . . . , Xnd). The
empirical c.d.f. obtained from the (Ui1, . . . , Uid), i ∈ {1, . . . , n}, is denoted
by Hn. Finally, let the bootstrap sample drawn from the empirical c.d.f.∏p
k=1 Fn(x{k}) be denoted by (X∗i1, . . . , X

∗
id), i ∈ {1, . . . , n}, let (U∗i1, . . . , U

∗
id),

i ∈ {1, . . . , n}, be its corresponding probability-transformed version and let
H∗n be the empirical c.d.f. obtained from this last sample.

The following lemma is a known result; see e.g. [17, Theorem 3.8.3].

Lemma 15 Under mutual independence among X1, . . . ,Xp, the conditional
distribution of the process

√
n

[
H∗n(u)−

p∏
k=1

Hn(u{k})

]
, u ∈ [0, 1]d,

given the data, converges to the same limiting distribution as that of

√
n

[
Hn(u)−

p∏
k=1

H(u{k})

]
, u ∈ [0, 1]d,

in `∞([0, 1]d) almost surely.

Denote by C∗n the empirical copula obtained from the bootstrap sample (X∗i1, . . . , X
∗
id),

i ∈ {1, . . . , n}.

Theorem 16 Suppose that C has continuous partial derivatives. Under mu-
tual independence among X1, . . . ,Xp, the conditional distribution of the process

√
n

[
C∗n(u)−

p∏
k=1

Cn(u{k})

]
, u ∈ [0, 1]d,

given the data, converges to the same limiting distribution as that of

√
n

[
Cn(u)−

p∏
k=1

C(u{k})

]
, u ∈ [0, 1]d,
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in `∞([0, 1]d) in probability.

Proof. Observe that H satisfies the conditions of Lemma 14. Invoke the func-
tional delta method and the functional delta method for the bootstrap [17,
Theorems 3.9.4 and 3.9.11] with the Hadamard differentiable map (8) applied
to Lemma 15. Then, under mutual independence, the conditional distribution
of the process

√
n

[
φ(H∗n)(u)−

p∏
k=1

φ(Hn)(u{k})

]
, u ∈ [0, 1]d,

given the data, converges to the same limiting distribution as that of

√
n

[
φ(Hn)(u)−

p∏
k=1

φ(H)(u{k})

]
, u ∈ [0, 1]d,

in `∞([0, 1]d) in probability. Now, it is well-known that

φ(H)(u) = H(H−1 (u1), . . . , H−d (ud)) = H(u) = C(u), u ∈ [0, 1]d.

The result follows since, as shown for instance in [15, Lemma 1 and p 854],
almost surely,

sup
u∈[0,1]d

|φ(Hn)(u)− Cn(u)| ≤ O(n−1).

The same clearly holds for φ(H∗n) and C∗n. 2

Let I∗n denote the version of In computed from the bootstrap sample, and
M∗

A,n, A ∈ PS, be the version of MA,n, A ∈ PS, respectively, computed from
the bootstrap sample.

Proposition 17 Suppose that C has continuous partial derivatives. Then,
under mutual independence, the conditional distribution of the random variable
I∗n given the data, converges to the same limiting distribution as that of In in
probability.

Proof. Starting from Theorem 16, apply the functional delta method and the
functional delta method for the bootstrap, both with the Hadamard differen-
tiable map (5) (see Lemma 2). Conclude that under mutual independence
among X1, . . . ,Xp, the conditional distribution of the process

√
nI(C∗n)(u),

u ∈ [0, 1]d given the data, converges to the same limiting distribution as that
of
√
nI(Cn)(u), u ∈ [0, 1]d, in `∞([0, 1]d) in probability. Finally, recall the

characterization of convergence in probability in terms of every subsequence
having a further subsequence that converges almost surely. For almost every
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data set, we may apply the continuous mapping theorem for the Cramér-von
Mises functional to the appropriate subsequences to complete the proof. 2

We have a similar result for the statistics obtained from the Möbius decom-
position.

Proposition 18 Suppose that C has continuous partial derivatives. Then,
under mutual independence, the conditional distribution of the vector {M∗

A,n :
A ∈ PS} given the data, converges to the same limiting distribution as that of
{MA,n : A ∈ PS} in probability.

Proof. Starting from Theorem 16, apply the functional delta method and
the functional delta method for the bootstrap, both with the Hadamard dif-
ferentiable map ~MS defined at the beginning of the proof of Theorem 8, and
proceed as above. 2

3.5 Practical implementation of the tests

As mentioned in the previous subsection, in the studied context, bootstrap
samples should be formed by sampling from the empirical c.d.f.

∏p
k=1 Fn(x{k}),

x ∈ Rd. Once a bootstrap sample is obtained, the next step would involve com-
puting the pseudo-observations from the ranks and then the various statistics
under consideration. The practical inconvenience of this approach is that the
ranks would not be unambiguously defined as ties can occur in the bootstrap
sample. A simple way to resolve this issue consists of sampling independently
but without replacement from the empirical marginal c.d.f. of each vector Xi,
i ∈ S, which amounts to adopting a permutation approach. From a theoretical
perspective, as discussed in [17, p 371], although a proof of the analogue of
Lemma 15 for the resulting permutation independence process appears to be
unavailable at this point, it is likely that it has the same asymptotic behavior
as the bootstrap independence process considered therein.

With the exception of the aforementioned permutation approach, the rest of
this subsection presents straightforward adaptations of the practical solutions
adopted in [4] to implement the “univariate” versions of the tests under con-
sideration.

Approximate p-values for the test statistics: Denote by (X1,1, . . . ,X1,p),
. . . , (Xn,1, . . . ,Xn,p) the n available independent copies of the random vector
(X1, . . . ,Xp). Let Qn stand for In or MA,n, A ∈ PS. An approximate p-value
for Qn can be obtained as follows:
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(1) Let Qn,0 be the value of Qn computed from the original sample.
(2) Generate N×p random permutations σi,j, i ∈ {1, . . . , N}, j ∈ {1, . . . , p},

on {1, . . . , n}. For any i ∈ {1, . . . , N}, let Qn,i be the value of Qn obtained
from the sample (Xσi,1(1),1, . . . ,Xσi,p(1),p), . . . , (Xσi,1(n),1, . . . ,Xσi,p(n),p).

(3) An approximate p-value for the test statistic is then

1

N + 1

{
1

2
+

N∑
i=1

1[Qn,i ≥ Qn,0]

}
.

Note that when all the random vectors under consideration have dimension
one, i.e. when p = d, the permutation approach presented above is equivalent
to the procedure used in [4, §4.4] for simulating under the null hypothesis.

Rejection region for the test based on the Möbius decomposition:
For the test based on the Möbius decomposition of the independence empirical
copula process, a rejection region is constructed as⋃

A∈PS
{MA,n ≥ mA},

where mA are critical values chosen to achieve an asymptotic global signifi-
cance level α. As discussed in [4], it is convenient to choose these critical values
such that, under independence,

P

[∫
[0,1]d
M′

A,C(G)(u)2du ≥ mA

]
= 1− β, A ∈ PS,

where β = (1−α)1/(2p−p−1). Approximate critical values can be obtained from
the values of the test statistics computed from the randomized samples.

Dependogram: In the case of the test based on the Möbius decomposition of
the independence empirical copula process, Genest and Rémillard [4] proposed
a graphical representation of the values of the observed test statistics: for each
subset A ∈ PS, a vertical bar is drawn whose height is proportional to the
value of MA,n. The approximate critical values mA, A ∈ PS, are represented
on the bars by black bullets. Subsets such that the bar exceeds the critical
value can be considered as being composed of dependent vectors.

To illustrate the practical interest of a dependogram, we extend the example
considered in [4, §4.2].

Let Z = (Z1, Z2) be a two-dimensional normal random vector whose com-
ponents are standard normals such that cor(Z1, Z2) = 0.5, and let Z′ =
(Z ′1, Z

′
2) and Z′′ = (Z ′′1 , Z

′′
2 ) be two independent copies of Z = (Z1, Z2).

Let Y = (Y1, Y2, Y3) be a three-dimensional normal random vector, whose
components are standard normals such that cor(Yi, Yj) = 0.3, i 6= j, and
let Y′ = (Y ′1 , Y

′
2 , Y

′
3) be an independent copy of Y, where Y and Y′ are
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Fig. 1. Dependogram of asymptotic global level α = 5% constructed from a sample
of size n = 100 from the 12-dimensional random vector defined in the last but one
paragraph of Subsection 3.5.

both independent of the Zs. Now, define the two-dimensional random vec-
tor X = (X1, X2) by

Xi = |Zi|sign(Z ′1Z
′′
1 ), for i = 1, 2,

and the three-dimensional random vector T = (T1, T2, T3) by

Ti = Yi + Y ′i , for i = 1, 2, 3.

The random vectors Y and T are clearly not independent. Following [20],
X1, Z

′
1, Z

′′
1 are pairwise but not jointly independent. The same holds forX2, Z

′
1, Z

′′
1 .

In fact, it can be shown that the random vectors X, Z′ and Z′′ are pairwise
(but not jointly) independent 1 .

To illustrate a test of independence among the random vectors X, Z′, Z′′, Y

1 To verify the equality P [X ∈ A,Z′ ∈ B] = P [X ∈ A]P [Z′ ∈ B], write

A =
.⋃

i,j∈{−1,0,1}

Ai,j , and B =
.⋃

k,l∈{−1,0,1}

Bk,l

where Ai,j = {(x1, x2) ∈ A : sign(x1) = i, sign(x2) = j} and similarly for B. Then,
it suffices to prove the equality for each Ai,i and Bk,l with i, k, l 6= 0. Proceed by
conditioning on the signs of Z ′1 and Z ′2.
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and T, n = 100 realizations of the random vector (X,Z′,Z′′,Y,T) were gen-
erated. The dependogram obtained from the observations is represented in
Figure 1. As one can see, the pair {Y,T} (denoted by {4, 5} on the dependo-
gram) exhibits a clear dependence. The same holds for the triplet {X,Z′,Z′′}
(denoted by {1, 2, 3} on the dependogram) which highlights the joint depen-
dence among X, Z′, Z′′. Notice that the pairwise statistics (denoted by {1, 2},
{1, 3} and {2, 3} on the dependogram) are not significant. The approximate
critical values were computed on the basis of N = 1000 randomized samples.
The computation took approximately 10 seconds on a Pentium M 2.2 GHz
processor.

Combining p-values: As discussed in [4], under independence, the p-values
obtained from the statistics MA,n, A ∈ PS, are approximately uniform on [0, 1].
From Corollary 11, it follows that, under independence, these p-values are also
asymptotically mutually independent. This led Genest and Rémillard [4] to
consider a global test of independence based on Fisher’s p-value combination
method. Additional combination rules were studied in [10]. In the rest of the
paper, we restrict ourselves to the approaches proposed by Fisher [21] and
Tippett [22]. From a practical perspective, the corresponding global p-values
are obtained as follows:

(1) Let MA,n,0, A ∈ PS, be the statistics computed from the original data.
(2) Generate N randomized samples from the original data and let MA,n,i,

A ∈ PS, be the statistics computed from the i-th sample.
(3) An approximate p-value for the statistic MA,n,j, A ∈ PS, is then

ψ(MA,n,j) =
1

N + 1

{
1

2
+

N∑
i=1

1[MA,n,i ≥MA,n,j]

}
, j ∈ {0, 1, . . . , N}.

Next, for all i ∈ {0, 1, . . . , N}, compute

Wn,i = −2
∑
A∈PS

log [ψ(MA,n,i)] and Tn,i = min
A∈PS

[ψ(MA,n,i)] .

(4) An approximate p-value for the global test à la Fisher (resp. à la Tippett)
is then given by

1

N

N∑
i=1

1[Wn,i ≥ Wn,0]

(
resp.

1

N

N∑
i=1

1[Tn,i ≤ Tn,0]

)
.

4 Simulations

In order to investigate the finite-sample behavior of the different tests stud-
ied thus far, simulations were performed. More precisely, the dependence
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between three continuous r-dimensional random vectors X = (X1, . . . , Xr),
Y = (Y1, . . . , Yr), Z = (Z1, . . . , Zr) was investigated. To that end, the random
vector (X1, . . . , Xr, Y1, . . . , Yr, Z1, . . . , Zr) of dimension d = 3r was assumed to
have a copula of the elliptical type, either the normal copula, or the t-copula
with 2 degrees of freedom. These two copulas can be defined respectively as
follows:

• The d-dimensional, d ≥ 2, normal copula with d × d correlation matrix
Σ = (ρij) is defined by FΣ(F−1

N (u1), . . . , F−1
N (ud)), u ∈ [0, 1]d, where FN is

the standard normal c.d.f. and

FΣ(x) =
∫ x1

−∞
. . .
∫ xd

−∞

1

(2π)d/2|Σ|1/2
exp

(
−1

2
ytΣ−1y

)
dy1 . . . dyd, x ∈ Rd.

• The d-dimensional, d ≥ 2, t-copula with ν degrees of freedom and d × d
correlation matrix Σ = (ρij) is defined as FΣ,ν(F

−1
t,ν (u1), . . . , F−1

t,ν (ud)), u ∈
[0, 1]d, where Ft,ν is the standard univariate tν c.d.f. and

FΣ,ν(x) =
∫ x1

−∞
. . .
∫ xd

−∞

Γ
(
ν+d

2

)
Γ
(
ν
2

)
(πν)d/2|Σ|1/2

(
1 +

ytΣ−1y

ν

)− ν+d
2

dy1 . . . dyd.

For both copulas, the d× d correlation matrices Σ were structured as follows:

X1 . . . Xr Y1 . . . Yr Z1 . . . Zr

X1 1 ρintra

... ρinter ρinter

Xr ρintra 1

Y1 1 ρintra

... ρinter ρinter

Yr ρintra 1

Z1 1 ρintra

... ρinter ρinter

Zr ρintra 1

where ρinter (resp. ρintra) controls the amount of dependence among (resp.
within) the random vectors.

Both for the normal copula and the t copula with 2 degrees of freedom, we
considered the values 0, 0.1, 0.2, 0.3, 0.4 for ρinter, and 0 and 0.5 for ρintra.
For each copula family, and each combination of ρinter and ρintra, we gener-
ated R = 1000 samples composed of n = 100 independent realizations of
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Fig. 2. Proportion of times that the different tests rejected independence at the
5 % significance level for the normal copula with r = 2 (i.e., d = 6). The statistic
In is defined in (7), Wn is the test statistic à la Fisher, Tn is the test statistic à la
Tippett, and Ln is the likelihood ratio test statistic.

(X1, . . . , Xr, Y1, . . . , Yr, Z1, . . . , Zr) using the R copula package. Note that, in
all the simulations, the number of randomized samples was set to N = 1000.

For r = 2 (i.e., d = 6), the proportion of times that the different tests rejected
independence at the 5 % significance level is represented in Figure 2. Each
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row of graphs in Figure 2 corresponds to a different marginal c.d.f. As in
[4], this was done to enable the comparisons of the studied tests with the
likelihood ratio test [23], which is the most common procedure for checking
independence, and is asymptotically optimal under multivariate normality. In
the current context, the likelihood ratio test statistic can be written as

Ln = −n log

(
|Sn|

|Sn,X||Sn,Y||Sn,Z|

)
,

where Sn is the sample covariance matrix computed from the data and Sn,X,
Sn,Y, and Sn,Z are the “within vector” sample covariance matrices computed
from the available realizations of X, Y and Z respectively. The latter covariance
matrices are clearly sub-matrices of Sn. Under mutual independence of X, Y
and Z with finite fourth moments, Ln is known to converge in distribution to a
chi-square random variable with 3r2 degrees of freedom; see e.g. [24,25]. As in
[4], four marginal c.d.f.s were considered: the standard normal, the standard
exponential, the standard Cauchy and the Pareto x 7→ 1−x−4, x ≥ 1. Of course
the studied tests, being rank-based, are margin-free, which explains why their
corresponding curves (within each column in Figure 2) are not affected by the
margins.

Except for the likelihood ratio test, similar results are presented in Figure 3
for the t-copula with d = 6 (first row of graphs), for the normal copula with
d = 12 (second row of graphs), and for the t-copula with d = 12 (third row of
graphs).

The following observations can be made from Figures 2 and 3:

• In the setting under consideration, the test based on In appears to be always
more powerful than the likelihood ratio test, which, in the multivariate
normal case (first row of graphs in Figure 2), comes as a surprise.
• Except in the multivariate normal case, the test based on Wn always seems

to outperform the likelihood ratio test, which is consistent with the results
obtained in the “univariate” case by Genest and Rémillard [4].
• The rank-based tests appear to always hold their nominal level (verified

from the rejection percentages under independence) which is not the case
of the likelihood ratio test as can be seen for instance from the last row of
graphs in Figure 2. The fact that the rejection percentages are clearly above
5 % in the first and third rows of graphs in Figure 3 for ρinter = 0 is due to
the fact that t copulas cannot model independence even in this case.
• Among the empirical copula-based tests, the test statistic In seems to lead

to the best results for d = 6 (i.e. r = 2), whereas Wn seems slightly more
powerful for d = 12 (i.e. r = 4). Additional simulations seem to suggest
that this behavior perdures as the dimension increases, and as the number
of random vectors increases.
• The power of the tests appears to globally decrease as |ρintra| increases.
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Fig. 3. Proportion of times that the different tests rejected independence at the 5
% significance level for the t-copula with d = 6 (first row of graphs), for the normal
copula with d = 12 (second row of graphs), and for the t-copula with d = 12 (third
row of graphs). The statistic In is defined in (7), Wn is the test statistic à la Fisher,
and Tn is the test statistic à la Tippett.

Other usual copula families were not considered as most of them are not
flexible enough to model simultaneously dependence among and within random
vectors.
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[9] P. Deheuvels, La fonction de dépendance empirique et ses propriétés: un test
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