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Abstract

We prove that the drift θ(d, β) for excited random walk in dimension d is monotone in
the excitement parameter β ∈ [0, 1], when d is sufficiently large. We give an explicit criterion
for monotonicity involving random walk Green’s functions, and use rigorous numerical upper
bounds provided by Hara [8] to verify the criterion for d ≥ 9.

1 Introduction

In this paper we study excited random walk, where the random walker has a drift in the direction
of the first component each time the walker visits a new site. It was shown that this process has
ballistic behaviour when d ≥ 2 in [4, 13, 14]. A nontrivial strong law of large numbers (SLLN) can
then be obtained for d ≥ 2 using renewal techniques (see for example [15, 16]). For d = 1, it is
known that ERW is recurrent and diffusive [7] except in the trivial case β = 1. Additional results
on one-dimensional (multi)-excited random walks can be found in [1, 2, 3, 16].

In [10], a perturbative expansion was introduced and used to prove a weak law of large numbers
and a central limit theorem for excited random walk in dimensions d > 5 and d > 8 respectively,
with sufficiently small excitement parameter. More recently, [5] explicitly proved a SLLN and
established a functional central limit theorem in dimensions d ≥ 2. Included in [10] is an explicit
representation of the drift in terms of the expansion coefficients. In this paper we use this repre-
sentation, together with explicit simple random walk Green’s function bounds [8, 9] to prove that
in dimensions d ≥ 9, the drift for excited random walk is (strictly) increasing in the excitement
parameter β.

1.1 Main results

The main result of this paper is the following theorem.
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Theorem 1.1 (Monotonicity of the speed). For all d ≥ 9, and β ∈ [0, 1], the drift for excited
random walk in dimension d with excitement parameter β is strictly increasing in β.

We are also able to show that for d ≥ 8, there exists β0(d) such that the drift for ERW is
strictly increasing in β ∈ [0, β0].

Simulations [5] suggest that the limiting variance of the first coordinate is not monotone in the
excitement parameter β in 2 dimensions. We expect that using the approach introduced in this
paper we can show that the variance is monotone decreasing in β when the dimension is taken
sufficiently high. By [10], the variance of the first coordinate is equal to σ2

βn(1 + o(1)) for some
asymptotic variance σ2

β, and based on our methods, we expect that σ2
β = d−1− d−2β2 +β2O (d−3),

showing that, in sufficiently high d, β 7→ σ2
β is decreasing.

Although we only consider the once-excited random walk in this paper, the general multi-
excited random walk can be handled with very minor modifications, yielding a result at least
as strong as Theorem 1.1. A large part of the methodology in this paper can be applied more
generally. See [12] for an application of the methods and results in this paper to the case where the
drift on subsequent visits to a site is in the opposite direction to that induced by the excitement
parameter on the first visit. Given the present context, another natural example is a random walk
in an environment that is random in the first few coordinates only, with the expected drift induced
by the environment denoted by ~β. Some progress has been made in this direction [11] making use
of the fact that a SLLN has been proved for general versions of such random walks in random
environment in [6].

We first introduce some notation. A nearest-neighbour random walk path ~η is a sequence
{ηi}∞i=0 for which ηi ∈ Zd and ηi+1 − ηi is a nearest-neighbour of the origin for all i ≥ 0. For a
general nearest-neighbour path ~η with η0 = 0, we write p~ηi(xi, xi+1) for the conditional probability
that the walk steps from ηi = xi to xi+1, given the history of the path ~ηi = (η0, . . . , ηi). We write,
for β ∈ [0, 1],

pβ(x) =
1 + βe1 · x

2d
I{|x|=1}, (1.1)

where e1 = (1, 0, . . . , 0), and x · y is the inner-product between x and y. Thus, pβ is the transition
probability for a random walk having a drift β when stepping in the first coordinate. We write ~ωn
for the n-step path of excited random walk (ERW), and Q for the law of {~ωn}∞n=0, i.e., for every
n-step nearest-neighbour path ~ηn,

Q(~ωn = ~ηn) =
n−1∏
i=0

p~ηi(ηi, ηi+1), (1.2)

where p0(0, η1) = pβ(η1) is the probability to jump to η1 in the first step, and

p~ηi(ηi, ηi+1) = p0(ηi+1 − ηi)I{ηi∈~ηi−1} + pβ(ηi+1 − ηi)[1− I{ηi∈~ηi−1}], (1.3)

where I{ηi∈~ηi−1} denotes the indicator that ηi = ηj for some 0 ≤ j ≤ i − 1. In words, the random
walker gets excited each time he/she visits a new site, and when the random walk is excited, it
has a positive drift in the direction of the first coordinate. For a description in terms of cookies,
see [16].
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2 An overview of the proof and the expansion

In this section we recall some results and notation from [10]. If ~η and ~ω are two paths of length
at least j and m respectively and such that ηj = ω0, then the concatenation ~ηj ◦ ~ωm is defined by

(~ηj ◦ ~ωm)i =

{
ηi when 0 ≤ i ≤ j,
ωi−j when j ≤ i ≤ m+ j.

(2.1)

Given ~ηm such that Q(~ωm = ~ηm) > 0, we define a probability measure Q~ηm on walks path starting
from ηm by specifying its value on particular cylinder sets (in a consistent manner) as follows

Q~ηm(~ωn = ~µn) ≡
n−1∏
i=0

p~ηm◦~µi(µi, µi+1), (2.2)

and extending the measure to all finite-dimensional cylinder sets in the natural (consistent) way.
Then (2.2) is also Q(~ωm+n = ~ηm ◦ ~µn|~ωm = ~ηm).

In [10], a perturbative expansion was derived for the two-point function cn(x) = Q(ωn = x),
giving rise to a recursion relation of the form

cn+1(x) =
∑
y∈Zd

pβ(y)cn(x− y) +
n+1∑
m=2

∑
y∈Zd

πm(y)cn+1−m(x− y). (2.3)

This expansion was used to prove a law of large numbers and central limit theorem for ERW. We
next discuss the coefficients πm(y) and some results of this expansion.

The expansion coefficients. Let N ≥ 1, and for i ≥ 0, let ~ω(i)

ji+1 be a path of length ji +1 ∈ Z+,
where, by convention, j0 = 0. Then define

∆N =
(
p
~ω

(N−1)
jN−1+1◦~ω

(N)
jN − p~ω

(N)
jN

)
(ω(N)

jN
, ω(N)

jN+1), (2.4)

which depends on ~ω(N−1)

jN−1+1 and ~ω(N)

jN+1 (although this dependence is suppressed in the notation).

The difference (2.4) is identically zero when the histories ~ω(N−1)

jN−1+1 ◦ ~ω
(N)

jN
and ~ω(N)

jN
give the same

transition probabilities to go from ω(N)

jN
to ω(N)

jN+1. For excited random walk, ∆N is non-zero precisely
when ω(N)

jN
has already been visited by ~ω(N−1)

jN−1+1 but not by ~ω(N)

jN−1, so that

|∆N | =
∣∣∣∣∣βe1 · (ω(N)

jN+1 − ω
(N)

jN
)

2d

[
I{ω(N)

jN
/∈~ω(N−1)

jN−1
◦~ω(N)

jN−1}
− I{ω(N)

jN
/∈~ω(N)

jN−1}

]∣∣∣∣∣ (2.5)

≤ β

2d
I{ω(N)

jN +1=ω
(N)
jN
±e1}

I{ω(N)
jN
∈~ω(N−1)

jN−1
\~ω(N)

jN−1}
≤ β

2d
I{ω(N)

jN +1=ω
(N)
jN
±e1}

I{ω(N)
jN
∈~ω(N−1)

jN−1
}.

Define Am,N = {(j1, . . . , jN) ∈ ZN
+ :

∑N
l=1 jl = m−N − 1}, AN =

·⋃
m Am,N and

π(N)

m (x, y) =
∑

~j∈Am,N

∑
~ω

(0)
1

∑
~ω

(1)
j1+1

· · ·
∑
~ω

(N)
jN +1

I{ω(N)
jN

=x,ω
(N)
jN +1=y}pβ(ω(0)

1 )
N∏
n=1

∆n

jn−1∏
in=0

p
~ω

(n−1)
jn−1+1◦~ω

(n)
in

(
ω(n)

in , ω
(n)

in+1

)
.

(2.6)
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Then we define

πm(x, y) =
∞∑
N=1

π(N)

m (x, y), π(N)(x, y) =
∑
m

π(N)

m (x, y), and πm(y) =
∞∑
N=1

∑
x∈Zd

π(N)

m (x, y). (2.7)

Note that the quantities π(N)
m are all zero when N + 1 > m, and that all of the above quantities

depend on β. Note further that ∑
y∈Zd

π(N)

m (x, y) = 0, (2.8)

since
∑
ω

(N)
jN +1

∆N = 0 (see also [10, (6.10)]).

The importance of these quantities is given by [10, Proposition 3.1], which states that if
limn→∞

∑n
m=2

∑
x∈Zd xπm(x) exists and n−1ωn converges in probability to θ, then

θ(β, d) =
∑
y∈Zd

ypβ(y) +
∞∑
m=2

∑
y∈Zd

yπm(y) =
βe1

d
+
∞∑
m=2

∑
y∈Zd

yπm(y). (2.9)

Strategy of the proof of Theorem 1.1. We shall explicitly differentiate the right hand side
of (2.9), and prove that this derivative is positive for all β ∈ [0, 1], when d ≥ 9. From (2.9) and
using (2.7)–(2.8), we have ∑

y∈Zd

yπm(y) =
∑

x,y∈Zd

(y − x)πm(x, y), (2.10)

so that

θ(β, d) =
βe1

d
+
∞∑
m=2

∞∑
N=1

∑
x,y∈Zd

(y − x)π(N)

m (x, y). (2.11)

Letting ϕ(N)
m (x, y) = ∂

∂β
π(N)
m (x, y) and assuming that the limit can be taken through the infinite

sums, we then have

∂θ

∂β
(β, d) =

e1
d

+
∞∑
N=1

∞∑
m=2

∑
x,y∈Zd

(y − x)ϕ(N)

m (x, y). (2.12)

Since ϕ(N)
m (x, y) ≡ 0 unless |x− y| = 1, we have that∣∣∣∣∣ ∂θ∂β (β, d)− e1

d

∣∣∣∣∣ ≤
∞∑
N=1

∞∑
m=2

∑
x,y∈Zd

|ϕ(N)

m (x, y)|. (2.13)

We conclude that ∂θ1
∂β

(β, d), which is the first coordinate of ∂θ
∂β

(β, d), is positive for any β at which∑∞
N=1

∑∞
m=2

∑
x,y∈Zd |ϕ(N)

m (x, y)| < d−1. This is what we shall prove in the remainder of this paper,
which is organised as follows. In Section 3, we start by proving bounds on π(N)

m . These bounds
will be crucially used to prove bounds on ϕ(N)

m in Section 4. The results in Section 4 are used in
Section 5 to prove Theorem 1.1.
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3 Bound on π

Before proceeding to the proof of Theorem 1.1, we prove a new bound on
∑
x,y∈Zd

∑
m |π(N)

m (x, y)|.
The proof of this new bound makes use of Lemma 3.1 below.

Let Pd denote the law of simple symmetric random walk in d dimensions, starting at the origin,
and let Dd(x) = I{|x|=1}/(2d) be the simple random walk step distribution. We will make use of
the convolution of functions, which is defined for absolutely summable functions f, g on Zd by

(f ∗ g)(x) =
∑
y∈Zd

f(y)g(x− y). (3.1)

Let f ∗k denote the k-fold convolution of f with itself, and let Gd(x) =
∑∞
k=0D

∗k
d (x) denote the

Green’s function for this random walk. We shall sometimes make use of the representation

G∗id (x) =
∞∑
k=0

∑
~mi:m1+···+mi=k

D
∗(m1+···+mi)
d (x) =

∞∑
k=0

(k + i− 1)!

(i− 1)!k!
Pd(ωk = x), for i ≥ 1. (3.2)

Note that G∗id (x) < ∞ if and only if d > 2i. We shall often abbreviate G∗id = G∗id (0). For i ≥ 0,
let

Ei(d) = sup
v∈Zd−1

(( d

d− 1

)i+1
G
∗(i+1)
d−1 (v)− δ0,v

)
. (3.3)

Lemma 3.1 (Diagrammatic bounds for ERW). For excited random walk, uniformly in u ∈ Zd

and ~ηm, for i ≥ 0,

∞∑
j=0

(j + i)!

j!
Q~ηm(ωj = u) ≤i!

( d

d− 1

)i+1
G
∗(i+1)
d−1 , (3.4)

∞∑
j=1

(j + i)!

j!
Q~ηm(ωj = u) ≤i!Ei(d). (3.5)

Proof. Define an increasing sequence of random variables Nj, j ≥ 0, by letting j − Nj be the
number of steps that the walk ~ωj takes in the first coordinate. Observe that independently of ~η,
Nj has a Binomial(j, qd) distribution, where qd = (d−1)/d. If we consider ~ωj as the initial position
and first j steps of an infinite walk ~ω, then the sequence {Nj}j≥0 is a random walk on Z+ taking
i.i.d. steps that are either +1 or 0 with probability qd and 1 − qd respectively. The random time
that such a walk spends at any level l has a Geometric distribution with parameter qd. Thus,
writing P for the law of {Nj}∞j=0, we obtain that for every i ≥ 0,

(j + i)!

j!
P(Nj = l) =

(j + i)!

j!

j!

l!(j − l)!
qld(1− qd)j−l = q−id

(l + i)!

l!
P(Nj+i = l + i),

so that, for m ≤ l,

∞∑
j=m

(j + i)!

j!
P(Nj = l) = q

−(i+1)
d

(l + i)!

l!
. (3.6)
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Given u = (u1, . . . , ud) ∈ Zd, we write u− := (u2, u3, . . . , ud) ∈ Zd−1. To prove (3.4), note that

∞∑
j=0

(j + i)!

j!
Q~ηm(ωj = u) =

∞∑
j=0

(j + i)!

j!

j∑
l=0

Q~ηm(ωj = u|Nj = l)P(Nj = l)

≤
∞∑
l=0

Pd−1(ωl = u− − η−m)
∞∑
j=l

(j + i)!

j!
P(Nj = l)

≤q−(i+1)
d sup

v∈Zd−1

∞∑
l=0

Pd−1(ωl = v)
(l + i)!

l!
. (3.7)

By (3.2), (3.7) is equal to i!q
−(i+1)
d supv∈Zd−1 G

∗(i+1)
d−1 (v). By [9, Lemma B.3], the supremum occurs

at v = 0. Since q−1
d = d/(d− 1), this proves (3.4).

The bound (3.5) is proved similarly. Indeed, for i ≥ 0, we can write

∞∑
j=1

(j + i)!

j!
Q~ηm(ωj = u) ≤ sup

v∈Zd−1

∞∑
l=0

Pd−1(ωl = v)
∞∑

j=l∨1

(j + i)!

j!
P(Nj = l)

= sup
v∈Zd−1

( ∞∑
l=0

Pd−1(ωl = v)
[ ∞∑
j=l

(j + i)!

j!
P(Nj = l)− δ0,li!P(N0 = 0)

])

= sup
v∈Zd−1

(
q
−(i+1)
d

∞∑
l=0

(l + i)!

l!
Pd−1(ωl = v)− i!δ0,v

)
=i! sup

v∈Zd−1

(
q
−(i+1)
d G

∗(i+1)
d−1 (v)− δ0,v

)
, (3.8)

since P(N0 = 0) = 1 and
∑∞
l=0 Pd−1(ωl = v)δ0,l = δ0,v, and following the steps in (3.7) above.

Define

ad =
d

(d− 1)2
G∗2d−1. (3.9)

Proposition 3.2 (Bounds on the expansion coefficients for ERW). For N = 1,∑
x,y∈Zd

∑
m |π(1)

m (x, y)| ≤ βd−1E0(d), and, for N ≥ 2,∑
x,y∈Zd

∑
m

|π(N)

m (x, y)| ≤ βNd−1(d− 1)−1Gd−1E1(d)aN−2
d . (3.10)

Given ~ηm and ~zj+1, define

∆(~zj+1) =
(
p~ηm◦~zj (zj, zj+1)− p~zj (zj, zj+1)

)
I{z0=ηm}. (3.11)

We will use the following lemma to prove Proposition 3.2.
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Lemma 3.3 (Ingredients for bounds on lace expansion coefficients). For any ~ηm,

∞∑
j=0

∑
~zj+1

|∆(~zj+1)|
j−1∏
i=0

p~ηm◦~zi (zi, zi+1) ≤ mβ
Gd−1

d− 1
, (3.12)

∞∑
j=0

(j + 1)
∑
~zj+1

|∆(~zj+1)|
j−1∏
i=0

p~ηm◦~zi (zi, zi+1) ≤ mβad, (3.13)

∞∑
j=1

∑
~zj+1

|∆(~zj+1)|
j−1∏
i=0

p~ηm◦~zi (zi, zi+1) ≤ mβ
E0(d)

d
, (3.14)

∞∑
j=1

(j + 1)
∑
~zj+1

|∆(~zj+1)|
j−1∏
i=0

p~ηm◦~zi (zi, zi+1) ≤ mβ
E1(d)

d
. (3.15)

Proof. As in (2.5), the left hand side of (3.12) is bounded above by

∞∑
j=0

∑
~zj

j−1∏
i=0

p~ηm◦~zi (zi, zi+1)

 I{zj∈~ηm−1}
β

2d

∑
zj+1

I{zj+1=zj±e1} (3.16)

≤ β

d

∞∑
j=0

∑
~zj

j−1∏
i=0

p~ηm◦~zi (zi, zi+1)

 I{zj∈~ηm−1},

since only two terms contribute to the rightmost sum in (3.16). From (2.2), this is equal to

β

d

∞∑
j=0

∑
~zj

Q~ηm(~ωj = ~zj)I{zj∈~ηm−1} =
β

d

∞∑
j=0

Q~ηm(ωj ∈ ~ηm−1) ≤
β

d

m−1∑
l=0

∞∑
j=0

Q~ηm(ωj = ηl). (3.17)

The inequality (3.12) then follows from (3.4) with i = 0. The inequality (3.13) is obtained similarly,
using (3.4) with i = 1 at the last step, while (3.14) and (3.15) are obtained using (3.5) with i = 0
and i = 1 respectively at the last step.

Proof of Proposition 3.2. It follows from (2.6) that
∑
x,y∈Zd

∑
m |π(N)

m (x, y)| is bounded by

∑
ω

(0)
1

pβ(ω(0)

1 )
∞∑
j1=1

∑
~ω

(1)
j1+1

|∆1|
j1−1∏
i1=1

p~ω
(0)
1 ◦~ω

(1)
i1

(
ω(1)

i1 , ω
(1)

i1+1

)
· · ·

∞∑
jN=0

∑
~ω

(N)
jN +1

|∆N |
jN−1∏
iN=1

p
~ω

(N−1)
jN−1+1◦~ω

(N)
iN

(
ω(N)

iN
, ω(N)

iN+1

)
,

(3.18)

where the sums over jk, k ≥ 2 are all from 0 to ∞. Note that ∆1 can only be non-zero if j1 is odd
(so in particular, non-zero). We proceed by using Lemma 3.3 to successively bound the sums over
jk of this expression, beginning with the sum over jN .

If N = 1 then we use (3.14) with m = 1 to bound this sum by mβ E0(d)
d

, and then
∑
ω

(0)
1
pβ(ω(0)

1 ) =

1 gives the result. If N > 1 then we use (3.12) with m = jN−1 + 1 on the sum over jN , followed by
repeated applications of (3.13) with m = jk−1 + 1 on the sums over jk with k = N − 1, . . . , 2
respectively, then (3.15) with m = 1 on the sum over j1 and again the result follows since∑
ω

(0)
1
pβ(ω(0)

1 ) = 1.
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Since the speed is known to exist [5], the following corollary is an easy consequence of [10,
Propositions 3.1 and 6.1] together with Proposition 3.2, and the fact that a6 < 1 since G∗25 < 52/6
[9].

Corollary 3.4 (Formula for the speed of ERW). For all d ≥ 6 and β ∈ [0, 1],

θ(β, d) = lim
n→∞

E[ωn+1 − ωn] =
βe1

d
+
∞∑
m=2

∑
x∈Zd

xπm(x). (3.19)

In fact, the first equality in Corollary 3.4 holds for all d ≥ 2 since the law µn of the cookie
environment as viewed by the random walker at time n is known to converge (see e.g. [5]) and

E[ωn+1 − ωn] = E
[
E[ωn+1 − ωn|~ωn]

]
= E

[
βe1

d
I{ωn /∈~ωn−1}

]
=
βe1

d

[
1− P(ωn ∈ ~ωn−1)

]
, (3.20)

where the right hand side converges as n→∞ since P(ωn ∈ ~ωn−1) is the µn-measure of the event
that the cookie at the origin is absent.

4 The differentiation step

To verify the exchange of limits in (2.12), it is sufficient to prove that
∑
x,y∈Zd(y − x)π(N)

m (x, y) is
absolutely summable in m and N (note that for every m and N the summations over x and y are
finite) and that

∑∞
N=1

∑∞
m=2 supβ∈[0,1] |

∑
x,y∈Zd(y − x)ϕ(N)

m (x, y)| <∞. By Proposition 3.2 and the
fact that |y − x| = 1 for x, y nearest neighbours, the first condition holds provided that

βad < 1. (4.1)

In fact we will see later on that this inequality for β = 1 is sufficient to also establish the second
condition. We now identify ϕ(N)

m (x, y).
Recall (2.6). Then we can write

ϕ(N)

m (x, y) = ϕ(N,1)

m (x, y) + ϕ(N,2)

m (x, y) + ϕ(N,3)

m (x, y), (4.2)

where (by Leibniz’ rule), ϕ(N,1)
m (x, y), ϕ(N,2)

m (x, y) and ϕ(N,3)
m (x, y) arise from differentiating pβ(ω(0)

1 ),∏N
n=1

∏jn−1
in=0 p

~ω
(n−1)
jn−1+1◦~ω

(n)
in

(
ω(n)

in , ω
(n)

in+1

)
and

∏N
n=1 ∆n, respectively, with respect to β.

Observe that if ηm = xl then

∂

∂β
p~ηm

β (xl, x) =
e1 · (x− xl)I{xl /∈~ηm−1}

2d
I{|x−xl|=1} =

I{xl /∈~ηm−1}

2d

(
I{x−xl=e1} − I{x−xl=−e1}

)
, (4.3)

and hence, using IA − IA∩C = IA∩Cc we have

∂

∂β

(
p~ηm

β (xl, x)− p~ωn◦~ηm

β (xl, x)
)

=
1

2d
I{xl /∈~ηm−1,xl∈~ωn−1}

(
I{x−xl=e1} − I{x−xl=−e1}

)
. (4.4)

Clearly then∣∣∣∣∣ ∂∂β
(
p~ηm

β (xl, x)− p~ωn◦~ηm

β (xl, x)
)∣∣∣∣∣ ≤ 1

2d
I{xl∈~ωn−1\~ηm−1}

(
I{x−xl=e1} + I{x−xl=−e1}

)
. (4.5)
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Let ρ(N) be the quantity obtained by replacing pβ(ω(0)

1 ) in (2.6) with (2d)−1I{ω(0)
1 =±e1}

(a bound

on its derivative) and by bounding ∆n by |∆n| for all n = 1, . . . , N .
For k = 1, . . . , N , let γ(N)

k be the quantity obtained from (2.6) by bounding ∆n by |∆n| for

all n = 1, . . . , N and by replacing
∏jk−1
ik=0 p

~ω
(k−1)
jk−1+1◦~ω

(k)
ik

(
ω(k)

ik
, ω(k)

ik+1

)
with the following bound on its

derivative
jk−1∑
l=0

I{ω(k)
l+1
−ω(k)

l
=±e1}

2d

jk−1∏
ik = 0
ik 6= l

p
~ω

(n−1)
jk−1+1◦~ω

(k)
ik

(
ω(k)

ik
, ω(k)

ik+1

)
. (4.6)

Similarly, let χ(N)

k be obtained by replacing ∆k in (2.6) by (2d)−1I{ω(k)
jk
∈~ω(k−1)

jk−1
}I{ω(k)

jk+1−ω
(k)
jk

=±e1}
(a

bound on its derivative) and by bounding ∆n for n 6= k by |∆n|.
Letting γ(N) =

∑N
k=1 γ

(N)

k and χ(N) =
∑N
k=1 χ

(N)

k , we obtain∑
m

∑
x,y∈Zd

|ϕ(N,1)

m (x, y)| ≤ ρ(N),
∑
m

∑
x,y∈Zd

|ϕ(N,2)

m (x, y)| ≤ γ(N), and
∑
m

∑
x,y∈Zd

|ϕ(N,3)

m (x, y)| ≤ χ(N).

(4.7)

We shall bound each of these terms separately, in Lemmas 4.1, 4.4 and 4.2 below.

Lemma 4.1 (Bounds on ρ(N)). For N = 1, ρ(1) ≤ d−2βE0(d), and, for N ≥ 2,

ρ(N) ≤ βN
Gd−1E1(d)

d2(d− 1)
aN−2
d . (4.8)

Proof. This is exactly the same as the proof of Proposition 3.2 except that at the very last step
we use ∑

ω
(0)
1

1

2d
I{ω(0)

1 =±e1}
=

1

d
. (4.9)

Lemma 4.2 (Bounds on χ(N)). For N = 1, χ(1) ≤ d−1E0(d), and, for N ≥ 2,

χ(N) ≤ NβN−1Gd−1E1(d)

d(d− 1)
aN−2
d . (4.10)

Proof. Proceeding exactly as in the proof of Proposition 3.2, except that the bound on |∆k| is
missing the β term, we obtain χ(1)

k ≤ d−1E0(d) and, for N ≥ 2,

χ(N)

k ≤ βN−1d−1(d− 1)−1Gd−1E1(d)aN−2
d . (4.11)

The resulting bound on χ(N), (which is simply β−1N times (3.10)) is then easily obtained by
summing over k from 1 to N .

Before proceeding to the bound on γ(N), we first need a new lemma similar to Lemma 3.1.
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Lemma 4.3. Let Q↔l,~ηm denote the law of a self-interacting random walk ~ω with history ~ηm, where
the transition probabilities are those of an ERW with history ~ηm, except that

Q↔l,~ηm(ωl+1 = ωl + e1|~ωl) = Q↔l,~ηm(ωl+1 = ωl − e1|~ωl) =
1

2
. (4.12)

Then, for all i ≥ 0,

∞∑
j=1

(j + i)!

j!

j−1∑
l=0

Q↔l,~ηm(ωj = u) ≤(i+ 1)!

(
d

d− 1

)i+2

G
∗(i+2)
d−1 . (4.13)

Proof. Since one of the j steps is a simple random walk step in the first coordinate, the number
of steps in the other coordinates has a Binomial(j − 1, d−1

d
) distribution. Thus,

∞∑
j=1

(j + i)!

j!

j−1∑
l=0

Q↔l,~ηm(ωj = u) ≤ sup
v∈Zd−1

∞∑
j=1

j∑
l=1

j−1∑
k=0

(j + i)!

j!
P(Nj−1 = k)Pd−1(ωk = v)

= sup
v∈Zd−1

∞∑
k=0

Pd−1(ωk = v)
∞∑

j=k+1

j
(j + i)!

j!
P(Nj−1 = k)

= sup
v∈Zd−1

∞∑
k=0

Pd−1(ωk = v)
∞∑
r=k

(r + i+ 1)!

r!
P(Nr = k). (4.14)

Now proceed as in the proof of Lemma 3.1 to obtain the result.
Define

ε(d) =
2d

(d− 1)4
Gd−1G

∗3
d−1 +

E1(d)

d(d− 1)2
G∗2d−1. (4.15)

Lemma 4.4 (Bounds on γ(N)). For N = 1, 2, γ(1) ≤ β(d − 1)−2G∗2d−1, γ(2) ≤ β2ε(d) and, for all
N ≥ 3,

γ(N) ≤ ε(d)β2(βad)
N−2 + (N − 2)

2β3E1(d)

(d− 1)4
Gd−1G

∗3
d−1(βad)

N−3. (4.16)

Proof. We proceed as in the proof of Proposition 3.2 except that from the definition of γ(N)

k , the
product of transition probabilities inside the sum over jk in (3.18), is replaced with (4.6). We use
Lemma 4.3 instead of Lemma 3.1 to bound this sum.

When N = 1, then also k = 1 and γ(1)

1 is

∑
ω

(0)
1

pβ(ω(0)

1 )
∞∑
j1=1

j1−1∑
l=0

∑
~ω

(1)
j1+1

|∆1|
I{ω(1)

l+1
−ω(1)

l
=±e1}

2d

j1−1∏
i = 0
i 6= l

p~ω
(0)
1 ◦~ω

(1)
i

(
ω(1)

i , ω
(1)

i+1

)

≤ β

d2

∑
ω

(0)
1

pβ(ω(0)

1 )
∞∑
j1=1

j1−1∑
l=0

∑
~ω

(1)
j1

I{ω(1)
j1

=ω
(0)
0 }

I{ω(1)
l+1
−ω(1)

l
=±e1}

2

j1−1∏
i = 0
i 6= l

p~ω
(0)
1 ◦~ω

(1)
i

(
ω(1)

i , ω
(1)

i+1

)
(4.17)

where we have used the usual bound (2.5) and the fact that
∑
ω

(1)
j1+1

I{ω(1)
j1+1=ω

(1)
j1
±e1}

= 2. Now

observe that

I{ω(1)
l+1
−ω(1)

l
=±e1}

2

j1−1∏
i = 0
i 6= l

p~ω
(0)
1 ◦~ω

(1)
i

(
ω(1)

i , ω
(1)

i+1

)
= Q↔l,~ω

(0)
1 (~ωj1 = ~ω(1)

j1 ), (4.18)
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so that (4.17) is equal to

β

d2

∑
ω

(0)
1

pβ(ω(0)

1 )
∞∑
j1=1

j1−1∑
l=0

∑
~ω

(1)
j1

I{ω(1)
j1

=ω
(0)
0 }

Q↔l,~ω
(0)
1 (~ωj1 = ~ω(1)

j1 )

=
β

d2

∑
ω

(0)
1

pβ(ω(0)

1 )
∞∑
j1=1

j1−1∑
l=0

Q↔l,~ω
(0)
1 (~ωj1 = ω(0)

0 ).

Now use (4.13) with i = 0 to get the required bound.
For the remaining cases we begin by adjusting the sum over jk in (3.18) as in (4.17) and (4.18).

When N > 1 and k = 1 we use the same bounds as in the proof of Proposition 3.2 except that we
use (4.13) with i = 1 on the sum over j1. This gives us a bound on γ(N)

1 (when N > 1) of

2β

d2

(
d

d− 1

)3

G∗3d−1

β

d− 1
Gd−1

N−1∏
i=2

βad. (4.19)

When N > 1 and k = N , we use the same bounds as in the proof of Proposition 3.2 except that
we use (4.13) with i = 0 on the sum over jN in (3.18). This gives us a bound on γ(N)

N (when N > 1)
of

β

(d− 1)2
G∗2d−1

β

d
E1(d)

N−1∏
i=2

βad. (4.20)

Similarly when N > 1 and 1 6= k 6= N (so N > 2) we use (4.13) on the sum over jk in (3.18) to
get a bound on γ(N)

k of the form

β

d− 1
Gd−1

β

d
E1(d)

2β

d2

(
d

d− 1

)3

G∗3d−1

N−1∏
i=2
i 6=k

βad. (4.21)

Simplifying these expressions and summing over k completes the proof of the lemma.

Corollary 4.5 (Summary of bounds). For all β ∈ [0, 1], and d such that ad < 1

d
∞∑
N=1

ρ(N) ≤E0(d)

d
+

Gd−1E1(d)

d(d− 1)(1− ad)
, (4.22)

d
∞∑
N=1

χ(N) ≤E0(d) +
Gd−1E1(d)(2− ad)
(d− 1)(1− ad)2

, (4.23)

d
∞∑
N=1

γ(N) ≤
dG∗2d−1

(d− 1)2
+

ε(d)d

1− ad
+

2dE1(d)Gd−1G
∗3
d−1

(d− 1)4(1− ad)2
. (4.24)

Proof. Firstly note that the condition on ad ensures that ρ(N), χ(N) and γ(N) are all summable over
N , and in all cases the supremum over β occurs at β = 1 (see Lemmas 4.1, 4.2 and 4.4). The
results are then easily obtained by summing each of the bounds in Lemmas 4.1, 4.2 and 4.4 over
N .
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5 Proof of Theorem 1.1

For d such that ad < 1, the bounds of Corollary 4.5 hold. From (4.7) we have the required
absolute summability conditions in the discussion after (2.12), and in particular (2.12) holds for
all β ∈ [0, 1]. To complete the proof of the theorem, it remains to show that the right hand side of
(2.13) is no more than d−1. By (4.7) and Corollary 4.5, we have bounded d times the right hand
side of (2.13) by the sum of the right hand sides of the bounds in Corollary 4.5. Since these terms
all involve simple random walk Green’s functions quantities, we will need to use estimates of these
quantities.

In order to bound Ei(d), we shall first prove that, for all i ≥ 0,

Ei(d) =
( d

d− 1

)i+1
G
∗(i+1)
d−1 − 1. (5.1)

In order to prove (5.1), we first make use of [9, Lemma B.3], which states that G∗nd (x) is non-
increasing in |xi| for every i = 1, . . . , d, so that the supremum in (3.3) can be restricted to v = 0
and v = e for any neighbour e of the origin. In order to bound G∗nd (e), we make use of the fact
that for any function x 7→ f(x) for which f(e) is constant for all e ∈ Zd with |e| = 1, we have
f(e) = (Dd ∗ f)(0), so that

Ei(d) = max
{( d

d− 1

)i+1
G
∗(i+1)
d−1 (0)− 1,

( d

d− 1

)i+1
(Dd−1 ∗G∗(i+1)

d−1 )(0)
}
. (5.2)

Note that since Gd(x) = δ0,x + (Dd ∗ Gd)(x) ≥ δ0,x, we have that G∗id (0) ≥ 1 and G
∗(i+1)
d (0) =

G∗id (0) + (Dd ∗G∗(i+1)
d )(0). Therefore,( d

d− 1

)i+1
G
∗(i+1)
d−1 (0)− 1 =

( d

d− 1

)i+1
(Dd−1 ∗G∗(i+1)

d−1 )(0) +
( d

d− 1

)i+1
G∗id (0)− 1, (5.3)

which is strictly larger than
(

d
d−1

)i+1
(Dd−1 ∗G∗(i+1)

d−1 )(0) and thus proves (5.1).

By [9, Lemma C.1], d 7→ G∗nd is monotone decreasing in d for each n ≥ 1, so that it suffices to
show that the sum of terms on the right hand sides of (4.22), (4.23) and (4.24) is bounded by 1
for d = 9. For this we use the following rigorous Green’s functions estimates [8, 9] for d = 8:

Gd ≤ 1.07865, G∗2d ≤ 1.2891, G∗3d ≤ 1.8316. (5.4)

Putting in these values for d− 1 = 8 we get that the sum of the right hand sides of the bounds in
Corollary 4.5 is at most 0.97, whence the result follows for d ≥ 9.

To prove monotonicity for β ∈ [0, β0] for some β0(d) for each d ≥ 8, it is sufficient to prove
that χ(1) < d−1 when d ≥ 8 (and that the other terms are bounded), since this is the only term
that does not contain a factor β that can be made arbitrarily small by choosing β0 small. Since
χ(1) ≤ d−1E0(d), it is enough to show that E0(d) < 1 for d = 8, since the right hand sides of (4.22),
(4.23) and (4.24) are bounded for d ≥ 8. From [9] we have 6

5
G5 − 1 < 6

5
(1.157)− 1 < 1, and since

E0(d) is decreasing in d, this completes the result.
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