The scaling limit of senile reinforced random walk
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Abstract

We prove that the scaling limit of nearest-neighbour senile reinforced random walk in the summable
reinforcement regime is a version of Brownian Motion when the time 7" spent on the first edge has finite
expectation. We also show that under suitable conditions, when 7" has heavy tails the scaling limit is
the so-called fractional kinetics process, a random time-change of Brownian motion.
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1 Introduction

The senile reinforced random walk is a toy model for a much more mathematically difficult model known as
edge-reinforced random walk (for which many basic questions remain open [e.g. see [14]]). It is characterized
by a reinforcement function f: N — [—1, 00), such that only the most recently traversed edge is reinforced.
As soon as a new edge is traversed, reinforcement begins on that new edge and the reinforcement of the
previous edge is forgotten. Such walks may get stuck on a single (random) edge if the reinforcement is
strong enough, otherwise (except for one degenerate case) they are recurrent/transient precisely when the
corresponding simple random walk is [8].

Formerly, a nearest-neighbour senile reinforced random walk is a sequence {Sy, }n>0 of Z%valued random
variables on a probability space (Q, F,Py) (with corresponding filtration {F, = o(So, ..., Sn)}n>0) defined
by:

The walk begins at the origin of Z¢, i.e. Sy = o, Ps-almost surely,

o Py(S1=1) = 571{a)=1}

Forn € N, e, = (S,—1,5,) is an F,-measurable undirected edge and
my, =max{k >1:e,_111 =€, forall 1 <1<k} (1.1)
is an J,,-measurable, N-valued random variable.

For n € N and = € Z% such that |z| = 1,

1+ f(my) . B
m, lf (Sn7Sn+fE) = €n,

Pi(Sps1 = Sp + 2| Fpn) = (1.2)

1 .
m, if (Sn,Sn+1') #en.

Note that the triple (Sy,e,, my,) (equivalently (S,,S,—1,my)) is a Markov chain. Hereafter we suppress
the f dependence of the probability Py in the notation.
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The diffusion constant for a senile random walk {S,, },,>0 with reinforcement function f is defined as

1
v = lim v,, where v, = —E[|S,|?], (1.3)
n—oo n
whenever this limit exists. For simple random walk v, = 1 for all n. Let T denote the random number
of consecutive traversals of the first edge traversed, and p = P(T is odd). It was shown in [8] that when
E[T'"€] < oo for some € > 0, the diffusion constant is given by

dp

YT [d—pE]

(1.4)

which is not monotone in the reinforcement. It is natural to expect that (1.4) holds for all f (in the case
d=1and f(1) = —1 this must be interpreted as “ 1/0 = 00”), and this is verified in [10].

A different but related model, in which the current direction (rather than the current edge) is reinforced
according to the function f was studied in [11, 9]. For such a model T is the number of consecutive steps
in the same direction before turning. In [9], the authors show that in all dimensions the scaling limit is a
version of Brownian motion when 02 =Var(T) < oo and 02 +1—1/d > 0. In the language of this paper, the
last condition corresponds to the removal of the special case d = 1 and f(1) = —1. Moreover when d = 1
and T has heavy tails (in the sense of (2.1) below) they show that the scaling limit is an a-stable process
when 1 < o < 2 and a random time change of an a-stable process when 0 < a < 1. See [9] for more details.

Davis [3] showed that the scaling limit of once-reinforced random walk in one dimension is not Brownian
motion (see [14] for further discussion).

The reinforcement regime of most interest is that of linear reinforcement f(n) = Cn for some C. In this
case, by the second order mean-value theorem applied to log(l — z), < 1 we have

n—1 d—
P(T >n) = Hzld—:_ff(—exp Zlog( Qil—i-C’lj)

n—1 n—1
2d — 1 (2d - 1)
=exp =D o Y e m—r>
= 2d+Cj = 2(2d + C5)%(1 — uy) (15)
n—1 [e'e)
2d — 1 (2d — 1)2
_ N _ 1
S B DD Do ey R e
—1
—exp { log(2d + C(n — 1)) + 7 + o<1>} -
n-c

where u; € (0, 55 +Cj) and -y is a constant arising from the summable infinite series and the approximation
of the finite sum by a log. An immediate consequence of (1.5) is that for f(n) = Cn, E[T] is finite if and
only if C' < 2d — 1.

In Section 2 we state and discuss the main result of this paper, which describes the scaling limit of senile
reinforced random walk when either E[T] < oo or P(T' > n) ~ n~*L(n) for some o > 0 and L slowly varying
at infinity. The scaling limit is not particularly interesting when P(7T" < co) < 1 since the walk gets stuck on
some random edge and therefore has finite (but random) range. In this case the random number of times
the walk leaves an edge before reaching the edge that it will traverse forever has a geometric distribution.
To prove the main result, in Section 3 we first observe the walk at the times that it has just traversed a
new edge and describe this as a suitably nice additive functional of a particular Markov chain. In Section
4 we prove the main result assuming the joint convergence of this time-changed walk and the associated
time-change process. Finally in Section 5 we prove the convergence of this joint process.

2 Main Result

The assumptions that will be necessary to state the main theorem of this paper are as follows:

(Al) P(T < 00) =1, and either d > 1 or P(T'=1) < 1.



(A2a) Either E[T] < oo, or for some « € (0,1] and L slowly varying at infinity,

P(T > n) ~ L(n)n™*. (2.1)
(A2b) If (2.1) holds but E[T] = oo, then we also assume that

when a =1, 3¢(n) /oo such that (£(n))""L(nf(n)) — 0, and ({(n))~* S =1 L35) — 1,
when o <1, P(T >n,T odd) ~ Ly(n)n~%, and P(T' > n,T even) ~ Le(n)n~ %,
(2.2)

where ¢, L, and L. are slowly varying at co and L, and L. are such that if «, = a then L,(n)/L.(n) —
B €1]0,00] as n — oo.

By Theorem XIII.6.2 of [5], when « < 1 there exists £(-) > 0 slowly varying such that

(t(n) ™" L (née(n)) (1 =)L (2.3)
For a > 0 let
_JE[T]n , if (2.1) is summable
a(n) = {nclxé(n) , otherwise (24)

By Theorem 1.5.12 of [2], there exists an asymptotic inverse function g, '(-) (unique up to asymptotic
equivalence) satisfying go(g;'(n)) ~ g5 (ga(n)) ~ n, and by Theorem 1.5.6 of [2] we may assume that g,
and g ' are monotone nondecreasing.

A subordinator is a real-valued process V' (t) with stationary, independent increments such that almost
every path is nondecreasing, right continuous and satisfies V/(0) = 0. Let By(t) be a standard d-dimensional
Brownian motion. For a > 1, let V,(¢) = ¢ and for o € (0,1), let V, be an a-stable subordinator
(independent of By(t)) satisfying

E[e Ve )] = ¢71A", (2.5)

Define the right-continuous inverse of V,,(¢) and (when a < 1 the fractional-kinetics process) Z,(s) by
Vo ls) =inf{t: Vo (t) > s}, Za(s) = B(V,1(s)). (2.6)

Since V, is strictly increasing, both V1 and Z, are continuous (almost-surely). The main result of this
paper is the following Theorem.

Theorem 2.1. Suppose that [ is such that (2.1) holds for some « > 0, then for every K > 0,

S|nt

Co )=w>Za(t). (2.7)
Tpgo (0

where the convergence is in D([0, K], R?) equipped with the uniform topology.

2.1 Discussion

Our results are inspired by [1], in which the scaling limit of a class of (continuous time) trap models is
considered. In that work the scaling limit is the same as in our regime when d > 2, however for d = 1 the
scaling limit is rather different. The difference can be attributed to the following facts. In our model, each
time the walk visits a new edge, the time spent on that edge is independent of all previous visits. This is
not the case for the trap model studied in [1] where a random jump rate is chosen initially at each site and
remains fixed thereafter. In one dimension this mutual dependence of the time spent at a particular site on
successive returns remains in the scaling limit, where the time change/clock process depends on the (local
time of the) Brownian motion itself.

If in the above continuous time model the jump rates at each visit to a site are instead chosen to be
independent (see [13, 12]), then it is known [12] that the scaling limit is the fractional kinetics process
described above. This is intuitive since in this case the process observed at times that it has just jumped to



a new (nearest neighbour) site is simple random walk, and the waiting times between jumps are independent
and identically distributed random variables that are independent of the position and history of the walk.
For the senile reinforced random walk, the direction of the steps of the walk is dependent on the clock and
we need to prove that the dependence is sufficiently weak so that it disappears in the scaling limit.

While the slowly varying functions in g, and g;' are not given explicitly, in many cases of interest
one can use Theorem XIII.6.2 of [5] and Section 1.5.7 of [2] to explicitly construct them. For example, let
L(n) = k(logn)? for some 8 > —1. For a = 1 we can take

klogn, if3=0 n(klogn)~1, if3=0
4(n) = < k(loglogn), if g=-1 and g2t (n) = { n(kloglogn)~1, if3=-1 (2.8)
|37 |k(logn)P+,  otherwise, n|B|(klogn)~(#+D | otherwise.

If « < 1 we can take

ogn A é —a
(n) = </~£F(1 - ) <1 i ) ) , and gt (n) =n® (k(a logn)ﬁ) . (2.9)

Assumption (A1) is simply to avoid the trivial cases where the walk gets stuck on a single edge (i.e.
when (1 + f(n))~! is summable [8]) or is a self-avoiding walk in one dimension. Roughly speaking, if f
grows more slowly than (2d — 1)n, then E[T] < co. For linear reinforcement f(n) = Cn, (1.5) shows that
assumption (A2) holds with a = (2d —1)/C. It would be of interest to consider the scaling limit when f(n)
grows like nf(n), where lim inf,, ., £(n) = oo but such that (14 f(n))~! is not summable. An example is
f(n) = nlogn, for which P(T > n) ~ (Clogn)~! satisfies (2.1) with a = 0.

The condition (2.2) when o = 1 is so that one can apply a weak law of large numbers. The condition
holds for example when L(n) = (logn)* for any k > —1. It would be surprising if the o < 1 case of
condition (2.2) is really necessary to obtain a meaningful scaling limit. The condition holds (with «, = a.
and L, = L.) whenever there exists ng such that for all n > ng, f(n) > f(n—1) — (2d—1) (so in particular
when f is non-decreasing). To see this, observe that for all n > ng

> > 2d 2m + 1
BT >nTeven)= > PT=2m)= 5 P(T2m+1)m
m
m=[ 741 m= 2 2.10)
> S BT =2m+1) =PI >n+1,T odd).
m= 21

Similarly, P(T' > n,T odd) > P(T' > n+1,T even) for all n > ng. If a, # . in (2.2), then (2.1) implies that
a = a, A a, and L is the slowly varying function corresponding to « € {a,, a.} in (2.2). If o, = a then
trivially L ~ L, + Lo (~ L, if Lo(n)/Le(n) — o0). One can construct examples of reinforcement functions
giving rise to different asymptotics for the even and odd cases in (2.2), for example by taking f(2m) = m?
and f(2m + 1) = Cm for some well chosen constant C' > 0 depending on the dimension.

Finally, note that in the case d = 1, and f(n) = n we have from [8] that p = 2(1 — log2) and P(T" >
n) =2(n+ 1)1 ~ 2n~1. Taking ¢(n) = 2logn and g, '(n) = n(2logn)~!, Theorem 2.1 then implies that
(p(1 —p)~tgz(n))~ 28, -2 B(1), which is consistent with the result of [8] that (for d = 1 and f(n) = n)

logn 2 1—log2
n E[Sn] - 2log2—1 > 0.

3 Invariance principle for the time-changed walk

In this section we prove an invariance principle for any senile reinforced random walk (satisfying (A1))
observed at stopping times 7,, defined by

70=0, 7% =1inf{n > (7k—1V1):S, # Sn_2}. (3.1)

It is easy to see that 7, =14 Y. | T; for each n > 1, where the T}, i > 1 are independent and identically
distributed random variables (with the same distribution as T'), corresponding to the number of consecutive
traversals of successive edges traversed by the walk.



Proposition 3.1. For f satisfying (A1), and every K > 0,

STL,,,” P
— =% By(t), (3.2)

p
dfpn

where the convergence is in D([0, K], R?) with the uniform topology.

The process S, is a simpler one than S,, and we expect that one may use many different methods to
prove Proposition 3.1 (see for example the Martingale approach of [10]). We give a proof based on describing
S:, as an additive functional of a Markov chain.

Let X denote the collection of pairs (u,v) such that

e v is one of the unit vectors u; € Z%, for i € {#1,42,--- £ d} (labelled so that u_; = —u;) and

e v is either 0 € Z% or one of the unit vectors u; # —wv.

The cardinality of X is then |X| = 2d + 2d(2d — 1) = (2d)?.

Given a senile reinforced random walk S,, with parameter p = P(T" odd) € (0, 1], we define an irreducible,
aperiodic Markov chain X,, = (X,[Ll] , Xy[f]) with natural filtration G,, = 0(X1, ..., X,,), and finite-state space
X, as follows.

Forn > 1, let X,, = (S;,-1 — Srin_1ys S — Sr 1), and Y, = Xr[}] + XT[LQ]. It follows immediately that
Sr, => _ Y, and

m=1
X1 :(0, Sﬁ)I{Tl even} + (Sl, 57—1 - STlfl)I{Tl odd}» and for n Z 2,

(3.3)
Xn :(07 S’rn - ST(n,l))I{Tn odd} + (_X»r[flp S’r71 - STnfl)I{Tn even}-

1-p

P(X1 = (0,u;)) = 24 and  P(X; = (u,uy)) = 5 b

m, for each i,j, (] 7é —Z) (34)

Now T, is independent of Xi,..., X1, and conditionally on T}, being odd (resp. even), S, — Sz, _,,
(resp. S, — S, _1) is uniformly distributed over the 2d — 1 unit vectors in Z? other than —X}ﬂl (resp.

other than X,[ﬂl). Therefore for n > 2,

]P)(Xn = (u, ’U)‘Xo, [N 7Xn—1) :P(Tn Odd7 STn - ST(n—l) = Ul)(o7 PN 7Xn—1)I{u:O}

+ P(Tn even, S‘rn - S‘anl = U‘Xo, ey Xnil)[{uz—x,f],l} (35)

D 1—p
=9q 1= o xt® y F 5T Tumex 2  ex iy

which depends only on X,_;. This verifies that X,, is a Markov chain with initial distribution (3.4) and
transition probabilities given by

P e, /
517, ifu=0andwv# -0,

P(Xn = (U,U)|Xn,1 = (ulvv/)) = gld%pp if u=—v"and v 7é Ulv . (36)
0, otherwise.

That X,, is irreducible and aperiodic is obvious. By symmetry, the unique stationary distribution
= (T(0u_a)s s T(0ua)> T(u_gu_a)s - T(uasug)) € M1(X) of the chain must be of the form

T =(T1,...,T1,T2,...,T2), (3.7)
where the first 2d entries are m; and the remaining 2d(2d — 1) entries are 72, and therefore
2dmy 4+ 2d(2d — 1)my = 1. (3.8)
Solving m(0,uy) = Dy T(uw) P ((w,0), (0,u1)) with 7 as in (3.7) we get

p
2d —1

p T
2d 1%

7 = (2d — 1) 7+ (2d —1)2



From (3.8) and (3.9) we obtain

r___l-p
2d’ T 2d(2d-1)
It is easy to show that in general the Markov chain {X,, },,>1, is not stationary. However, as an irreducible,

aperiodic, finite-state Markov chain, it has exponentially fast, strong mixzing. To be precise, there exists a
constant ¢ and ¢ < 1 such that for every k > 1,

T =

(3.10)

a(k) = sup {|]P’(F NG) —P(F)P(Q)|: F € o(X;,j <n),G € a(X;,j >n+ k)} < etk (3.11)

It is obvious that if Z; is a strongly-mixing sequence and Z’; is measurable with respect to Z; for each j then
ZJ’- is also strongly mixing, with the same (or possibly faster) mixing rate. Therefore the sequence Y;, also
has exponentially fast, strong mixing. In order to verify Proposition 3.1, we will prove a multidimensional
corollary of the following result of [7].

Theorem 3.2 (Corollary 1 of [7]). Suppose that Z,, is a sequence of R-valued random variables such that
E[Z,] = 0, E[Z2] < 0 and E[n™*(31", Z;)?] — 02 as n — oco. Further suppose that Z, is a-strongly
mixing and that there exists 5 € (2, 00] such that

o0
Za(k;)ld/ﬁ < oo, and limsupl/Z,|g < oo, (3.12)
k‘:l n—oo

then
Z Int]
0271

- =% Bi(t), (3.13)

where the convergence is in D([0, K], R) with the uniform topology.

Corollary 3.3. Suppose that W,, = (W(l) ,Sd)) is a sequence of R%-valued random variables such that
E[W,] = 0, E[[W,|?] < co and E[n™* 3", ZZ/ 1 W(j)W(l)] — 02I;_;, as n — oo. Further suppose that
W, is a-strongly mizing and that there exists 5 € (2,00] such that

Za(k)lfz/ﬁ < oo, and limsup||[W,|s < oo, (3.14)
k):l n—oo

then
Z [ntJ

02n

Whi(t) = L= By(t), (3.15)

where the convergence is in D([0, K], R?) with the uniform topology.

Proof. 1t is sufficient to prove convergence of the finite-dimensional distributions and tightness.
Let 0 <t <ty <--- <t < K. For convergence of the f.d.d. we need to show that

WD (t1), oo WD), WD (), WD () 2 (B (1), ..., B (1), ..., BU (1) ... BV ().

(3.16)
Using the Cramér-Wold device (e.g. see Theorem 4.3.3. of [15]), it is enough to show that
d d T
Y W) 2 33 e B0 € B, (317
m=1 [=1 m=1[=1
for every (a11,...,8d,1,---,010y---,0dyr) € R9. Note that since {B((im) (t)}m=1,....a are independent and

identically distributed 1-dimensional Brownian motions, we have that

<Zam13 Zam B™ ¢ ) and (ZamlBl t1), ZamB1 ) (3.18)

have the same distribution.



Since any sequence W/ such that W/ is measurable with respect to W, for each n, is also a-strongly

mixing, we have that Z, = Zizl am,lWT(Lm) € R is a-strongly mixing. Finiteness of E[Z2] and the second

condition of (3.14) for Z, follow immediately from the corresponding properties of W,,. Next,

n

i d
E[n_l(zzi)Q]:Z Zamlam’lE 1ZZW Wi(,m — o2 Zaml = o247, (3.19)

=1 m=1m’'=1 i=14'=1

so by Theorem 3.2
Z[mJ Z;

= = B(t). (3.20)

Written in terms of W,, (3.20) is

Z A W™ () = Z amB(t (3.21)

In particular, the finite-dimensional distributions in (3.21) converge from which we get that

T d r d
SN amaWM(t) 230> amiB(t). (3.22)

=1 m=1 =1 m=1

By (3.18), this is sufficient to prove (3. 17)
To prove tightness, observe that {Wn )}n>0 is also a-strongly mixing for each 7 = 1,...,d. Applying
Theorem 3.2 to this sequence we get that

Lnt] py ()
izt Wit == By(t), (3.23)
o3n
from which tightness of {Wfﬂ )}n20 for each j follows immediately. Tightness of the joint distributions
{( T(Ll), ceey éd))}nzo is a trivial consequence of tightness of the marginals. O

3.1 Proof of Proposition 3.1

Since S, = >" | Y,, where |Y,,| <2, and the sequence {Y,,},>0 has exponentially fast strong mixing, to

m=1
prove Proposition 3.1 it is enough to show that

1 =X )y @)
E|-> > %Y,

i=14'=1

(3.24)

p
— dfplj:l.

By symmetry, for all j # [, and any n,m, E[(XT[}] + XLz])(j)(X,[ﬁ] + Xr[g])(l)] = 0. This verifies (3.24) in the
case j # l. By symmetry, it therefore remains to show that

1 QX 3 (D)4 (1)
=133y

i=14'=1

p

p— (3.25)

It is easy to show that IE[XT[?L(D [ Xn-1] = 2” L 7 X, [2] ) and so by induction and the Markov property, for
every n > m > 1,

2p—1\""
E[Xr[?]’(l”Xm] = (25_1> Xﬁ]’(l)- (3'26)
Next, observe that for n > 2,
p—2d(1—p) 0
E[Y, V| Xno] = o X2, (3.27)



and therefore using the fact that Y, is X,, measurable, and the Markov property for X,,, we have that for

n>m>1,
—2d(1—p) (2p—1\"""
EyW|x,] =2 X2, 3.28

For n > m > 1 we have

n—1-m
Ely Oy W] —E[y WE[yM|x,,] = L= 241 =P) <2p - 1) B[y (1) x[2.0)]

2d — 1 2d — 1
: _22;(}1_17) (;2_ D"—l—m (E[Xv[rlz]’(”XE]’(”] +1E[(Xﬁ’“))2]) (3.29)
p—2d(1 —p) (2p— 1)”‘1—7” y {d(;dfl) +4 m=>2 .
2d — 1 2d — 1 e h m=1
Lastly
E[V1[!] = (1 -p)+ 236?1, and  E[|Y,.)?] =p+ %,m > 2. (3.30)

Combining all of these results, we get that

B [Zn: Z vy Qi Z E[Y; Vv, V) + 2ZE YOy O] 4 Z Ey, "

=1 m=1 =2 m=2 =1

S 2p—2d(1-p " op—1\"*+" p  4(1-)p)
“d  2d-1 <2d—1+1>zz(2d—1> Folm+ =15+ 557

=2 m=1

n 1—2 k
_2p-— 2d(1—p) ([ 1-p 2p—1 p  4(1—p)
“d 2d-1 <2d 1+1>lz;kzo(2d—1 Folm+ =G+ 557
2p-2d(l-p) (1-p "1 (B p  4(1-p)
4 2d-1 <2d—1 )Z = a QR R
1=2 2d—1
_2p-— 2d(1—p P 2d —1 p 41 —p)
4 2d-1 <2d—1 ) 2d—p) Do+ (n 1)<d+ 2d— 1
_ (p—2d(1—p) (1—p p 4(1-p) P
—n< ad—p) 2d—1 +d+ 50— 1 +o(n)_n—d_ +o(n).
(3.31)
Taking the limit as n — oo verifies (3.25) and thus completes the proof of Proposition 3.1. O

4 Proof of Theorem 2.1

Theorem 2.1 is a consequence of convergence of the joint distribution of the stopping time process and the
random walk at those stopping times as in the following proposition.

Proposition 4.1. Suppose that f is such that assumptions (A1) and (A2) hold for some a > 0, then for
every K > 0,

STLmJ T|nt]

\/Tv q (n) = (Bd(t), Va(t)) ) (41)
a—p" 70

where the convergence is in (D([0, K],R?),U) x (D([0, K],R), J1) and U, J, denote the uniform and Skorok-
hod Ji topologies respectively.




Proof of Theorem 2.1 assuming Proposition 4.1. Since |g;*(n)] is a sequence of positive integers such that
lgat(n)] — oo as n — oo, it follows from (4.1) that as n — oo,

Tllea Y n)Jt) 7 T\.ngl(n)JtJ B v | |
21ga'(m) allga' (M) == (Ba(t), Va (1)) (42)

Now use the following facts,

e Forallt < K, |S | <2(K +1),

-8
Tlloatm)lt) Tloa tn)t)

e Since g, ! is regularly varying (and w.l.o.g. monotone), |g;1(n)| ~ g5 *(n) as n — oo,

e Letting L denote equality in distribution,
T -1 — T —1 Lg;l(n)tj_l i T -1 —1
sup L9a (n)tJ_1 LLga " (n)]t] < s %:1+L_L91a (mJt] " D L9a (n)tJ_ILLga OIIN 0,
te[0, K] lga™ ()] t€[0,K] Lga™(n)] te[0,K] L9a™ (n)]

to conclude that

T, -1 . T ;1 n w
e e (O ) s (B (1), Va() (43)
d’%pga (n)
Let g
T, — T ,—1
Va(t) = ——20 . apd T (1) = 000, (4.4)
7594 (n) "

and let 7,71 (¢t) = inf{s > 0:7,(s) >t} =inf{s > 0: Tlgz(nys) > Nt} As in (the proof of Theorem 1.3 in)
[1], it follows that Y, (7, *(t)) == Ba(V, (t)) in (D([0, K],R?),U). Thus,

Se

% =2 By (Vo H(t)). (4.5)
dLipga (n)

| <

Since by definition of 7,1, we have Tlost )Tt (1)) — L S M < T =171y and hence |S| ) 757@51@)1;1@”
3. This fact together with (4.5) proves Theorem 2.1. O

5 Proof of Proposition 4.1

The proof of Proposition 4.1 is broken into two parts. Roughly speaking, the first part is the observation
that the marginal processes converge, i.e. that the time-changed walk and the time-change converge to By(t)
and V() respectively, while the second is to show that these two processes are asymptotically independent.

5.1 Convergence of the time-changed walk and the time-change.

Lemma 5.1. Suppose that [ is such that assumptions (A1) and (A2) hold for some o > 0, then for every
K >0,

TR By(t) in (D([0, K,RY),U), and —2L v in (D([0, K],R), Jy). (5.1)
dLipn ga(n)
Proof. The first claim is the conclusion of Proposition 3.1, so we need only prove the second claim. Recall
that 7, = 1+ 2?21 T; where the T; are i.i.d. with distribution T'. Since g, (n) — oo, it is enough to show
convergence of 7, = (Tint) — 1)/ga(n).
For processes with independent and identically distributed increments, a standard result of Skorokhod
essentially extends the convergence of the one-dimensional distributions to functional limit theorem. In
particular when o < 1, the result is well known (see [5] XIII.6 and [15] 4.5.3 for example).



It remains to prove convergence of the one-dimensional marginals. When E[T] exists, the claim is that
Tt /nE[T] == t, which is immediate from the strong law of large numbers. When o = 1 but (2.1) is not
summable, the result is immediate from the following lemma.

Lemma 5.2. Let Ty, be independent and identically distributed random variables satisfying (2.1) and (2.2)
with « = 1. Then for each t > 0,
T[kntj P,
né(n)
Lemma 5.2 is a corollary of the following weak law of large numbers due to Gut [6].

Theorem 5.3 ([6] Theorem 1.3). Let X} be i.i.d. random variables and S, = > p_, Xj. Let g, = n'/*{(n)
forn > 1, where a € (0,1] and £(n) is slowly varying at infinity. Then

t. (5.2)

Sn —nE [XI{ix|<g.)

50, asn— oo, (5.3)
9n

if and only if nP(|X| > g,) — 0.
Proof of Lemma 5.2. Let Y = TI{p|<nen)y- Then Y € {0,1,... [nf(n)]} and

0o [nl(n)] [nl(n)]
E[TLricney] =D_P(Y 2j)= 3 Pat(n) 2T >j5)= > P(T>j)= [nl(m)|P(T > ni(n)).

j=1 j=1
(5.4)
Now by assumption (A2b),
[nt(n)] :
n 2o BT =3)  [nb(n)]
—E|TI == — P(T > nt
ey B [T i<neny] o oy Pz ) s
S GLG) k) X '
~— — L — 1.
o T (b)) ()
Theorem 5.3 then implies that (nf(n))~17, — 1, from which it follows immediately that
(nl(n)) "7y = (nl(n)) "t [nt)e(nt])([nt]e(|nt])) i) = t. (5.6)
This completes the proof of Lemma 5.2, and hence Lemma 5.1. O

5.2 Asymptotic Independence

Tightness of the joint process in Proposition 4.1 is an easy consequence of the (already established) tightness
of the marginal processes, so we need only prove convergence of the finite-dimensional distributions. For
« > 1 this is simple and is left as an exercise. To complete the proof of Proposition 4.1, it remains to prove
convergence of the finite-dimensional distributions in the case o < 1, for which p = P(T odd) < 1.

Let G; and G, be convergence determining classes of bounded, C-valued functions on R% and R, re-
spectively, each closed under conjugation and containing a non-zero constant function, then

{g(z) = g1(x1)g2(22) : g € Gi}

is a convergence determining class for RY x R,. This follows as in Proposition 3.4.6 of [4] where the
closure under conjugation allows us to extend the proof to complex-valued functions. Therefore, to prove
convergence of the finite-dimensional distributions in (4.1) it is enough to show that for every 0 < t; < to <
o<t <K, kj € R"and n; > 0,

r ST » r v o r
E |exp{ i E kj - ) L exp{ — g n; Tnt;) — E |exp{ ¢ E kj-B(tj) p | E |exp q — E 1;Va(t;)
Jj=1 j=1 j=1 j=1

n ga(n)

(5.7)
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Let A, = {ke{l,...,n}: Tiisodd}, Az = (AL \Ape A \ Apar. ) and to = 0.

For fixed n and #, we write A = (A1,...,A,) to denote an element of the sample space of the random
variable A7, where A; C {[nt;—1] +1,...[nt;]} for each i € 1,...,r. Let € € (0,3), Bu(f) = {A:

Sr
Ayl —(|ntyp| — [nti_1p])| < n'=¢ for each 1} and Q7(f) = exp{i S "_, k; - ——=L L Note that Qr(H) <1
k j=1"
: [n
Then the left hand side of (5.7) is equal to

S BN - " . T*ntj
SO TR S T PR LRI
A j=1 @

T T*
n [nt,]
A€EB, (1) Jj=1
Z\_nt 5] T
- Y E [Q;(E)‘{AM - A}} E |exp Z% (AL = A} P(ALg = A) + o(1),
A€B, () j=1 ga
since given I{7, cven}, ¢ = 1,...,n, Sy, is independent of the collection {7 };>1.

Let nf = E;:l n;. Then the last line of (5.8) is equal to

Lnt:]
Z’LZ Llntl,1J+1 ﬂ

S E [Qg(ﬂ‘{fl[nﬂ = A} P(A g = A J]E [exp § -/ ga(n)
=1 ¢

A€B, (1)

|{[«4Lnﬂ]z =Ai}| +o(l).
(5.9)
Let T?, i € N be independent, identically distributed random variables with P(T? = k) = P(T = k|T odd),

and similarly define T¢ to be i.i.d. with P(Tf = k) = P(T = k|T even).
Now the I*" term in the product in (5.9) is equal to

\All L”tlJ lnti—1]=1Au| e
exp Z E [exp Z ! U
ga( )

ga(n)
Let g3 (n) and g§,_(n) be defined as in (2.4) with the random variable 7" replaced with 7T;, and Tt respectively.
For example, for T, we have

E

(5.10)

P(T >n,T odd) Ly(n)

P(T, >n) =P (T > n|T odd) = ,
p pne

(5.11)

and there exists ¢, such that (Zo(n))_%p_lLo(naioﬁo(n)) — ((1 — ) !, and define g2 (n) = nﬁfo(n).
Observe that

A 0 n o 0 A 0 n o 0 * *
STy I T g6, (1) ga(m) w(z AT - ST g%ml)ga(nl))

go(n) g9, (m) ga(m) ga(n) 95 (n)) (1) gan) (5.12)

where n, = [nt;p| — [nt;—1p] and nj = ||A;| —ny| < n'7¢ since A € B, (1). By definition of g, and standard
results on regular variation we have that g (n;)/ga(n) — (p(t; — t;_1))= and 9a(n})/ga(n) — 0. Since
a=a, A a. < a,, the O term on the right of (5.12) converges in probability to 0. Thus, as in the second
claim of Lemma 5.1, we get that

sl e Lo g, (m)
=L i s (D) (p(t — t-1))= 1 ° 5.13
) VDt — )= lim = (5.13)
9o, (n)

where for a < 1 the limit p, = lim,, exists in [0, 00| since a < a, and in the case of equality, the

9o (n1)
limit L,/L. exists in [0, 00]. Note that we were able to replace a, with « in various places in (5.13) due to
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the presence of the factor gg“"((:ll)) which is zero when «, > «. Therefore

[Aul o
exp § —1} 2=t T
ga(n)

LntLJ—l_ntlflj—‘Al‘ Tgi
exp {_m* Zz:l [ }

E —E [exp{ = Va (1)(p(ts — t1-1)) ¥ po} |, and similasly,

(5.14)
E

ga(n) S [exp{—n Va (1)((1 = p)(t — ti-1)) ¥ pe}] -

Since E[e~"V=()] = exp{—n°}, it remains to show that

(n(pt)ipo)a + (n((l *p)t)épe)a =t, ie that ppg+(1—p)pg =1 (5.15)

If @, < ae (or ap = a and L,/L. — ), then @ = a,, and L ~ L,. It is then an easy exercise in
manipulating slowly varying functions to show that £, ~ p~'/%¢ and therefore p, = p~%/® and p. = 0,
giving the desired result. Similarly if a, > a, (or @, = @, and L,/L. — 0) we get the desired result. When
o =a, < 1land L,/L. — (3 € (0,00) we have that L ~ L, + Lo ~ (1 4+ 8)L. ~ (1 4+ 871 L,. It follows
that £, ~ ((1—p)(1+B))~Y¢. Similarly £, ~ (p(1+ =)=/, and therefore p, = (p(1+ =)~/ and
pe = (1 =p)(1+ B))~/*. The result follows since (14 3)"* + (1 + 41" =1. O
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