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A new family of tree models is proposed, which we call “differ-
ential trees.” A differential tree model is constructed from multiple
data sets and aims to detect distributional differences between them.
The new methodology differs from the existing difference and change
detection techniques in its nonparametric nature, model construction
from multiple data sets, and applicability to high-dimensional data.
Through a detailed study of an arson case in New Zealand, where
an individual is known to have been laying vegetation fires within a
certain time period, we illustrate how these models can help detect
changes in the frequencies of event occurrences and uncover unusual
clusters of events in a complex environment.

1. Introduction. We propose a new family of tree models that can
be used to uncover distributional differences between multiple data sets.
These models, which we call “differential trees”, are suitable for solving
sophisticated, multivariate problems. They can be applied, for instance, to
change detection and work effectively in an online surveillance fashion.

The research was motivated by a real-world problem. Fire service depart-
ments are often interested in detecting changes in the frequencies of different
types of fire incident, automatically from large amounts of data and infor-
matively to shed light on potential causes. This change detection problem is
certainly not unique to fire incidents. Similar problems can easily be found
in many fields such as climatology, epidemiology and economics.

To investigate the problem in depth, one particular scenario has been
chosen as a case study, and is used exclusively in this paper to illustrate and
investigate the new methodology. It was known that an individual had been
laying vegetation fires between October 2006 and January 2007 in the urban
area of Blenheim, New Zealand. The New Zealand Fire Service wishes to be
able to automatically detect such a sequence of events as early as possible
and isolate them from the rest. At first glance, there seems to be a lack

AMS 2000 subject classifications: Primary 62G05, 62P99; secondary 62H15
Keywords and phrases: tree models, change detection, event data, p-value adjustment,

arson case study

1

http://www.imstat.org/aoas/


2 Y. WANG ET AL.

of information to relate the scenario to frequency change detection, since
no fire maliciously set by an individual could be definitely known as such
in reality. However, a surrogate variable can be used. All fire incidents are
categorized by on-the-spot fire fighters as either suspicious or not. Since the
maliciously-set fires should be highly correlated to those labeled suspicious,
we turn the vaguely-defined practical problem into one of detecting changes
in the frequencies of: (a) suspicious and other fires, (b) suspicious fires only,
as a more direct approach, or (c) fire incidents of a different categorization, as
a less direct approach. We consider the frequency changes as distributional
differences.

The problem above poses a number of challenges for traditional change de-
tection methods that rely on parametric assumptions (Basseville and Nikiforov,
1993; Gustafsson, 2000; Poor and Hadjiliadis, 2009). For this and similar
problems, there may exist a number of potentially relevant variables, which
can be either numerical or categorical and may contain missing values. The
distribution of fire incidents may depend on many factors, such as geograph-
ical, seasonal, time-of-day and day-of-week effects, and is simply impossible
to model parametrically. Moreover, an arsonist may operate in certain time
periods and in certain neighborhoods, and light fires of certain types.

By contrast, the proposed methodology is particularly suitable for solving
such problems. Though belonging to the family of tree models (Morgan and Sonquist,
1963; Breiman et al., 1984; Quinlan, 1993), a differential tree is constructed
from multiple data sets, as opposed to from a single data set by a con-
ventional method, and purpose built for difference detection. Intuitively,
the method stacks the data sets on top of one another (imagine a two-
dimensional case) and then, via recursive space partitioning of tree-structured
models, looks for the local areas with heterogeneity. By ignoring variations
in individual data sets that are common to all and thus irrelevant to changes,
such as geographical and seasonal effects in the arson case, it makes more
efficient use of data information than an approach that builds one model
from each data set. Hence it achieves a gain in power which is similar in
spirit to that of the paired t-test or blocking in experimental design.

The Arson data used throughout the paper contains information for all
fire incidents that occurred within and around Blenheim, a moderately sized
town (pop. 30,200), between 1/Jan/2004 and 31/Dec/2007, as stored in 11
variables, with names, meanings and possible values given in Table 1. Dur-
ing the quadrennial period, there were a total of 704 fire incidents, 171 of
which were labeled suspicious. Two variables, heatsource and objignited,
contain, respectively, 342 and 275 missing values. Pairs of disjoint subsets
of the data will be produced in various ways below, and will be used to con-
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Name Meaning Values

x Map grid east Real
y Map grid north Real
urban Whether an urban or rural area {1 = urban, 0 = rural}
alarm Alarm method code {1 = 111 emergency call, 2 = exchange phone call, 3 = running call,

4 = police/ambulance, 5 = private fire alarm, 6 = other}
firetype Type of fire incident {1 = structure, 2 = mobile property, 3 = vegetation,

4 = chemical, 5 = rubbish, 6 = other}
heatsource Heat source {1 = outside fire lit for lawful purpose,

2 = gas/liquid fuelled equipment, 3 = solid fuelled equipment,
4 = electrical equipment, 5 = hot object, 6 = fireworks,
7 = cigarette/smoking materials, 8 = act of nature, 9 = exposure fire}

objignited Object ignited {1 = structure component, 2 = furniture/appliances,
3 = soft goods/bedding, 4 = decoration/recreational materials,
5 = storage containers and materials,
6 = electrical equipments/tyres/insulators, 7 = outdoor items,
8 = hazardous substances and fuels, 9 = other}

time Time of day [0, 24)
day Day of the quadrennial period {1, 2, . . . , 1461}
dayweek Day of the week {1 = Monday, . . . , 7 = Sunday}
label Category labeled by fire fighters {suspicious = suspicious fire, other = other type}

Table 1

Variables

struct differential trees. Our main focus will be on contrasting the subsets
in two biennial periods, 2004–2005 and 2006–2007, to uncover the unusual
cluster(s) of fire incidents in the latter period that are likely related to the
arson case. We shall also apply the methodology in a sequential detection
fashion and compare two consecutive annual periods by shifting time peri-
ods progressively. Random subsets will also be produced by permutation or
bootstrapping for assessing and enhancing performance.

The rest of the paper is organized as follows. Section 2 briefly reviews
the problem of change detection and tree models and gives an overview
of the proposed methodology. Section 3 describes in detail the differential
tree models and their construction. A primary study of the arson case is
presented in Section 4. The performance of the method will be assessed and
enhanced in Section 5, with an application in a sequential detection fashion
given in Section 6. Section 7 investigates building differential trees using
other responses, and Section 8 gives some concluding remarks.

2. An overview.

2.1. Change detection. Change detection has a long history of research
in statistics, with a focus on detecting change points (Shewhart, 1931; Page,
1954; Lai, 1995; MacEachern et al., 2007). These methods, however, rely
on parametric assumptions and are applied to situations, such as industrial
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process control, where such assumptions can be safely made.
Another very useful technique for detecting changes is scan statistics

(Naus, 1965; Glaz et al., 2001). This technique looks for unusual clusters
of temporal or spatial events in a single data set by using a scanning win-
dow to locate clusters of observations that differ in distribution from the
rest. Because of the high computational cost, it is only applicable to low-
dimensional problems.

2.2. Tree models. Tree models are often used to solve difficult, high-
dimensional problems. There are two major families, classification and re-
gression trees, for a categorical and a continuous response variable, respec-
tively (Breiman et al., 1984). Other families also exist but are less used,
e.g., Poisson regression trees for a count response (Chaudhuri et al., 1995;
Therneau and Atkinson, 1997) and survival trees for a failure time response
with censoring (Davis and Anderson, 1989; Ishwaran et al., 2008).

As in the references above, the basic idea of tree modeling is to partition
the space of explanatory variables recursively into increasingly smaller re-
gions so that a simple model fits well to the data in a minimal region. We call
such a simple model, an atomic model, which can be, e.g., the constant func-
tion or the normal distribution for a continuous response, or a multinomial
distribution for a categorical response, as for regression and classification
trees, respectively. A tree model is the composite of the atomic models in
the minimal regions and is best represented by a rooted tree, in which a
node corresponds to a region, a terminal node a minimal region, and the
branching under an internal node a space partitioning. Each internal node
thus also has a subtree model.

Building a tree model typically consists of splitting and pruning stages.
Splitting proceeds in a top-down fashion, by selecting at each node a split
in the form of a logical condition from a large number of candidates, which
aims to maximize the homogeneity in subregions. Univariate binary splits
are commonly used, e.g., x ≤ 3.5 for a continuous variable, or season =
{spring, autumn} for a categorical variable. Splitting continues until homo-
geneity is reached in a region. An exhaustive splitting is generally beneficial,
and allows for uncovering relations hidden deep under the surface. However,
a tree grown only by splitting is likely to overfit the data. Hence it is often
followed by pruning, which replaces spurious subtrees with their root nodes
in a bottom-up fashion.

Terminal nodes are important for a tree model and the features of inter-
est at those nodes are described by the atomic models. We shall often use
the word “pattern” to specifically indicate a terminal node, including its
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associated region and observations, atomic model, and assessment results.

2.3. Differential trees. In this paper, we relate the methodology of tree
modeling to difference and change detection. By following the general method-
ology described in Section 2.2, a differential tree is built from multiple data
sets to discover distinguishing patterns between them. Its atomic model is
for observations from all data sets, but only the parameters that account for
differences in distribution are of direct interest and examined by a homo-
geneity test. In particular, we will use the Poisson distribution for the count
of observations at each level of the response in each data set to form the
atomic model, and contrast the event rates in all data sets with a likelihood
ratio test of homogeneity.

This new change detection method differs from those described in Sec-
tion 2.1, in its nonparametric nature and applicability to high-dimensional
data. As for other families of tree models, it has the advantages of fast train-
ing (relative to most other data mining models), easy handling of different
types of variables and dealing nicely with missing values. The resulting mod-
els are easily comprehensible, which can be important for change detection,
since it helps suggest possible causes behind complicated phenomena.

3. Building differential trees.

3.1. A likelihood-based framework. We adopt the likelihood-based ap-
proach for building a differential tree and for subsequent analysis. Using the
likelihood for tree construction is not rare in the literature, but it sometimes
takes an implicit or approximate form. For example, for classification trees
the information gain splitting criterion of Quinlan (1993) is equivalent to
using the likelihood ratio test, whereas the χ2 criterion (Kass, 1980) and the
Gini splitting criterion (Breiman et al., 1984) are approximations. Su et al.
(2004) use the likelihood method, in place of the least squares criterion, for
building regression trees and obtain simpler yet more accurate tree models
in general. Using the likelihood method for tree construction gives results a
statistical interpretation, deals with splitting and pruning in one framework,
and permits the handling of many families of atomic models in a coherent
way. For building differential trees we take one further step, by making use of
the p-values of the likelihood ratio tests. In general, this helps resolve several
difficult issues: (a) splitting in multiple ways; (b) adjusting in the presence
of missing values; (c) assessing patterns by their statistical significance; and
(d) adjusting for multiple hypothesis testing.

Within this framework, the likelihood ratio test or its statistic can also be
conveniently used to assess and compare models, even if there exist nuisance



6 Y. WANG ET AL.

parameters, as in the case of differential trees. We will make extensive use of
the fact that the log-likelihood ratio statistic W is asymptotically χ2

ν , with
degrees of freedom ν equal to the number of free parameters for a simple
hypothesis or the difference in the number of free parameters for a composite
one.

3.2. Likelihood ratio test. The Poisson distribution with probability mass
function

f(n;λ) = e−λ λn

n!
, λ > 0, n = 0, 1, 2, . . .

is widely used to model the number of occurrences of an event over time or
in space. Let Yi (i = 1, 2) have the Poisson distribution with rate λi. For
testing homogeneity

H0 : λ1 = λ2,

the log-likelihood ratio statistic is given by

W = 2{log f(Y1;Y1) + log f(Y2;Y2) − log f(Y1; Ȳ ) − log f(Y2; Ȳ )},

where Ȳ = (Y1 + Y2)/2. Under H0, W is asymptotically χ2
1.

There are two parameters here, (λ1, λ2), or, with reparametrization, (λ1, λ2−
λ1). The focus is on whether λ2 − λ1 = 0, while λ1 is a nuisance parameter.

3.3. Atomic models. Suppose there are d data sets and the response
variable has c levels. For node τ , let Dτ denote the data in its associated
sub-region, and assume Y τ

ij (i = 1, . . . , c, j = 1, . . . , d), the number of obser-
vations of level i in data set j, is Poisson distributed with mean λτ

ij in that
sub-region. The atomic model thus has c × d unknown parameters, λτ

ij , or
equivalently




λτ
11 λτ

12 − λτ
11 · · · λτ

1d − λτ
11

λτ
21 λτ

22 − λτ
21 · · · λτ

2d − λτ
21

· · · · · · · · · · · ·
λτ

c1 λτ
c2 − λτ

c1 · · · λτ
cd − λτ

c1


 .

Any non-zero difference in the matrix implies a distributional difference be-
tween the data sets. Of direct interest to us is whether all the differences are
exactly zero, while those in the first column are nuisance parameters.

We can hence perform a homogeneity test under the null hypothesis

H0 : λτ
i1 = · · · = λτ

id, for i = 1, . . . , c.(3.1)
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Letting Ȳ τ
i = d−1 ∑d

j=1 Y τ
ij (i = 1, . . . , c), the log-likelihood ratio statistic

becomes

W (τ ;Dτ ) = 2






c∑

i=1

d∑

j=1

log f(Y τ
ij ;Y

τ
ij) −

c∑

i=1

d∑

j=1

log f(Y τ
ij ; Ȳ

τ
i )




 ,(3.2)

which is asymptotically χ2
(d−1)c under (3.1). The test provides evidence for

preference between two settings of the atomic model.
As an example, consider the most significant pattern produced by the

differential tree shown later in Fig. 2. This pattern covers 22 other and 0
suspicious fires in the first data set, and 43 other and 41 suspicious fires in
the second. The test statistic value is

W = 2 {log f(22; 22) + log f(43; 43) − log f(22; 32.5) − log f(43; 32.5)}

+ 2 {log f(0; 0) + log f(41; 41) − log f(0; 20.5) − log f(41; 20.5)}

≈ 63.75,

which yields a p-value of 1.4 × 10−14 under χ2
2.

The appropriate atomic model depends on the problem under study. By
assuming equal rates, null hypothesis (3.1) implies that all data sets were
obtained under the same exposure, e.g., over time periods of equal length.
While this applies to our analysis presented below due to our special parti-
tioning of the data set on an annual basis, one could also consider the case
where exposures are different. If the exposures are known, say, ej for data
set j, one needs to modify H0 to

H ′
0 : e1λ

τ
i1 = · · · = edλ

τ
id, for i = 1, . . . , c,(3.3)

where λτ
ij is a rate per unit exposure. Re-assigning Ȳ τ

i =
∑d

i=1 ejY
τ
ij/

∑d
i=1 ej ,

we have

W ′(τ ;Dτ ) = 2





c∑

i=1

d∑

j=1

log f(Y τ
ij ;Y

τ
ij ) −

c∑

i=1

d∑

j=1

log f(Y τ
ij ; ej Ȳ

τ
i )



 ,

which is also asymptotically χ2
(d−1)c.

If, however, the exposures are unknown, it is impossible to test a null
hypothesis of type (3.1) or (3.3). Instead, one can investigate if every data set
has the same distribution for the proportions of all response levels, namely

H ′′
0 : pτ

i1 = · · · = pτ
id, for i = 1, . . . , c,(3.4)
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where pτ
ij is the probability an observation in data set j is of level i. There-

fore, one can assume that (Y τ
1j , . . . , Y

τ
cj)

⊤ has a multinomial distribution with

probabilities (pτ
1j , . . . , p

τ
cj)

⊤. The log-likelihood ratio statistic is

W ′′(τ ;Dτ ) = 2





c∑

i=1

d∑

j=1

nτ
j log p̂τ

ij −
c∑

i=1

d∑

j=1

nτ
j log p̂τ

i



 ,

where nτ
j =

∑c
i=1 Y τ

ij , p̂τ
ij = Y τ

ij/n
τ
j and p̂τ

i =
∑d

j=1 Y τ
ij/

∑d
j=1 nτ

j . Under H ′′
0 ,

W ′′ is asymptotically χ2
(c−1)(d−1).

Throughout our study, we assume that the underlying distribution of
counts is Poisson distributed, and only the null hypothesis (3.1) and the
resulting statistic (3.2) are used. In general, altering the atomic model al-
ters the family of differential trees being considered, but the framework for
analysis remains the same.

3.4. Subtree models. Denote by T τ the subtree rooted at node τ and by
T̃ τ the set of its terminal nodes. The log-likelihood ratio statistic for T τ is
given by

W (T τ ;Dτ ) =
∑

t∈T̃ τ

W (t;Dt).(3.5)

The statistic W (T τ ;Dτ ) is approximately χ2, with degrees of freedom given
by the sum of the degrees of freedom of the individual terms.

3.5. Splitting. We only consider univariate binary splits, which use data
information most efficiently, allow surrogate splitting in the presence of miss-
ing values, and treat numerical variables no differently from ordinal ones. We
further turn categorical variables into ordinal ones by using their pre-given
order of levels, instead of considering all possible combinations. This avoids
the overfitting introduced by level grouping, which can be severe when a
categorical variable has many levels. It is also helpful when the pre-given
levels are partially ordinal.

Without missing values, the primary split at node τ is determined by

sτ
∗ = arg max

s∈Sτ

W (T τ
s ;Dτ ),(3.6)

where T τ
s is the two-child-node tree defined by a univariate binary split s

and Sτ is the set of all candidate splits at node τ . For Sτ , we consider every
explanatory variable and every mid-point between two consecutive distinct
values of the variable from all data sets, but we exclude the cases where
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small subsets (having less than a total of 5c observations, by default) are
produced. With sτ

∗ , all data sets are split accordingly and the tree is grown
with two new child nodes. The splitting process starts with a single node for
all data and proceeds in a top-down, recursive style, until a stop-splitting
criterion is met, for example, too few observations left.

To find the primary split in the presence of missing values, a slight ad-
justment is made using p-values, which takes account of different sample
sizes caused by missing values. For the kth variable at node τ , denote by nτ

k

the number of observations without missing values and by pτ
k∗ the smallest

p-value of all likelihood ratio tests for the nτ
k observations. The adjusted

p-value is given by

p̃τ
k∗ = pτ

k∗ + γ
√

pτ
k∗(1 − pτ

k∗)/n
τ
k,(3.7)

where γ > 0 is a constant, which is defaulted to 2 in our implementation.
Similar in spirit to the 1-SE rule of Breiman et al. (1984), the adjustment
tends to favor variables with fewer missing values.

To determine the correct branch for an observation when the primary
splitting variable at a node has a missing value, a surrogate split can be
used, as described in Breiman et al. (1984), Section 5.3. A surrogate split
is made using a different variable, chosen so that the surrogate split is as
similar to the primary split as possible for the observations without missing
values. We measure the similarity of two splits by the number of common
observations in their resulting subsets. An ordered list of surrogate splits
can be constructed according to their similarities to the primary split.

3.6. Pruning. The pruning of an initially grown tree is necessary for
removing spurious subtrees. It works in a bottom-up style, by choosing either
the atomic model at an internal node or its subtree model. To do this, one
could use the cost-complexity measure, which here is just the log-likelihood
penalized by the degrees of freedom. For a subtree, it is defined as

Wα(T τ ;Dτ ) = W (T τ ;Dτ ) + αDF(T̃ τ ),

where DF(T̃ τ ) is the number of degrees of freedom for all the atomic models
in T̃ τ and α the complexity parameter. Note that the atomic model at a
node is just a tree with a single node, so its cost-complexity measure is

Wα(τ ;Dτ ) = W (τ ;Dτ ) + αDF(τ).

The pruning criterion is:

Choose the model with the larger value of Wα.(3.8)
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The value of α can be determined by a model selection criterion, such as
AIC or BIC, or cross-validation. In principle, replacing a subtree with its
root node implies that the event frequencies can not be further differentiated
between the data sets in all subregions.

If the main goal for building a differential tree is to find the most sig-
nificant differences between data sets, we can simply preserve the most sig-
nificant patterns in a constructed tree. Let pmin(τ) be the p-value of the
hypothesis test performed at the node τ , e.g., the likelihood ratio test based
on the statistic (3.2); and pmin(T

τ ) be the smallest p-value of all hypothesis
tests performed at the atomic nodes of the subtree T τ . The new pruning
criterion is:

Choose the model with the smaller value of pmin.(3.9)

By doing so, each subtree preserves the node with the most significant pat-
tern and keeps it as a terminal node. This also facilitates the p-value adjust-
ments, as described in Section 5.1.

In addition, one may set up a threshold p-value, say, pcut, such that a
subtree is cut off directly if its pmin(T

τ ) ≥ pcut. It helps remove the less
significant patterns, while keeping the most significant ones. The tree model
may thus be greatly simplified and can be interpreted more easily. In our
implementation, we set pcut = 10−6 as default. For the arson case study, this
roughly corresponds to p′′ = 0.25; see Section 5.1 for the definition of p′′.

3.7. Pseudo code. To serve as a summary, Algorithm 1 gives the pseudo
code of the recursive function that we implemented for building a differential
tree from two data sets.

4. A primary study of the arson case.

4.1. Setup. In this section, we compare two approaches to solving the
arson problem. Both use label as the response; one utilizes traditional clas-
sification trees, and the other builds a differential tree directly. For our case
study the latter is more efficient at discovering differential patterns.

We divide the Arson data set into two subsets, covering two time periods,
2004–2005 and 2006–2007, respectively (and reset 1/Jan/2006 to day = 1
and similarly the days after). The two subsets contain, respectively, 318 and
386 fire incidents, of which 80 and 91 are suspicious. Both suspicious and
other fires are included in the study, because a maliciously-set fire is not
necessarily labeled suspicious or vice versa, and because it illustrates the
application of the method to a multiple category problem. In Section 7, we
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Algorithm 1 Differential Tree Construction (from Two Data Sets)

function difftree(D1, D2)

Require: Data sets D1 and D2
1: Create a terminal node τ

2: Compute W (τ ; (D1, D2)) and p-value, using (3.2)
3: if too few observations in D1 and D2 then

4: return τ

5: end if

6: Label τ as an internal node
7: for each predictor variable do

8: Find all potential splits from its distinct values in D1 and D2
9: Compute W (T τ

s
; (D1, D2)) for each potential split s, using (3.5)

10: end for

11: Find the primary split sτ

∗ , using (3.6) (or (3.7) in the presence of missing values)
12: Find all surrogate splits of sτ

∗

13: Use sτ

∗ (and possibly surrogate splits) to partition D1 into (D1left, D1right) and D2
into (D2left, D2right)

14: τ$left = difftree(D1left, D2left)
15: τ$right = difftree(D1right, D2right)
16: if τ is preferred over T τ by (3.9) then

17: Discard τ$left and τ$right and label τ as a terminal node
18: end if

19: return τ

apply the proposed method to detect changes in the frequencies of suspicious
fires only, and of fire incidents with a different categorization.

4.2. Two classification trees. To discover differential patterns, let us first
consider building two classification trees, one from each subset, and then
testing all the patterns induced from a classification tree against the other
subset. The rationale is that classification trees, if constructed properly, are
consistent estimators of the underlying distributions (Breiman et al., 1984,
chapter 12) and thus their differences are also consistent for estimating the
true distributional differences. Note that each individual classification tree
is only built to model the underlying relation between the response and
explanatory variables for a single data set and thus inevitably may include
patterns that are common with the other, e.g., for seasonal effects.

We use the R package “rpart” (Therneau and Atkinson, 1997) for classi-
fication tree construction. The classification tree built from the first subset
is shown in Fig. 1(a). The tree identifies three situations or patterns, as also
listed in the upper part of Table 2, in ascending order of their estimated pro-
portions of suspicious fires. To eliminate the patterns that are irrelevant to
differences, we test them against the second subset, using (3.2)). Hence the
remaining significant patterns can only be attributed to the distributional
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(238 80)
label = other

(103 5)
label = other

heatsource < 6 

(135 75)
label = other

 >= 6

(122 44)
label = other

time >= 6.47 

(13 31)
label = suspicious

 < 6.47

(295 91)
label = other

(94 3)
label = other

heatsource < 7 

(201 88)
label = other

 >= 7

(129 18)
label = other

day >= 372 

(72 70)
label = other

 < 372

(69 41)
label = other

time >= 7.15 

(3 29)
label = suspicious

 < 7.15

(60 21)
label = other

day < 329 

(9 20)
label = suspicious

 >= 329

(a) (b)

Fig 1. Classification trees built from fire incidents in Blenheim during: (a) 1/Jan/2004
– 31/Dec/2005 and (b) 1/Jan/2006 – 31/Dec/2007. Inside the parentheses at a node are
the numbers of observations for each response level, here “other” and “suspicious”.

2004–2005 2006–2007 P-value

(a) Training set Test set

Pattern other suspicious Proportion other suspicious Proportion

1 103 5 0.046 90 2 0.022 3.3 × 10−1

2 122 44 0.265 183 55 0.231 1.2 × 10−3

3 13 31 0.705 22 34 0.607 2.9 × 10−1

(b) Test set Training set

Pattern other suspicious Proportion other suspicious Proportion

4 105 7 0.062 94 3 0.031 3.2 × 10−1

5 77 38 0.330 129 18 0.122 3.4 × 10−5

6 36 17 0.321 60 21 0.259 3.9 × 10−2

7 15 0 0.000 9 20 0.690 4.5 × 10−7

8 5 18 0.783 3 29 0.906 2.1 × 10−1

Table 2

Patterns obtained from each of the two classification trees and tested by their covered
observations in both subsets

differences between the two subsets. After this screening, only Pattern 2 re-
mains significant, with a p-value of 1.2 × 10−3. Nonetheless, its significance
is mainly due to an increase of “other” in 2006–2007, rather than a change
in the frequency of suspicious fires.

Analogously, we can find patterns from the second subset and test them
against the first subset. The classification tree built from the second subset
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is shown in Fig. 1(b). It contains five patterns, as listed in the lower part
of Table 2. Pattern 7 is the most significant, with a p-value of 4.5 × 10−7,
which corresponds to a remarkable increase of 20 suspicious fires and ap-
pears to be related to the arson case. Specifically, it indicates a significant
increase in the proportion of suspicious fires between day 329 (25/Nov/2006)
and day 371 (6/Jan/2007), for time after 7:12am, with heat source that in-
cludes cigarettes/matches/candles. It possesses a very different characteristic
from Pattern 8, which classifies fires as highly suspicious that occur between
0:00am and 7:12am, due to heat source ≥ 7. However, with a p-value of 0.21,
Pattern 8 does not suggest a change, although it merits further investigation
by itself. Pattern 5 is also highly significant but corresponds to a decrease of
38−18 = 20 suspicious fires, as well as a substantial increase of 129−77 = 52
other fires; this change occurred after day 371 (6/Jan/2007).

4.3. One differential tree. A differential tree between the two subsets is
constructed, as shown in Fig. 2, which contains six terminal nodes. The most
significant, with a p-value of 1.4 × 10−14, appears to relate directly to the
arson case. Specifically, it suggests that a change has occurred between day
284 (11/Oct/2006) and day 383 (18/Jan/2007), with all types but property
fires. The change is due to a substantial increase of 41 − 0 = 41 suspicious
fires, as well as an increase of 43 − 22 = 21 other fires. To gain more in-
formation about these 41 suspicious fires, the histograms/barplots for all
predictor variables are shown in Fig. 3. These fires are exclusively due to
heatsource = 7 (= cigarettes/matches/candles), mainly of firetype = 3
(= Vegetation), largely distributed along a horizontal strip (variable y), and
having an increasing trend over time (variable day).

The second most significant pattern has a p-value of 4.5 × 10−10 and
specifies a situation where there is a decrease in the number of suspicious
fires and yet an increase in the number of other fires. This change took place
between day 420 (24/Feb/2007) and day 586 (9/Aug/2007).

Note that the general conclusions drawn here are similar to those in Sec-
tion 4.2. This is not really surprising, since both methods provide consistent
estimators for detecting differences between the two underlying distribu-
tions. However, we should also notice that the patterns found by the differ-
ential tree, that searches for changes directly by ignoring irrelevant patterns,
are statistically much more significant (even using the properly adjusted
p-value (5.4) or (5.5)). This suggests that differential trees are the more
efficient approach to change detection. There must therefore be situations
where real changes can be detected by the differential tree approach, but not
by the other, and especially so when a data set contains many significant
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(238 80) (295 91)
p = 0.033

(90 14) (66 4)
p = 0.0083

firetype <= 1 

(148 66) (229 87)
p = 3.7e-05

 > 1

(61 30) (84 71)
p = 3e-05

day <= 383 

(87 36) (145 16)
p = 1.3e-05

 > 383

(39 30) (41 30)
p = 0.98

day <= 283 

(22 0) (43 41)
p = 1.4e-14 ***

 > 283

(45 23) (86 2)
p = 4.6e-08 ***

day <= 586 

(42 13) (59 14)
p = 0.23

 > 586

(19 4) (13 1)
p = 0.22

day <= 419 

(26 19) (73 1)
p = 4.5e-10 ***

 > 419

Fig 2. Differential tree built directly by contrasting the fire incidents from 1/Jan/2004 –
31/Dec/2005 with those from 1/Jan/2006 – 31/Dec/2007. Each pair of parentheses at a
node contains the numbers of observations for all response levels in a data set, and for the
Arson data here (#other, #suspicious). Any p-value less than 10−5 is marked “***.”
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Fig 3. Histograms/barplots for the 41 suspicious fires covered by the most significant pat-
tern

patterns not attributable to changes.

5. Performance assessment and enhancement.
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5.1. Significance adjustment. Since “significant patterns” can always be
found with an exhaustive search, one should consider their possible spurious-
ness. In the following, we consider adjusting p-values using the Bonferroni
and the permutation method.

The Bonferroni method is the simplest and most conservative. For m tests
performed, it adjusts their smallest p-value, say p, by

p′ = min{mp, 1}.(5.1)

For building the differential tree shown in Fig. 2, there are 13414 tests per-
formed in total. This includes all candidate splits examined at the splitting
stage, including those at the nodes that are cut off later, but not any com-
parisons at the pruning stage due to their irrelevance in determining the
minimum p-value. Its adjusted p-value for the most significant pattern is
thus

p′ = 13414 × 1.4 × 10−14 ≈ 1.9 × 10−10,(5.2)

which remains highly significant, despite the conservativeness of the method.
The permutation method adjusts a p-value by using it as a statistic and is

based on the fact that, under the null hypothesis, the adjusted p-value has
the uniform distribution on [0, 1]. The p-value to be adjusted can be either
p or p′ in (5.1), and, for the Arson data, it does not appear to make much
difference. In general, we are inclined to use p′ since it guards against the sit-
uation where an extremely small p-value is produced through an exhaustive
search. The empirical null distribution can be obtained by permuting either
the entire data under investigation, which may nonetheless contain irregular
changes and hence reduce the power of detection, or, better, some compa-
rable, “clean” historical data. For the arson case, we choose to permute the
entire data here, and later in Section 6 some historical data.

Specifically, our adjustment proceeds as follows. Each observation in the
two subsets created in Section 4.1 is randomly re-allocated to either the first
or second biennial period by tossing a fair coin (without changing its date
within a biennial period), thus ensuring null hypothesis (3.1) is satisfied. This
shuffling destroys all distributional differences between the two periods, but
preserves all the relations among the variables such as geographical clusters
and seasonal effects. For each pair of random subsets, a differential tree is
constructed, and a minimum p-value obtained and adjusted by (5.1). With
R (= 1000 throughout the paper) random replications, R copies of the p′-
value are obtained and ordered into p′(1) ≤ · · · ≤ p′(R), whose self-adjusted

values are, respectively, 1/(R+1), . . . , R/(R+1), namely their expectations



16 Y. WANG ET AL.

under the null hypothesis. Letting p′(0) = 0 and p′(R+1) = 1, a new p′ can be
adjusted by interpolation:

p′′ =
j + r

R + 1
, if p′(j) ≤ p′ ≤ p′(j+1), j = 0, . . . , R,(5.3)

where r = (p′ − p′(j))/(p
′
(j+1) − p′(j)).

From the 1000 differential trees constructed, we obtained p′(1) = 8.4 ×

10−6, and therefore the permutation adjusted p-value for the most significant
pattern in the differential tree shown in Fig. 2 is

p′′ =
1.9 × 10−10/8.4 × 10−6

1001
≈ 2.3 × 10−8.(5.4)

This is still an extremely small p-value, indicating that it is highly unlikely
that this discovered pattern occurred purely by chance.
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Fig 4. Minimum p-values and adjustments in the differential trees constructed from the
first 100, out of 1000, random permutations of the 4-year data

Fig. 4 shows the minimum p-values from the first 100 permutations, along
with their adjustments. Despite the pure randomness of the permutations,
the minimum p-values produced by differential trees are remarkably small,
indicating the necessity of adjustment. What surprises us most, as can also
be seen in results given later, is that p′′ is almost always larger than p′,
because the Bonferroni adjustment is theoretically the most conservative.
How could this happen? We think that the reason may lie in the fact that,
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conditional on the data, patterns with the smallest p-values are sought in a
deterministic manner, and this has some similarity to a deterministic opti-
mization process, which violates the underlying assumption of randomness
for multiple hypothesis testing. If this is true, it has profound implications
for many modern statistical methods of modeling and hypothesis testing
that involve extensive data manipulation to find the “best” solutions. The
bias introduced by such data manipulation may be very high, so high that
even the most conservative method can fail to bound it.

5.2. Bootstrap aggregating. One problem with tree models is instability
(Breiman, 1996b), which means that a small perturbation in the data may
result in a tree with a substantially different structure. In general, an unsta-
ble estimator tends to exhibit high variation and low predictive power. For
differential trees, this is relevant for discovered differential patterns and their
significance levels. Instability, however, can be reduced, often considerably,
by using meta-learning techniques, such as boosting (Freund and Schapire,
1997), bagging (bootstrap aggregating) (Breiman, 1996a) or random forests
(Breiman, 2001), which resort to building a number of models by perturbing
the data. In the following we consider the bagging technique to stabilize the
estimation of the minimum p-value in a differential tree.

To use bagging on the two subsets described in Section 4.1, we draw
a bootstrap sample from each subset and build a differential tree from the
pair of bootstrap samples, which gives a minimum p-value and its Bonferroni
adjustment p′. This is repeated B (= 50 throughout the paper) times. The
median of the B resulting p′-values is then taken as the bagging estimate of
the Bonferroni-adjusted minimum p-value. From a random run, we obtained
an estimate p′ = 1.8 × 10−11.

To find the empirical null distribution of the bagging estimator for per-
mutation adjustment, 1000 random replications of the 4-year data were
produced with random allocations to the two biennial periods, in a sim-
ilar fashion to Section 5.1. The above bagging estimator is then applied
to each replication. The five-number summary of the resulting p′-values is
(6.4× 10−7, 2.7× 10−5, 5.5× 10−5, 1.2× 10−4, 5.9× 10−4). Thus the permu-
tation adjusted p-value is

p′′ =
1.8 × 10−11/6.4 × 10−7

1001
≈ 2.8 × 10−8.(5.5)

As we shall see in Section 5.3, the bagging-based adjusted p-values are less
variable and, when there exist true differences, tend to be smaller than those
that are produced without using bagging.
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One problem with bagging is that it does not produce one but many
trees, which loses the interpretability of a single differential tree. A possi-
ble remedy is to associate a p-value with each observation, e.g., using the
median p′′-value of all patterns that cover the observation. Then we know
which observations are associated with changes, and how significantly. Areas
containing observations with small p-values can perhaps be derived subse-
quently.

5.3. A simulation study. In order to gauge the efficiency and stability of
the differential tree method, we conducted a simulation study and made use
of the Arson data in a way that mimicked the arson case. To produce random
data for two biennial periods, all 318 (238 other and 80 suspicious) fire
incidents in 2004–2005 are duplicated once and then randomly re-allocated
to either the first or second biennial period by coin tossing (as in Section 5.1).
We did not include the data in 2006–2007 to avoid contamination. Then we
added n∆ ∈ {0, 10, . . . , 50} distinctive fire incidents to the second biennial
period, randomly drawn from those 2006–2007 incidents covered by the most
significant pattern discovered in Section 4.3, in the proportions of 30% other
and 70% suspicious fires. For each n∆ ∈ {0, 10, . . . , 50}, 100 such data sets
were generated, and thus 100 (without bagging) and 100×50 (with bagging)
differential trees were built. To adjust p-values, 1000 permutations were
carried out both with and without bagging, thus producing 1000 + 1000 ×
50 differential trees. A total of 81600 differential trees were built in the
simulation study.

Fig. 5 shows summaries of the p-values (p or p′′) produced by three meth-
ods: a direct evaluation using (3.2) without building any differential tree
(which gives the same p-value as the root node of a differential tree), build-
ing one differential tree, and building differential trees with bagging. The
central 50% interval of the empirical distribution of the p-value is plotted
for each case. It can be seen that, when n∆ = 0, all three p-values appear to
conform well with the uniform distribution on [0, 1]. We can use the medians
of these p-values to gauge efficiency and the widths of the central 50% in-
tervals to gauge stability. As n∆ increases, each p-value decreases, and at an
increasing rate. The directly evaluated p, however, decreases slowly and this
approach, on average, is unable to detect the change at the 5% significance
level until n∆ ≈ 44. An intuitive explanation is that a dramatic change deep
under the surface may only manifest as ripples on the surface, i.e. at the
root node. Also, multiple changes may even cancel out the effects of one
another and leave no trace on the surface, as is the case of the differential
tree shown in Fig. 2. By contrast, with differential trees it “dives” down and
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Fig 5. Each vertical line segment represents the central 50% interval of an empirical
distribution obtained from 100 p- or p′′-values, and a solid point the median. Some line
segments are slightly shifted horizontally for distinguishing purposes. The horizontal line
is where p-value = 0.05.

seeks differences between the data sets in increasingly smaller areas. The
method can thus uncover local differences more efficiently and, for the arson
problem, is able to start detecting the change for n∆ ≈ 31 (without bagging)
and ≈ 27 (with bagging). As n∆ increases, there are also clearly widening
gaps between the p-values produced by the direct evaluation method and the
differential tree methods. For n∆ = 50, the median p is only 2.6×10−2, being
barely significant, while the median p′′ is 3.0 × 10−4 (without bagging) or
6.6× 10−5 (with bagging). It is also clear that the bagging technique helped
reduce instability and increase efficiency. The arson case has n∆ close to
60, which we could not include in the simulation study since it requires 42
suspicious fires but the most significant pattern has only 41. However, with
a visual extrapolation of the curves in Fig. 5 to where n∆ = 60, it should be
clear that the proposed method is quite effective for discovering the changes
in the arson case.

6. Sequential detection. The method developed above can also be
used in a sequential detection manner. Let us consider comparing the data
of the two consecutive annual periods immediately before a “detection” day
(the first day after the two year period). With the quadrennial data available,
we start the detection from 1/Jan/2006, by building a differential tree that
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compares the two time periods, 1/Jan/2004 – 31/Dec/2004 and 1/Jan/2005
– 31/Dec/2005, and build new differential trees by shifting the detection
day at intervals of seven days, until all data have been examined. From
every tree constructed the smallest p-value is extracted and adjusted by the
Bonferroni and permutation methods, using (5.1) and (5.3). The empirical
null distribution of the minimum p-value in a differential tree that is needed
by the permutation adjustment is obtained by permuting 1000 times the
historical fire incidents that occurred during 1/Jan/2004 – 31/Dec/2005.
We have also produced an empirical null distribution by permuting random
halves of all the quadrennial data and found that the resulting adjusted
p-values are only slightly larger, due to the contamination of the irregular
changes in the latter two years. The conclusions, however, remain largely the
same. To use bagging, one only needs to replace each single differential tree
described above with 50 trees obtained under bootstrap sampling (Sec. 5.2).

The results are shown in Fig. 6. The sequential detection results with
bagging shown in Fig. 6(b) are clearly more stable than those without bag-
ging in Fig. 6(a). From Fig. 6(a), after the initial 45 weeks with basically
no significant change discovered and a smallest p′′-value of 0.025, a sud-
den decrease of the p′′-value occurred on detection day 316 (12/Nov/2006)
with p′′ = 0.0040. This is clearly a sign that some significant change(s) have
occurred in the underlying data-generating mechanism. Similar conclusions
can be drawn from the more stable estimates in Fig. 6(b).
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Fig 6. Minimum p-values and their adjustments in sequential detection: (a) without bag-
ging; (b) with bagging. In particular, p is the minimum p-value in a differential tree, p′

the Bonferroni adjustment of p, and p′′ the permutation adjustment of p′.

By monitoring the change of (adjusted) p-values, it is straightforward for
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an online system to set up different levels of warning in an easily compre-
hensible sense.

7. Using Different Responses.

7.1. Using only suspicious fires. Instead of using both suspicious and
other fires as done in the study so far, we can use suspicious fires only.
Fig. 7 displays the differential tree, built analogously to that in Fig. 2, from
the two biennial subsets. Interestingly, the two most significant patterns are
comparable in both trees: one concerning a substantial increase of suspicious
fires during almost the same time period and the other a decrease of suspi-
cious fires after it. Note that one can not use the classification tree approach
here, since the response variable has only one level.

(80) (91)
p = 0.4

(38) (72)
p = 0.0011

day <= 378 

(42) (19)
p = 0.0029

 > 378

(38) (31)
p = 0.4

day <= 282 

(0) (41)
p = 4.7e-14 ***

 > 282

(25) (3)
p = 8.8e-06 ***

day <= 589 

(17) (16)
p = 0.86

 > 589

(6) (3)
p = 0.31

y <= 10.9 

(19) (0)
p = 2.9e-07 ***

 > 10.9

Fig 7. Differential tree built from using suspicious fires only

The minimum p-values and their adjustments for sequential detection are
plotted in Fig. 8. The sudden change has also been successfully detected,
but at a delayed date, as compared with that in Fig. 6. This is because
most suspicious fires occurred in the latter part of the biennial period (see
the histogram of day in Fig. 3), and because in the earlier part of the time
period there is an increase of fire incidents that are not labeled “suspicious,”
which are thus excluded from the study here. In this case, including all fire
incidents is preferable—it gives an earlier warning!

7.2. Using an alternative response variable. One can also use a different
response variable, as if for a general surveillance, in total ignorance of what
has happened. Let us this time treat the variable firetype as the response.
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Fig 8. P-values in sequential detection using suspicious fires only: (a) without bagging; (b)
with bagging.

The differential tree built from the two biennial subsets is shown in Fig. 9.
This tree appears to be less informative and its most significant pattern is
also less significant, as compared with the trees shown in Figures 2 and 7.
However, this discovered pattern is still remarkably significant, showing that
the difference is mainly due to an increase of vegetation fires, jumping from
45 cases to 121 for day > 86 and x > 5.9.

(104 35 72 0 68 39) (70 44 135 4 91 42)
p = 2.5e-06 ***

(11 2 10 0 14 2) (1 2 5 1 5 6)
p = 0.0036

day <= 86 

(93 33 62 0 54 37) (69 42 130 3 86 36)
p = 3.1e-07 ***

 > 86

(7 4 17 0 1 2) (5 8 9 0 6 2)
p = 0.23

x <= 5.9 

(86 29 45 0 53 35) (64 34 121 3 80 34)
p = 6e-09 ***

 > 5.9

Fig 9. Differential tree built with a different response variable

The minimum p-values and their adjustments obtained via sequential de-
tection are shown in Fig. 10. It is clear that the change has also been de-
tected, at a later date and less dramatically than that in Section 6.

These results are perhaps the most one could hope for when conducting
a general surveillance.
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Fig 10. P-values in a sequential detection using firetype as response: (a) without bagging;
(b) with bagging.

8. Concluding remarks. There are two main new ideas in our pro-
posed method for change or difference detection. One is to contrast data sets
and model their distributional differences and the other to use tree models
to uncover local, irregular changes and provide interpretable results. We fol-
lowed the general methodology for tree construction. Variants with improved
performance likely exist, as in the literature for other families of tree model.
Extensions to other types of difference detection seem fairly straightforward.

Building a differential tree is reasonably fast. With our implementation
in R (R Development Core Team, 2011), it took, respectively, 5.0, 1.4 and
6.8 seconds to build the trees shown in Figures 2, 7 and 9, on a workstation
with a 2.93GHz CPU. This made possible the demanding numerical studies
reported earlier. If implemented in FORTRAN or C, it is likely much faster.

Finally, we give a rationale for using differential trees in a complex en-
vironment. A general alternative is to compare the data with a reference
model that can be either exactly known, which is virtually impossible in
a complex environment; or estimated from a reference data set, just as we
did in Section 4.2. Since building a model from one data set and testing
it against the other can waste data information on discovering patterns ir-
relevant to differences and we are essentially comparing two data sets, why
don’t we just build one model that directly describes their differences? This
is exactly what a differential tree does.
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