SOLUTIONS

225 MIDTERM 2, SPRING 2007

TUESDAY, APRIL 3

(1) (8 points) Is the following set of three vectors linearly independent?

$$\left\{ \left(\begin{array}{c} 1\\0\\0\end{array}\right), \left(\begin{array}{c} 2\\0\\5\end{array}\right), \left(\begin{array}{c} 3\\1\\3\end{array}\right) \right\}$$

=> full rank

(2) (12 points)

(a) Write down the matrix A that describes a counter-clockwise rotation of the plane around the origin around the angle θ .

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Date: April 3, 2007.

(b) From a geometric point of view, what is A^2 ?
The counter - clockwise rotation around 2000 / cos 20 -s
The counter - clockwise rotation around zero (cos 20 -s by the angle 20
(c) Is A an orthogonal matrix?
Yes $A^{T} \circ A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} =$
$=\begin{pmatrix} \cos^2\theta + \sin^2\theta & 0 \\ 0 & \sin^2\theta + \cos^2\theta \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$
(3) (18 points) True or false:
(a) b is in the column space of A if and only if b is a linear combination of the column vectors of A .
true (that is the definition of the column space
(b) $Ax = b$ has a solution if and only if b is in the column space of A .
true
(c) 0 is always a solution of $Ax = b$.
false: if b + 0, then A.O + b
(d) 0 is always in the column space of A .
true: 0 = 0.0, + + 0. Vm, where the vi
(e) x is a solution of $Ax = b$ if and only if x is in the column space of A .
Palse
(f) Two vectors always span a plane.
false, they could span a line, e.g.
2 (1) and (3)

To sove time and reduce mistakes, memoris

(4) (8 points) What is the inverse of the matrix

 $\begin{bmatrix} -2 & 1 \\ 3 & 4 \end{bmatrix}?$ (-4 & 1) (-4 & 2)

(5) (16 points) Compute the projection of $\begin{pmatrix} -2\\4 \end{pmatrix}$ onto the line spanned by $\begin{pmatrix} -1\\5 \end{pmatrix}$.

 $\frac{\left\langle {\binom{-2}{4}, \binom{-1}{5}} \right\rangle}{\left\langle {\binom{-1}{5}, \binom{-1}{5}} \right\rangle} = \frac{2+20}{1+25} \left({\frac{-1}{5}} \right) = \frac{11}{13} \left({\frac{-1}{5}} \right)$

Compute the reflection of $\begin{pmatrix} -2\\4 \end{pmatrix}$ at the line spanned by $\begin{pmatrix} -1\\5 \end{pmatrix} \cdot 2 \cdot \frac{11}{13} \begin{pmatrix} -1\\5 \end{pmatrix} - \begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -\frac{22}{13} + 2\\\frac{110}{13} - 4 \end{pmatrix} = \frac{1}{13} \begin{pmatrix} 4\\58 \end{pmatrix}$

(6) (8 points) What is the matrix for the projection onto the line spanned by $\begin{pmatrix} -1 \\ 5 \end{pmatrix}$?

 $\frac{1}{1+25} \begin{pmatrix} 1 & -5 \\ -5 & 25 \end{pmatrix} = \frac{1}{26} \begin{pmatrix} 1 & -5 \\ -5 & 25 \end{pmatrix}$

- (7) (16 points) What are the determinants of
 - (a) a rotation around the origin

(b) a reflection of the plane at a line through the origin

(c) the projection of the plane onto a line through the origin

(d) the linear transformation that stretches the plane by a factor of 7 along the x-axis and by a factor of 2 along the y-axis

(8) (10 points) Write

$$\begin{pmatrix} 2\\1\\1 \end{pmatrix} \text{ as a linear combination of } \begin{pmatrix} 2\\2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-2 \end{pmatrix} \text{ and } \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

$$\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

(9) (4 points) Give an example of three linearly dependent vectors in R³ none of which is a multiple of another. How many dimensions do these three vectors span?

example
$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

example 2
$$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 4 \\ 4 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ 6 \\ 5 \end{pmatrix}$