## Representations and characters of categorical groups

A report on joint work with Rober Usher

Projective 2-representations following Frenkel-Zhu and Ostrik

#### **Classical formulation**

V = k-vectorspace  $\theta: G \times G \to k^{\times}$  2-cocycle

homomorphism  $G \longrightarrow PGL(V)$ 

map  $G \longrightarrow GL(V)$  with  $\varrho(g)\varrho(h) = \theta(g,h) \cdot \varrho(gh)$ 

representation of central extension  $\widetilde{G}$  of G by  $k^{\times}$ 

module over twisted group algebra  $k^{\theta}[G]$ 

### Categorification

V object of strict k-lin. 2-cat.  $\alpha: G \times G \times G \to k^{\times}$  3-cocycle

homomorphism  $G \longrightarrow \pi_0(GL(V))$ 

projective 2-representation of  ${\it G}$  with 3-cocycle  $\alpha$ 

representation  $\mathcal{G} \longrightarrow GL(V)$  of 2-group extension  $\mathcal{G}$  of G by  $pt/\!\!/ k^{\times}$ 

module over the categorified twisted group algebra  $Vect_k^{\alpha}[G]$ 

### Data of a projective 2-representation with 3-cocycle $\alpha$







(c) a 2-isomorphism  $\psi_1 : \varrho(1) \cong id_V$ , drawn as

## Conditions on these data



### Characters

**Classical picture** 

#### Categorification

class function  $\chi(g) = \chi(sgs^{-1})$ 

isomorphisms  $X(g) \cong X(sgs^{-1})$ 

invariant function on inertia groupoid  $\Lambda G = G /\!\!/ G^{cong}$ 

projective representation of  $\Lambda G$ , 2-cocycle the transgression  $\tau(\alpha)$ 

representation of  $\Lambda \mathcal{G}$ 

## **Categorical Characters**

If F is a 1-endomorphism of V then the categorical trace of F is defined as

 $\mathbb{T}r(F) := 2-\operatorname{Hom}(id_V, F).$ 

The isomorphism  $Tr(\varrho(g)) \cong Tr(\varrho(sgs^{-1}))$  in terms of string diagrams:



## Inertia groupoids

The inertia groupoid of a categorical group  $\ensuremath{\mathcal{G}}$  is

 $\Lambda \mathcal{G} = \operatorname{Bicat}(pt/\!\!/\mathbb{Z}, pt/\!\!/\mathcal{G}) / 2\text{-isos}$ 

**objects:** monoidal functors from  $\mathbb{Z}$  to  $\mathcal{G}$ , viewed as bifunctors from  $pt/\!\!/\mathbb{Z}$  to  $pt/\!\!/\mathcal{G}$ ,

arrows: pseudonatural transformations up to modification

The inclusion of the full sub-groupoid of strict monoidal functors is an equivalence.

 $\Lambda^{\text{strict}}\mathcal{G} \longrightarrow \Lambda \mathcal{G}$ 

# For skeletal $\mathcal G$ classified by $\alpha: \mathcal G \times \mathcal G \times \mathcal G \longrightarrow k^{\times}$

**objects:** *G*, **arrows:** 2-isomorphisms  $\eta : sg \cong hs$ , and **composition:** 



## The twisted Drinfeld double

The transgression of  $\alpha$  is the *k*-valued 2-cocycle on  $\Lambda G$ ,

$$\tau(\alpha)\left(g \xrightarrow{s} h \xrightarrow{t} k\right) = \frac{\alpha(t,s,g) \cdot \alpha(k,t,s)}{\alpha(t,h,s)}.$$

Te inertia groupoid  $\Lambda G$  is the central extension of  $\Lambda G$  classified by  $\tau(\alpha)$ .

The twisted Drinfeld double of G is the twisted groupoid algebra

$$D^{lpha}(G) = k^{ au(lpha)}[\Lambda G].$$

**Theorem** the categorical character of a projective 2-representation with cocycle  $\alpha$  is a module over the twisted Drinfeld double  $D^{\alpha}(G)$ .

Categorical tori (construction as strict Lie 2-groups)

Start with a lattice  $\Gamma$  and an even symmetric bilinear form I on  $\Gamma$ . Choose J with I(m, n) = J(m, n) + J(n, m).

objects  $\mathfrak{t} = \Gamma \otimes \mathbb{R}.$  $x \xrightarrow{z} x + m, \qquad x \in \mathfrak{t}, m \in \Gamma, z \in U(1),$ arrows composition: the obvious one, multiplication: addition on objects and  $(x \xrightarrow{z} x + m) \bullet (y \xrightarrow{w} y + n) =$  $x + y \xrightarrow{zw \exp(-J(m,y))} x + y + m + n$ 

on arrows.

The inertia groupoid of a categorical torus

**Theorem:** Let  $\mathfrak{T}$  be the categorical torus of the previous slide. Then the inertia groupoid of  $\mathfrak{T}$  is equivalent to the Lie groupoid with objects T and arrows

$$\mathfrak{t} imes T imes U(1)/\sim$$

with

$$(x+m,s,z) \sim (x,s,z \cdot \exp(I(m,y)), m \in \Gamma,$$

where  $y \in \mathfrak{t}$  is any element with  $\exp(y) = s$ , source and target of (x, s, z) equal  $\exp(x)$ , and composition of arrows is

$$[x,s,z] \circ [x,s',z'] = [x,s \cdot s',z \cdot z'].$$

## The Looijenga line bundle

Fix  $\tau$  in the upper half plane, and let  $q = e^{2\pi i \tau}$ . Over

$$T_{\mathbb{C}} / q^{\Gamma} \cong \mathfrak{t}_{\mathbb{C}} / (\tau \Gamma + \Gamma),$$

we have the Looijenga line bundle for I

$$\mathcal{L}_{Lo}(I) := (T_{\mathbb{C}} \times \mathbb{C}) / \sim,$$

with

$$(t,z) \sim (tq^m, z e^{-2\pi i I^{\sharp}(m)}(t) \cdot q^{-\frac{1}{2}I(m,m)}), \qquad m \in \Gamma.$$

Here the weight

$$I^{\sharp}(m): \Gamma \longrightarrow \mathbb{Z}$$

is the adjoint of I and  $e^{2\pi i I^{\sharp}(m)}$  is the corresponding character.

Looijenga line bundles versus inertia groupoids

The inertia groupoid of T has objects T and arrows  $T \times T$ , source and target are projection onto the first factor.

Over  $T \times T$ , we have the principal U(1)-bundle

$$mor(\Lambda \mathfrak{T}) \longrightarrow mor(\Lambda T)$$

**Theorem:** The (topological) line bundle associated to this principal bundle is isomorphic to the Looijenga line bundle  $\mathcal{L}_{Lo}(I)$ .

Outlook: symmetries of categorical tori

Let G be a finite group of linear isometries of  $(\Gamma, I)$ . Then the symmetries of the torus 2-group classified by  $(\Gamma, I)$  form a 2-group extension of G.

Examples: This yields 2-group extensions of

- (1) the Conway group  $Co_0$ ,
- (2) the Mathieu groups  $M_{12}$  and  $M_{24}$ ,
- (3) Weyl groups,
- (4) the symmetric groups (super-duper symmetry).