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Abstract—Let M be a weighted binary matroid and w1 < --- < wm be the increasing sequence
of all possible distinct weights of bases of M. We give a sufficient condition for the property that
wi,...,Wn is an arithmetical progression of common difference d. We also give conditions which
guarantee that w41 — w; <d, 1 <i < m— 1. Dual forms for these results are given also. © 1998
Elsevier Science Ltd. All rights reserved.

Keywords—Matroid, Weight, Arithmetical progression.

1. INTRODUCTION

Let G = (V(G), E(G)) be a connected graph and F(G) the set of spanning trees of G. Let
w : E(G) — R be a weight function which associates a real number weight w(e) with each edge
e € E(G). For each T € F(G), the weight of T' is w(T') = 3_ ¢ p(r) w(e). Denote all distinct
weights of spanning trees of G by w; > -+ > wy,. The spanning trees with weight w; are
called the i*" maximal spanning trees. For each T € F(G) and integer k, 0 < k < |V(G)),
let Li(T) = {T' € F(G) : IT"\T| < k}. Kano [1], conjectured that for any maximum weight
spanning tree A and each i with 1 < ¢ < k, £x_1(A) contains an i*" maximal spanning tree
of G. He proved [1] that the conjecture is true when wy,...,wn, is an arithmetical progression.
Although the conjecture has been fully proved [2,3], we feel that the problem of when wy, ..., wm
is an arithmetical progression is of interest for its own reason. In this direction, an early result
of Hakimi and Maeda [4] says that if the weight w(e) of each edge e is ¢, ¢ + d, or ¢ + 2d for
some constants ¢ and d > 0, then wy,...,w,, is an arithmetical progression. On the other hand,
it seems that we do not know much about the distribution of the weights of spanning trees of
a graph, although a lot of combinatorial optimization problems, such as the minimum spanning
tree problem, relate closely to the weights of spanning trees. In general, it is difficult to have a
detailed understanding of the distribution of the weights of bases of a weighted matroid.
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In this paper, we tentatively give a condition which guarantees that the weights of bases of a
weighted binary matroid consist of an arithmetical progression. Also we give a sufficient condition
for the property that for each i, the difference of the (i+1)*" minimal and the i*" minimal weights
does not exceed a constant d. The dual versions of these results are provided.

2. MAIN RESULTS AND THE PROOF

The reader is referred to [5] for terminologies on matroids. Let M be a matroid on a finite
set S and B(M) the set of bases of M. For any B € B(M) and =z € S\ B, BU {z} contains a
unique circuit C(z, B), called the fundamental circuit of z in the base B. Note that z € C(z, B).

LEMMA 1. (See [5].) Suppose B € B(M),z € S\ B,y € B. Then (B\ {y}) U {z} € B(M) if and
only ify € C(z,B) ory =z.

If for any two distinct circuits Cy, Ca of M, the symmetric difference C; AC, contains a circuit,
then M is said to be a binary matroid [5]. Note that there are alternative ways to define a binary
matroid. We present the following equivalent condition which will be used later.

LEMMA 2. (See [5].) M is a binary matroid if and only if the symmetric difference of any
collection of distinct circuits is the union of disjoint circuits of M.

In the following, we always suppose M is a binary matroid on finite S. For a subset X of S, the
incidence vector of X is the vector (i;)zes with entries indexed by the elements of S, where i,
is 1 or 0 depending on whether z is or is not in X. The circuit space of M, denoted by V(M),
is the vector space over the field GF(2) generated by the incidence vectors of the circuits of M.
We can view the vectors of V(M) as symmetric differences of some circuits of M (or equivalently
as disjoint union of some circuits). The sum of X,Y € V(M) is the symmetric difference XAY'.
We call a base of V(M) a circuit base if each vector in this base is a circuit of M. Note that the
dimension of V(M) is p = |S| — r, where r = rank(M) is the rank of M.

Let w : S — R be a weight function, where R is the set of real numbers. Thus, M is a weighted
matroid with weight w(z) for each € S. The weight of a base B € B(M) is w(B) = }_ g w(z).
A base with maximum weight is said to be a mazimum base. Suppose w; < :-- < wy, is the
sequence of all distinct weights of bases of M. In this section, we always suppose that the
following condition is satisfied.

CONDITION. There exists a circuit base C = {C},...,C,} of V(M) such that for each C; there
exists at most one C; with C;NC; #0, j #1.

For the case of a cycle matroid of a graph G, this condition is satisfied when, for example, the

cycles of G are pairwise edge disjoint. We have the following.

LEMMA 3.
(i) Ifzy,...,2, € S satisfy

z; € C; UCj, 1<i<Zp, (1)
J#i
then B = S\ {z1,...,2,} € B(M) and C; = C(z;, B).
(if) Conversely, for any B € B(M) there exists an order z,...,z, of the elements of S \ B
such that (1) is satisfied.

PROOF.
(i) Since |B| = |S\{zi,...,z,}| = r, it suffices to show that B is an independent set. Suppose
otherwise, then there exists a circuit C which is contained in B. Since C is a base for the
vector space V(M), C can be expressed as C;, A -+ - AC;,,1 < i1 < -+ < i < p. From (1)
we have z;, € C C B, a contradiction. So B is an independent set and hence B € B(M).
By C;\ {z:} C B, we know C; = C(z;, B).
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(ii) We need to prove that there exists a bijection f : S\ B — C such that z € f(z), = & f(y)
for any distinct z,y € S\ B.

For any x € S\ B, let C(z,B) = C;;A---AC;,,1 <4 < --- < i < p. From the above-
mentioned condition and z € C(z, B), we know z belongs to exactly one C;,. Without loss of
generality, we suppose z € Cj, \Uf=2 C;,. Set f(z) = Cj,. In this way, we define a mapping f
from S\ BtoC. Forye S\ B,y#z,let C(y,B) =C;;A---ACj,1 <51 <--- < fi < p. Also,
we may suppose y € Cj, \Ui=2 C;,. Then f(y) = Cj,. Now we prove

fz) # f(y) 2)

and

z & f(y)- 3)
If these are achieved, then from (2), we know f is injective and hence bijective since |\S\ B| = |C|,
and from (3), we get (1).

Let us prove (2) first. Suppose to the contrary that f(x) = f(y), i.e., Ci; = Cj,. Then k,l > 2.
In fact, if K = 1, then from y € C;, = C;; = C(z,B) we know y € C(z,B) \ {z} C B, a
contradiction. Similarly, ! > 2. Since y € C(x, B) but y € C;,, there exists, say, C;, which
contains y. From the above-mentioned condition, we have y ¢ Uf=3 C;,. Similarly, we can
suppose r € Cjz and z ¢ Ui=3 Cj,. Note that Cil -‘,é Cizw Cja? but C’il N C’iz ;é m, C,;l n Cj, 74 0
This contradicts the hypothesis of the condition, and hence, (2) follows.

Now, we prove (3). If z € f(y) = C},, then there exists exactly one C;, such that z € Cj,, t > 2.
Without loss of generality, we suppose € Cj,. Then we must have C;, = Cj,, since otherwise,
the pairwise distinct C;,, C;,, C;j, will have a common element z, violating the hypothesis in the
condition. We claim that there exists no z with z € Cj, \ B, z # z,y. Suppose otherwise, then by
z ¢ C(y, B) and by the condition, we know there exists a unique Cj;, with z € Cj,, t > 2. Ift > 2,
then Cj;, has nonempty intersection with both Cj, and Cj,, a contradiction. So we must have
t =2. That is, z € Cj, = C;,. But = € C(z, B), so there exists a unique C;, with z € C;,, s > 2.
Note that C;, # Cj,, for otherwise x will be in C;,. Thus, Cj, has nonempty intersection with
C;, and C;,, which contradicts the condition. So there exists no z with z € C;, \ B,z # z,y, and
hence, C(z, B)AC(y, B)AC;, C B. But M is binary implies that C(z, B)AC(y, B)AC}, is the
union of disjoint circuits. So the base B must contain circuits. This contradiction completes the
proof of (3) and hence of Lemma 3.

LEMMA 4. Suppose B € B(M) and S\ B = {z1,...,z,} satisfies (1). Then B is a maximum
base if and only if r; is a minimum weight element in C;, 1 < i < p.

PROOF. Suppose ; is not a minimum weight element of C; for some i. Then there exists y; €
C;\{z;} with w(y;) < w(z;). By Lemma 3, we have C; = C(z;, B), and hence, (B\ {y;})U{z:} €
B(M). B isnot a maximum weight base since w((B\{y;})U{z:}) = w(B)—w(y;)+w(z;) > w(B).

Conversely suppose each z; is a minimum weight element in C;. By Lemma 3, for any B’ €
B(M), the elements of S\ B’ can be ordered as z,...,z, such that z; € C; \ U,; C;. Since
w(z;) < w(z}),1 < i< p, we have w(B') = w(B) + Y0, (w(z;) — w(z}) < w(B), and hence, B
is a maximum base. This completes the proof of Lemma 4.

For a circuit C of M, let ¢; < -+ < ¢, be all distinct weights of elements of C. If ¢y,...,¢,
is an arithmetical progression with common difference d, for some real number d > 0, then C
is said to satisfy the d-condition. If c;41 —¢; £ d, 1 £ i < n—1, then we say C satisfies the
d=-condition. We have the following lemma.

LEMMA 5. Suppose B € B(M) is not a maximum base. Then

(i) if each C; satisfies the d-condition, 1 < i < p, then there exists B’ € B(M) such that
w(B’) = w(B) + d;

(ii) if each C; satisfles the d<-condition, 1 < i < p, then there exists B’ € B(M) such that
w(B) < w(B') < w(B) +d.
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PRrOOF. By Lemma 3, we can suppose S\ B = {z1,...,%,} satisfies (1) and C; = C(z;, B),1 <
i < p. If each C; satisfies the d-condition, then by Lemma 4 and the assumption that B is not
a maximum base, we know there exist C; and z] € C; \ {z;} such that w(z}) = w(z;) —d. By
Lemma 1, B’ = (B\ {z{}) U {z;} € B(M). The weight of B’ is w(B’) = w(B) — w(z}) + w(z;) =
w(B) + d. In a similar way, one can prove (ii).

From Lemma 5, we get our main result.

THEOREM 1. Suppose S, M, w,w; are as before and d is a positive number. Suppose there exists
a circuit base C = {C},...,C,} of V(M) which satisfies the condition.

(i) If each C; satisfies the d-condition, then w,...,wy, is an arithmetical progression with
common difference d.
(ii) If each C; satisfies the d=-condition, then 0 < w;4; —w; <d, 1 <i<m -1,

An integer interval is a set of consecutive integers. From Theorem 1, we have the following.

COROLLARY 1. Suppose M is a binary matroid on S and there exists a circuit base C of V(M)
which satisfies the condition. If w is an integer-valued weight function defined on S such that
the weights of the elements in each C; consist of an integer interval, then the weights of the bases
of M also consist of an integer interval.

3. DUAL THEOREM

The cocircuit space V*(M) of M is the vector space over GF(2) generated by the incidence
vectors of the cocircuits of M. The dimension of V*(M) is r. A base Cj,...,Cr of V*(M) is said
to be a cocircuit base if each C} is a cocircuit of M. Let B*(M) be the set of cobases of M. The
weight of a cobase B* is w(B*) = 3 . w(z). Let wi < - < wj}, be all the possible distinct
weights of cobases of M. From Theorem 1 and the duality principle [5] for matroids, we get the
following.

THEOREM 2. Suppose S, M, w,w} are as before and d is a positive number. Suppose there exists
a cocircuit base C* = {C},...,C;} of V*(M) such that each C; has nonempty intersection with
at most one C7,j # 1.
(i) If each C} satisfies the d-condition, then wy,...,w}, is an arithmetical progression with
common difference d.
(ii) If each C} satisfies the d<-condition, then 0 < w},; —w} <d, 1<i<m-1.

COROLLARY 2. Suppose M is a binary matroid on S and there exists a cocircuit base C* =
{C1,...,Cr} of V*(M) such that each C} intersects at most one other Cj. If w is an integer-
valued weight function for M such that the weights of the elements in each C} consist of an
integer interval, then the weights of the cobases of M also consist of an integer interval.

In particular, the corollaries of Theorems 1 and 2 are valid for the cycle and cocycle matroids
of a graph since they are both binary.
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