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Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition B of

block size v. For blocks B,C of B adjacent in the quotient graph ΓB, let k be the

number of vertices in B adjacent to at least one vertex in C. In this paper we classify

all possibilities for (Γ,ΓB, G) in the case where k = v − 1 ≥ 2 and B(α) = B(β) for

adjacent vertices α, β of Γ, where for a vertex of Γ, say γ ∈ B, B(γ) denotes the set

of blocks C such that γ is the only vertex in B not adjacent to any vertex in C.

1 Introduction

A finite graph Γ = (V (Γ), E(Γ)) is said to admit a finite group G as a group of automorphisms

if G acts on V (Γ) in such a way that it preserves the adjacency of Γ. For such a pair (Γ, G), if

G is transitive on V (Γ) and, in its induced action, is transitive on the set Arc(Γ) of arcs of Γ,

then Γ is said to be a G-symmetric graph, where an arc is an ordered pair of adjacent vertices.

Roughly speaking, in most cases such a graph Γ admits a nontrivial G-invariant partition, that

is, a partition B of V (Γ) such that 1 < |B| < |V (Γ)| and Bg ∈ B for B ∈ B and g ∈ G, where

Bg := {αg : α ∈ B}. In this case Γ is said to be an imprimitive G-symmetric graph. From

permutation group theory [3, Corollary 1.5A], this happens precisely when Gα is not a maximal

subgroup of G, where α ∈ V (Γ) and Gα is the stabilizer of α in G. For such a graph Γ we

have a natural quotient graph ΓB with respect to B, which is defined to have vertex set B in

which B,C ∈ B are adjacent if and only if there exists an edge {α, β} ∈ E(Γ) with α ∈ B and

β ∈ C. In the following we will always assume that ΓB has at least one edge, so each block of

B is an independent set of Γ (see e.g. [1, Proposition 22.1] and [8]). This quotient graph ΓB

conveys a lot of information about the graph Γ, and in particular it inherits the G-symmetry

from Γ (under the induced action of G on B). For B ∈ B, denote by ΓB(B) the neighbourhood

of B in ΓB. In introducing a geometric approach to imprimitive symmetric graphs, Gardiner

and Praeger [4] suggested an analysis of this quotient graph ΓB together with (i) the 1-design

with point set B and “blocks” Γ(C) ∩ B (with possible repetitions), for all C ∈ ΓB(B); and
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(ii) the induced bipartite subgraph Γ[B,C] of Γ with bipartition {Γ(C) ∩ B,Γ(B) ∩ C}, where

Γ(B) :=
⋃

α∈B Γ(α) with Γ(α) the neighbourhood of α in Γ. Since Γ is G-symmetric, Γ[B,C]

is, up to isomorphism, independent of the choice of adjacent blocks B,C of B.

The purpose of this paper is to classify a family of imprimitive symmetric graphs and the

corresponding quotients and groups. This makes partial contribution to our project of the study

of G-symmetric graphs Γ with k = v − 1 ≥ 2, where v := |B| is the block size of B and

k := |Γ(C) ∩ B| is the size of each part of the bipartition of Γ[B,C]. It seems that this case is

rather rich in both theory and examples: In [7, Section 6] a natural construction of a subclass

of such graphs was discovered, and this was further developed in [9, 10]. In [5] such graphs

Γ with ΓB a complete graph and G a 3-transitive subgroup of PΓL(2, q) were determined and

characterized, for any prime power q. In [11] an intertwined relationship between G-symmetric

graphs with k = v − 1 ≥ 2 and certain kinds of G-point- and G-block-transitive 1-designs was

revealed. For such a graph Γ and a vertex α of Γ, we denote by B(α) the unique block of B

containing α. Since k = v − 1 ≥ 2, we may define

B(α) := {C ∈ B : Γ(C) ∩B(α) = B(α) \ {α}} (1)

and set

m := |B(α)|. (2)

Thus B(α) is the set of blocks of B which are adjacent to B(α) in ΓB but contain no vertex

adjacent to α in Γ. Since G is transitive on V (Γ), the integer m does not depend on the choice

of α. It seems that the size of B(α) ∩ B(β), for adjacent vertices α, β of Γ, influences a lot the

structure of Γ. For example, we will see in Lemma 2.1(c) that, if it is greater than m/2, then Γ

is forced to be an almost cover [9] of ΓB, that is, Γ[B,C] is a matching of v − 1 edges. In this

paper, we investigate the extreme case where B(α) = B(β) for adjacent vertices α, β of Γ, and

(without loss of generality) ΓB is connected. In this case, we will prove that the group G is rather

restrictive and all of Γ, ΓB and Γ[B,C] can be determined explicitly, namely Γ ∼= (v + 1) ·Kv
m,

ΓB ∼= Kv+1
m , Γ is an almost cover of ΓB, and G is an extension of a group by any 3-transitive

group of degree v + 1 (see Theorem 3.1 and Remark 3.2). Here we denote by Kn
m the complete

n-partite graph with m vertices in each part of its n-partition, and by n · Σ the union of n

vertex-disjoint copies of a given graph Σ.

2 Preliminary

For terminology and notation on graphs and permutation groups, the reader is referred to [1]

and [3], respectively. Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition
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B such that k = v − 1 ≥ 2. For two vertices α, β of Γ, if B(α) ∈ B(β) and B(β) ∈ B(α) hold

simultaneously, then we say that α, β are mates, and that α is the mate of β in B(α) (so β is

the mate of α in B(β) as well). Define Γ′ to be the graph with vertex set V (Γ) in which α, β

are adjacent if and only if they are mate. Then Γ′ is G-symmetric ([7, Proposition 3]). One can

see that the set {B(α) : α ∈ B} is a GB-invariant partition of ΓB(B), and hence GB induces an

action on it, where GB is the setwise stabilizer of B in G. Clearly, for (α, β) ∈ Arc(Γ), the value

of |B(α) ∩ B(β)| is between 0 and m, and is independent of the choice of such (α, β) since Γ is

G-symmetric. Part (c) of the following lemma gives an upper bound for this integer in terms of

m and the valency of Γ[B,C].

Lemma 2.1 Let (Γ, G) be as above, and let s be the valency of Γ[B,C] (for adjacent blocks B,C

of B). Then the following (a)-(c) hold.

(a) The valency of Γ is equal to ms(v−1), and the valency of ΓB is equal to mv ([7, Theorem

5(a)]).

(b) GB is doubly transitive on {B(α) : α ∈ B} ([7, Theorem 5(b)]).

(c) For (α, β) ∈ Arc(Γ), we have |B(α)∩B(β)| ≤ m/s. In particular, if |B(α)∩B(β)| > m/2,

then Γ[B,C] ∼= (v − 1) ·K2.

Proof We need to prove (c) only. Let n = |B(α) ∩ B(β)| for (α, β) ∈ Arc(Γ). Let B = B(α),

C ∈ ΓB(B) \ B(α), and set Γ(α) ∩ C = {β1, . . . , βs}. Then B(α) ∩ B(βi), for i = 1, . . . , s, are

pairwise disjoint with each containing n blocks of B(α). So we have sn ≤ m, as required. In

particular, if n > m/2, then we must have s = 1 and thus Γ[B,C] ∼= (v − 1) ·K2. 2

The following example shows that the case where B(α) = B(β) for adjacent vertices α, β of

Γ can occur. For a finite set I, we denote by I(2) the set of ordered pairs of distinct elements of

I.

Example 2.2 Let X be a finite group acting 3-transitively on a finite set I of degree v +1 ≥ 4,

and Y a finite group acting on a finite set J of degree m ≥ 1. We require that Y is 2-transitive

on J whenever m ≥ 2. Then G := X × Y is transitive on V := I(2) × J in its action defined

by (i, h, j)(x,y) := (ix, hx, jy) for (i, h, j) ∈ V and (x, y) ∈ G. Define Γ to be the graph with

vertex set V in which (i, h, j), (i′, h′, j′) are adjacent if and only if i 6= i′ and h = h′. Then

Γ ∼= (v + 1) ·Kv
m, and the assumptions on X, Y imply that Γ is G-symmetric. Clearly, Γ admits

B := {[i, j] : i ∈ I, j ∈ J} as a G-invariant partition, where [i, j] := {(i, h, j) : h ∈ I \ {i}}. We

have ΓB ∼= Kv+1
m with [i, j], [i′, j′] adjacent if and only if i 6= i′. Also, we have Γ[B,C] ∼= (v−1)·K2

for adjacent blocks B,C of B (hence k = v−1 ≥ 2). Moreover, for adjacent vertices α = (i, h, j),

α′ = (i′, h, j′) of Γ, we have B(α) = B(α′) = {[h, `] : ` ∈ J}, and hence |B(α)| = m.
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3 Main result and the proof

Unexpectedly, the graphs Γ in Example 2.2 are the only G-symmetric graphs with ΓB connected

such that k = v− 1 ≥ 2 and B(α) = B(β) for adjacent vertices α, β of Γ, and ΓB, Γ[B,C] are as

shown therein. More precisely, we have the following theorem, which is the main result of this

paper.

Theorem 3.1 Suppose that Γ is a G-symmetric graph admitting a nontrivial G-invariant par-

tition B such that k = v − 1 ≥ 2. Suppose further that ΓB is connected and that B(α) = B(β)

for adjacent vertices α, β of Γ. Let m = |B(α)|. Then Γ ∼= (v + 1) · Kv
m, ΓB ∼= Kv+1

m ,

Γ[B,C] ∼= (v − 1) · K2 for adjacent blocks B,C of B, and the induced action of G on the

natural (v + 1)-partition B of ΓB is 3-transitive. Moreover, the vertices of Γ can be labelled by

ordered triples of integers such that the following (a)-(c) hold (where we set I := {0, 1, . . . , v}

and J := {1, 2, . . . ,m}):

(a) V (Γ) = I(2) × J , and two vertices (i, h, j), (i′, h′, j′) ∈ V (Γ) are adjacent in Γ if and only

if i 6= i′ and h = h′.

(b) B = {[i, j] : i ∈ I, j ∈ J}, where [i, j] := {(i, h, j) : h ∈ I \ {i}}, and [i, j], [i′, j′] are

adjacent blocks if and only if i 6= i′.

(c) B = {i : i ∈ I}, where i = {[i, j] : j ∈ J}.

Conversely, the graph Γ defined in (a) together with the group G = X×Y satisfies all conditions

of the theorem, where X is a group acting 3-transitively on I, Y is a group acting on J which

is 2-transitive if m ≥ 2, and the action of G on V (Γ) is as defined in Example 2.2.

Proof By our assumption we have |B(α)∩B(β)| = m > m/2 for (α, β) ∈ Arc(Γ). Thus Lemma

2.1(c) implies

(i) Γ[D,E] ∼= (v − 1) ·K2 for adjacent blocks D,E of B.

Let B be a block of B and let α1, α2, . . . , αv be vertices of B. For each αi ∈ B, we label (in

an arbitrary way) the m blocks in B(αi) by [i, j], j ∈ J . Also, we label the unique mate βij of

αi in the block [i, j] by (i, 0, j), j ∈ J . For each block [i, j] and for each h ∈ I \ {0} distinct

from i, (i) implies that [i, j] contains a unique vertex adjacent to αh. We label such a vertex in

[i, j] by (i, h, j). In view of (i) one can see that each vertex in [i, j] receives a unique label, and

that the labels of distinct vertices in [i, j] have distinct second coordinates. Therefore, for each

i ∈ I \ {0} and j ∈ J , we may identify the block [i, j] with the set {(i, h, j) : h ∈ I \ {i}}. By

our assumption, for i, h ∈ I \ {0} with i 6= h and j ∈ J , we have
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(ii) B((i, h, j)) = B(αh) = {[h, 1], [h, 2], . . . , [h, m]}.

In particular, this implies that

(iii) [i, j], [i′, j′] are adjacent blocks, for distinct i, i′ ∈ I \ {0} and any j, j′ ∈ J .

Moreover, if two vertices (i, h, j), (i′, h′, j′) are adjacent, then by (ii) and our assumption we

must have B(αh) = B((i, h, j)) = B((i′, h′, j′)) = B(αh′), which is true only when h = h′. This,

together with (i) and (iii), implies the following assertion.

(iv) For distinct i, i′ ∈ I \ {0} and any j, j′ ∈ J , two labelled vertices (i, h, j), (i′, h′, j′) of Γ are

adjacent if and only if h = h′. In other words, for adjacent blocks D = [i, j], E = [i′, j′] of

B, the bipartite subgraph Γ[D,E] of Γ is the matching of v − 1 edges joining (i, h, j) and

(i′, h, j′), for h ∈ I \ {i, i′}.

Therefore, (i, i′, j) and (i′, i, j′) are mates and hence, for the graph Γ′ defined at the beginning

of the previous section, we have

(v) Γ′((i, h, j)) = {(h, i, j′) : j′ ∈ J}.

Now let us examine a particular labelled vertex, say (i, h, j). From Lemma 2.1(a) and (i)

above, the valency of Γ is m(v− 1), and hence the neighbourhood Γ((i, h, j)) of (i, h, j) contains

m(v − 1) vertices. From (iv) we have {(i′, h, j′) : i′ ∈ I \ {0, h, i}, j′ ∈ J} ⊆ Γ((i, h, j)) and this

contributes m(v − 2) neighbours of (i, h, j). Note that αh is also a neighbour of (i, h, j). Apart

from these, there are m − 1 remaining neighbours of (i, h, j), which we denote by δ2, . . . , δm,

respectively. By (i) these vertices δ2, . . . , δm belong to distinct blocks, say B2, . . . , Bm, of B.

For each δt, we have B(δt) = B((i, h, j)) = B(αh) = {[h, 1], [h, 2], . . . , [h, m]} by (ii) and our

assumption. In particular, this implies that all the blocks [h, `], for ` ∈ J , are adjacent to the

block Bt. On the other hand, from (v) we have Γ′((h, h′, `)) = {(h′, h, t) : t ∈ J} for each vertex

(h, h′, `) ∈ [h, `] \ {βh`}. In other words, the m mates of each vertex in [h, `] \ {βh`} are in⋃
h′∈I\{0,h},t∈J [h′, t]. So the only possibility is that βh` is the mate of δt in [h, `], for each ` ∈ J .

Consequently, we have

(vi) B(βh1) = · · · = B(βhm) = {B,B2, . . . , Bm}, and hence none of B,B2, . . . , Bm coincides

with [i, j] for any i ∈ I \ {0} and j ∈ J .

We know from (iii) that the blocks [i′, j′], for i′ ∈ I \ {0, h} and j′ ∈ J , are all adjacent to

[h, `]. Besides these m(v − 1) blocks, B,B2, . . . , Bm are the only blocks of B adjacent to [h, `]

in ΓB since ΓB has valency mv (Lemma 2.1(a)). Therefore, if we apply the procedure above

to another vertex (i′, h, j′), we would get the same blocks B2, . . . , Bm. In other words, these
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blocks are independent of the choice of the vertex (i, h, j) (depending only on h), and hence

they are adjacent to the block [i, j] for any i ∈ I \ {0} and j ∈ J . Moreover, since the mate δt

of βh` in Bt is unique, the vertices δ2, . . . , δm are also independent of the choice of (i, h, j) and

thus they are common neighbours of all such vertices (i, h, j). Thus, since the valency of ΓB is

mv, B,B2, . . . , Bm are the only unlabelled blocks of B. From this and by a similar argument

to that above, we see that for each h ∈ I \ {0}, all the vertices (i, h, j), i ∈ I \ {0, h}, j ∈ J ,

have a common neighbour in each Bt, which we now label by (0, h, t). Since for distinct h, h′

the vertices (i, h, j), (i, h′, j) have different neighbours in Bt, the vertices of Bt receive pairwise

distinct labels. Now let us label B,B2, . . . , Bm with [0, 1], [0, 2], . . . , [0,m], respectively, and label

each αh with (0, h, 1). Then all the vertices of Γ and all the blocks of B have been labelled.

From the labelling above, the validity of (a) and (b) follows immediately.

Since the valency of Γ is m(v − 1), the argument above also shows that for each h ∈ I the

connected component of Γ containing the vertex αh is the complete v-partite graph Kv
m with

v-partition {{(i, h, j) : j ∈ J} : i ∈ I}, where we set α0 = β11. Hence we have Γ ∼= (v + 1) ·Kv
m.

Also, ΓB is the complete (v + 1)-partite graph Kv+1
m with (v + 1)-partition B := {i : i ∈ I},

where i := B(αi) = {[i, j] : j ∈ J} for i ∈ I. Clearly, (ΓB)B ∼= Kv+1 and B is a G-invariant

partition of B. From Lemma 2.1(b), GB is doubly transitive on {B(γ) : γ ∈ B}. The setwise

stabilizer in G of the block 0 contains GB as a subgroup, and so is doubly transitive on the

neighbourhood B \ {0} of 0 in (ΓB)B. Therefore, G is 3-transitive on B.

Finally, for G = X×Y with X triply transitive on I and Y doubly transitive on J whenever

m ≥ 2, Example 2.2 shows that the graph Γ defined in (a) satisfies all the conditions in the

theorem. 2

Remark 3.2 In Theorem 3.1, G may or may not be faithful on B. (This can be seen from

Example 2.2, where the action of G on B is permutationally isomorphic to the action of X

on I which is not necessarily faithful.) Let K be the kernel of the action of G on B, and set

H := G/K. Then H is 3-transitive and faithful on B of degree v+1, and G is an extension of K

by H. From the classification of finite highly transitive permutation groups (see e.g. [2, 6]), H

is one of the following: Sv+1 (v ≥ 3), Av+1 (v ≥ 4), Mv+1 (v = 10, 11, 21, 22, 23), M11 (v = 11),

AGL(d, 2) (v = 2d − 1), Z4
2.A7 (v = 15), and PSL(2, v) ≤ H ≤ PΓL(2, v) (v a prime power).

Example 2.2 shows that m = |B(α)| defined in (2) can be any positive integer and H can be any

group listed above.

6



References

[1] N. L. Biggs, Algebraic Graph Theory (Second edition), Cambridge Mathematical Library

(Cambridge University Press, Cambridge, 1993).

[2] P. J. Cameron, ‘Finite permutation groups and finite simple groups’, Bull. London Math.

Soc. 13 (1981), 1-22.

[3] J. D. Dixon and B. Mortimer, Permutation Groups (Springer, New York, 1996).

[4] A. Gardiner and C. E. Praeger, ‘A geometrical approach to imprimitive graphs’, Proc.

London Math. Soc. (3) 71 (1995), 524-546.

[5] A. Gardiner, C. E. Praeger and S. Zhou, ‘Cross ratio graphs’, Proc. London Math. Soc., to

appear.

[6] W. M. Kantor, ‘Homogeneous designs and geometric lattices’, J. Combin. Theory Ser. A

38 (1985), 66-74.

[7] C. H. Li, C. E. Praeger and S. Zhou, ‘A class of finite symmetric graphs with 2-arc transitive

quotients’, Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 1, 19-34.

[8] C. E. Praeger, ‘Imprimitive symmetric graphs’, Ars Combinatoria 19A (1985), 149-163.

[9] S. Zhou, ‘Almost covers of 2-arc transitive graphs’, submitted.

[10] S. Zhou, ‘Imprimitive symmetric graphs, 3-arc graphs and 1-designs’, Discrete Mathematics,

to appear.

[11] S. Zhou, ‘Constructing a class of symmetric graphs’, submitted.

Department of Mathematics and Statistics

The University of Western Australia

Perth, WA 6907, Australia

Email: smzhou@maths.uwa.edu.au

Current address:

Department of Mathematics and Statistics

The University of Melbourne

Parkville, VIC 3052, Australia

7


