CLASSIFYING A FAMILY OF SYMMETRIC GRAPHS

SANMING ZHOU*

Let Γ be a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} of block size v. For blocks B, C of \mathcal{B} adjacent in the quotient graph $\Gamma_{\mathcal{B}}$, let k be the number of vertices in B adjacent to at least one vertex in C. In this paper we classify all possibilities for $(\Gamma, \Gamma_{\mathcal{B}}, G)$ in the case where $k = v - 1 \ge 2$ and $\mathcal{B}(\alpha) = \mathcal{B}(\beta)$ for adjacent vertices α, β of Γ , where for a vertex of Γ , say $\gamma \in B, \mathcal{B}(\gamma)$ denotes the set of blocks C such that γ is the only vertex in B not adjacent to any vertex in C.

1 Introduction

A finite graph $\Gamma = (V(\Gamma), E(\Gamma))$ is said to *admit* a finite group G as a group of automorphisms if G acts on $V(\Gamma)$ in such a way that it preserves the adjacency of Γ . For such a pair (Γ, G) , if G is transitive on $V(\Gamma)$ and, in its induced action, is transitive on the set $Arc(\Gamma)$ of arcs of Γ , then Γ is said to be a *G*-symmetric graph, where an arc is an ordered pair of adjacent vertices. Roughly speaking, in most cases such a graph Γ admits a nontrivial G-invariant partition, that is, a partition \mathcal{B} of $V(\Gamma)$ such that $1 < |B| < |V(\Gamma)|$ and $B^g \in \mathcal{B}$ for $B \in \mathcal{B}$ and $g \in G$, where $B^g := \{ \alpha^g : \alpha \in B \}$. In this case Γ is said to be an *imprimitive G-symmetric graph*. From permutation group theory [3, Corollary 1.5A], this happens precisely when G_{α} is not a maximal subgroup of G, where $\alpha \in V(\Gamma)$ and G_{α} is the stabilizer of α in G. For such a graph Γ we have a natural quotient graph $\Gamma_{\mathcal{B}}$ with respect to \mathcal{B} , which is defined to have vertex set \mathcal{B} in which $B, C \in \mathcal{B}$ are adjacent if and only if there exists an edge $\{\alpha, \beta\} \in E(\Gamma)$ with $\alpha \in B$ and $\beta \in C$. In the following we will always assume that $\Gamma_{\mathcal{B}}$ has at least one edge, so each block of \mathcal{B} is an independent set of Γ (see e.g. [1, Proposition 22.1] and [8]). This quotient graph $\Gamma_{\mathcal{B}}$ conveys a lot of information about the graph Γ , and in particular it inherits the G-symmetry from Γ (under the induced action of G on \mathcal{B}). For $B \in \mathcal{B}$, denote by $\Gamma_{\mathcal{B}}(B)$ the neighbourhood of B in $\Gamma_{\mathcal{B}}$. In introducing a geometric approach to imprimitive symmetric graphs, Gardiner and Praeger [4] suggested an analysis of this quotient graph $\Gamma_{\mathcal{B}}$ together with (i) the 1-design with point set B and "blocks" $\Gamma(C) \cap B$ (with possible repetitions), for all $C \in \Gamma_{\mathcal{B}}(B)$; and

^{*}The author appreciates greatly Professor Cheryl E. Praeger for her guidance and excellent supervision.

(ii) the induced bipartite subgraph $\Gamma[B, C]$ of Γ with bipartition $\{\Gamma(C) \cap B, \Gamma(B) \cap C\}$, where $\Gamma(B) := \bigcup_{\alpha \in B} \Gamma(\alpha)$ with $\Gamma(\alpha)$ the neighbourhood of α in Γ . Since Γ is *G*-symmetric, $\Gamma[B, C]$ is, up to isomorphism, independent of the choice of adjacent blocks B, C of \mathcal{B} .

The purpose of this paper is to classify a family of imprimitive symmetric graphs and the corresponding quotients and groups. This makes partial contribution to our project of the study of G-symmetric graphs Γ with $k = v - 1 \ge 2$, where v := |B| is the block size of \mathcal{B} and $k := |\Gamma(C) \cap B|$ is the size of each part of the bipartition of $\Gamma[B, C]$. It seems that this case is rather rich in both theory and examples: In [7, Section 6] a natural construction of a subclass of such graphs was discovered, and this was further developed in [9, 10]. In [5] such graphs Γ with $\Gamma_{\mathcal{B}}$ a complete graph and G a 3-transitive subgroup of $P\Gamma L(2, q)$ were determined and characterized, for any prime power q. In [11] an intertwined relationship between G-symmetric graphs with $k = v - 1 \ge 2$ and certain kinds of G-point- and G-block-transitive 1-designs was revealed. For such a graph Γ and a vertex α of Γ , we denote by $B(\alpha)$ the unique block of \mathcal{B} containing α . Since $k = v - 1 \ge 2$, we may define

$$\mathcal{B}(\alpha) := \{ C \in \mathcal{B} : \Gamma(C) \cap B(\alpha) = B(\alpha) \setminus \{\alpha\} \}$$
(1)

and set

$$m := |\mathcal{B}(\alpha)|. \tag{2}$$

Thus $\mathcal{B}(\alpha)$ is the set of blocks of \mathcal{B} which are adjacent to $B(\alpha)$ in $\Gamma_{\mathcal{B}}$ but contain no vertex adjacent to α in Γ . Since G is transitive on $V(\Gamma)$, the integer m does not depend on the choice of α . It seems that the size of $\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)$, for adjacent vertices α, β of Γ , influences a lot the structure of Γ . For example, we will see in Lemma 2.1(c) that, if it is greater than m/2, then Γ is forced to be an *almost cover* [9] of $\Gamma_{\mathcal{B}}$, that is, $\Gamma[B, C]$ is a matching of v - 1 edges. In this paper, we investigate the extreme case where $\mathcal{B}(\alpha) = \mathcal{B}(\beta)$ for adjacent vertices α, β of Γ , and (without loss of generality) $\Gamma_{\mathcal{B}}$ is connected. In this case, we will prove that the group G is rather restrictive and all of Γ , $\Gamma_{\mathcal{B}}$ and $\Gamma[B, C]$ can be determined explicitly, namely $\Gamma \cong (v+1) \cdot K_m^v$, $\Gamma_{\mathcal{B}} \cong K_m^{v+1}$, Γ is an almost cover of $\Gamma_{\mathcal{B}}$, and G is an extension of a group by any 3-transitive group of degree v + 1 (see Theorem 3.1 and Remark 3.2). Here we denote by K_m^n the complete n-partite graph with m vertices in each part of its n-partition, and by $n \cdot \Sigma$ the union of nvertex-disjoint copies of a given graph Σ .

2 Preliminary

For terminology and notation on graphs and permutation groups, the reader is referred to [1] and [3], respectively. Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition

 \mathcal{B} such that $k = v - 1 \geq 2$. For two vertices α, β of Γ , if $B(\alpha) \in \mathcal{B}(\beta)$ and $B(\beta) \in \mathcal{B}(\alpha)$ hold simultaneously, then we say that α, β are mates, and that α is the mate of β in $B(\alpha)$ (so β is the mate of α in $B(\beta)$ as well). Define Γ' to be the graph with vertex set $V(\Gamma)$ in which α, β are adjacent if and only if they are mate. Then Γ' is *G*-symmetric ([7, Proposition 3]). One can see that the set $\{\mathcal{B}(\alpha) : \alpha \in B\}$ is a G_B -invariant partition of $\Gamma_{\mathcal{B}}(B)$, and hence G_B induces an action on it, where G_B is the setwise stabilizer of B in G. Clearly, for $(\alpha, \beta) \in \operatorname{Arc}(\Gamma)$, the value of $|\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)|$ is between 0 and m, and is independent of the choice of such (α, β) since Γ is G-symmetric. Part (c) of the following lemma gives an upper bound for this integer in terms of m and the valency of $\Gamma[B, C]$.

Lemma 2.1 Let (Γ, G) be as above, and let s be the valency of $\Gamma[B, C]$ (for adjacent blocks B, C of \mathcal{B}). Then the following (a)-(c) hold.

(a) The valency of Γ is equal to ms(v-1), and the valency of $\Gamma_{\mathcal{B}}$ is equal to mv ([7, Theorem 5(a)]).

(b) G_B is doubly transitive on $\{\mathcal{B}(\alpha) : \alpha \in B\}$ ([7, Theorem 5(b)]).

(c) For $(\alpha, \beta) \in \operatorname{Arc}(\Gamma)$, we have $|\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)| \le m/s$. In particular, if $|\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)| > m/2$, then $\Gamma[B, C] \cong (v-1) \cdot K_2$.

Proof We need to prove (c) only. Let $n = |\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)|$ for $(\alpha, \beta) \in \operatorname{Arc}(\Gamma)$. Let $B = B(\alpha)$, $C \in \Gamma_{\mathcal{B}}(B) \setminus \mathcal{B}(\alpha)$, and set $\Gamma(\alpha) \cap C = \{\beta_1, \ldots, \beta_s\}$. Then $\mathcal{B}(\alpha) \cap \mathcal{B}(\beta_i)$, for $i = 1, \ldots, s$, are pairwise disjoint with each containing n blocks of $\mathcal{B}(\alpha)$. So we have $sn \leq m$, as required. In particular, if n > m/2, then we must have s = 1 and thus $\Gamma[B, C] \cong (v - 1) \cdot K_2$. \Box

The following example shows that the case where $\mathcal{B}(\alpha) = \mathcal{B}(\beta)$ for adjacent vertices α, β of Γ can occur. For a finite set I, we denote by $I^{(2)}$ the set of ordered pairs of distinct elements of I.

Example 2.2 Let X be a finite group acting 3-transitively on a finite set I of degree $v + 1 \ge 4$, and Y a finite group acting on a finite set J of degree $m \ge 1$. We require that Y is 2-transitive on J whenever $m \ge 2$. Then $G := X \times Y$ is transitive on $V := I^{(2)} \times J$ in its action defined by $(i, h, j)^{(x,y)} := (i^x, h^x, j^y)$ for $(i, h, j) \in V$ and $(x, y) \in G$. Define Γ to be the graph with vertex set V in which (i, h, j), (i', h', j') are adjacent if and only if $i \neq i'$ and h = h'. Then $\Gamma \cong (v+1) \cdot K_m^v$, and the assumptions on X, Y imply that Γ is G-symmetric. Clearly, Γ admits $\mathcal{B} := \{[i, j] : i \in I, j \in J\}$ as a G-invariant partition, where $[i, j] := \{(i, h, j) : h \in I \setminus \{i\}\}$. We have $\Gamma_{\mathcal{B}} \cong K_m^{v+1}$ with [i, j], [i', j'] adjacent if and only if $i \neq i'$. Also, we have $\Gamma[B, C] \cong (v-1) \cdot K_2$ for adjacent blocks B, C of \mathcal{B} (hence $k = v - 1 \ge 2$). Moreover, for adjacent vertices $\alpha = (i, h, j)$, $\alpha' = (i', h, j')$ of Γ , we have $\mathcal{B}(\alpha) = \mathcal{B}(\alpha') = \{[h, \ell] : \ell \in J\}$, and hence $|\mathcal{B}(\alpha)| = m$.

3 Main result and the proof

Unexpectedly, the graphs Γ in Example 2.2 are the only *G*-symmetric graphs with $\Gamma_{\mathcal{B}}$ connected such that $k = v - 1 \ge 2$ and $\mathcal{B}(\alpha) = \mathcal{B}(\beta)$ for adjacent vertices α, β of Γ , and $\Gamma_{\mathcal{B}}, \Gamma[B, C]$ are as shown therein. More precisely, we have the following theorem, which is the main result of this paper.

Theorem 3.1 Suppose that Γ is a G-symmetric graph admitting a nontrivial G-invariant partition \mathcal{B} such that $k = v - 1 \geq 2$. Suppose further that $\Gamma_{\mathcal{B}}$ is connected and that $\mathcal{B}(\alpha) = \mathcal{B}(\beta)$ for adjacent vertices α, β of Γ . Let $m = |\mathcal{B}(\alpha)|$. Then $\Gamma \cong (v + 1) \cdot K_m^v$, $\Gamma_{\mathcal{B}} \cong K_m^{v+1}$, $\Gamma[B, C] \cong (v - 1) \cdot K_2$ for adjacent blocks B, C of \mathcal{B} , and the induced action of G on the natural (v + 1)-partition \mathbf{B} of $\Gamma_{\mathcal{B}}$ is 3-transitive. Moreover, the vertices of Γ can be labelled by ordered triples of integers such that the following (a)-(c) hold (where we set $I := \{0, 1, \ldots, v\}$ and $J := \{1, 2, \ldots, m\}$):

- (a) $V(\Gamma) = I^{(2)} \times J$, and two vertices $(i, h, j), (i', h', j') \in V(\Gamma)$ are adjacent in Γ if and only if $i \neq i'$ and h = h'.
- (b) $\mathcal{B} = \{[i,j] : i \in I, j \in J\}$, where $[i,j] := \{(i,h,j) : h \in I \setminus \{i\}\}$, and [i,j], [i',j'] are adjacent blocks if and only if $i \neq i'$.
- (c) $\mathbf{B} = \{\mathbf{i} : i \in I\}$, where $\mathbf{i} = \{[i, j] : j \in J\}$.

Conversely, the graph Γ defined in (a) together with the group $G = X \times Y$ satisfies all conditions of the theorem, where X is a group acting 3-transitively on I, Y is a group acting on J which is 2-transitive if $m \ge 2$, and the action of G on $V(\Gamma)$ is as defined in Example 2.2.

Proof By our assumption we have $|\mathcal{B}(\alpha) \cap \mathcal{B}(\beta)| = m > m/2$ for $(\alpha, \beta) \in \operatorname{Arc}(\Gamma)$. Thus Lemma 2.1(c) implies

(i) $\Gamma[D, E] \cong (v - 1) \cdot K_2$ for adjacent blocks D, E of \mathcal{B} .

Let *B* be a block of \mathcal{B} and let $\alpha_1, \alpha_2, \ldots, \alpha_v$ be vertices of *B*. For each $\alpha_i \in B$, we label (in an arbitrary way) the *m* blocks in $\mathcal{B}(\alpha_i)$ by $[i, j], j \in J$. Also, we label the unique mate β_{ij} of α_i in the block [i, j] by $(i, 0, j), j \in J$. For each block [i, j] and for each $h \in I \setminus \{0\}$ distinct from *i*, (i) implies that [i, j] contains a unique vertex adjacent to α_h . We label such a vertex in [i, j] by (i, h, j). In view of (i) one can see that each vertex in [i, j] receives a unique label, and that the labels of distinct vertices in [i, j] have distinct second coordinates. Therefore, for each $i \in I \setminus \{0\}$ and $j \in J$, we may identify the block [i, j] with the set $\{(i, h, j) : h \in I \setminus \{i\}\}$. By our assumption, for $i, h \in I \setminus \{0\}$ with $i \neq h$ and $j \in J$, we have (ii) $\mathcal{B}((i,h,j)) = \mathcal{B}(\alpha_h) = \{[h,1], [h,2], \dots, [h,m]\}.$

In particular, this implies that

(iii) [i, j], [i', j'] are adjacent blocks, for distinct $i, i' \in I \setminus \{0\}$ and any $j, j' \in J$.

Moreover, if two vertices (i, h, j), (i', h', j') are adjacent, then by (ii) and our assumption we must have $\mathcal{B}(\alpha_h) = \mathcal{B}((i, h, j)) = \mathcal{B}((i', h', j')) = \mathcal{B}(\alpha_{h'})$, which is true only when h = h'. This, together with (i) and (iii), implies the following assertion.

(iv) For distinct $i, i' \in I \setminus \{0\}$ and any $j, j' \in J$, two labelled vertices (i, h, j), (i', h', j') of Γ are adjacent if and only if h = h'. In other words, for adjacent blocks D = [i, j], E = [i', j'] of \mathcal{B} , the bipartite subgraph $\Gamma[D, E]$ of Γ is the matching of v - 1 edges joining (i, h, j) and (i', h, j'), for $h \in I \setminus \{i, i'\}$.

Therefore, (i, i', j) and (i', i, j') are mates and hence, for the graph Γ' defined at the beginning of the previous section, we have

(v) $\Gamma'((i,h,j)) = \{(h,i,j') : j' \in J\}.$

Now let us examine a particular labelled vertex, say (i, h, j). From Lemma 2.1(a) and (i) above, the valency of Γ is m(v-1), and hence the neighbourhood $\Gamma((i, h, j))$ of (i, h, j) contains m(v-1) vertices. From (iv) we have $\{(i', h, j') : i' \in I \setminus \{0, h, i\}, j' \in J\} \subseteq \Gamma((i, h, j))$ and this contributes m(v-2) neighbours of (i, h, j). Note that α_h is also a neighbour of (i, h, j). Apart from these, there are m-1 remaining neighbours of (i, h, j), which we denote by $\delta_2, \ldots, \delta_m$, respectively. By (i) these vertices $\delta_2, \ldots, \delta_m$ belong to distinct blocks, say B_2, \ldots, B_m , of \mathcal{B} . For each δ_t , we have $\mathcal{B}(\delta_t) = \mathcal{B}((i, h, j)) = \mathcal{B}(\alpha_h) = \{[h, 1], [h, 2], \ldots, [h, m]\}$ by (ii) and our assumption. In particular, this implies that all the blocks $[h, \ell]$, for $\ell \in J$, are adjacent to the block B_t . On the other hand, from (v) we have $\Gamma'((h, h', \ell)) = \{(h', h, t) : t \in J\}$ for each vertex $(h, h', \ell) \in [h, \ell] \setminus \{\beta_{h\ell}\}$. In other words, the m mates of each vertex in $[h, \ell] \setminus \{\beta_{h\ell}\}$ are in $\bigcup_{h' \in I \setminus \{0,h\}, t \in J} [h', t]$. So the only possibility is that $\beta_{h\ell}$ is the mate of δ_t in $[h, \ell]$, for $each \ell \in J$. Consequently, we have

(vi) $\mathcal{B}(\beta_{h1}) = \cdots = \mathcal{B}(\beta_{hm}) = \{B, B_2, \dots, B_m\}$, and hence none of B, B_2, \dots, B_m coincides with [i, j] for any $i \in I \setminus \{0\}$ and $j \in J$.

We know from (iii) that the blocks [i', j'], for $i' \in I \setminus \{0, h\}$ and $j' \in J$, are all adjacent to $[h, \ell]$. Besides these m(v - 1) blocks, B, B_2, \ldots, B_m are the only blocks of \mathcal{B} adjacent to $[h, \ell]$ in $\Gamma_{\mathcal{B}}$ since $\Gamma_{\mathcal{B}}$ has valency mv (Lemma 2.1(a)). Therefore, if we apply the procedure above to another vertex (i', h, j'), we would get the same blocks B_2, \ldots, B_m . In other words, these

blocks are independent of the choice of the vertex (i, h, j) (depending only on h), and hence they are adjacent to the block [i, j] for any $i \in I \setminus \{0\}$ and $j \in J$. Moreover, since the mate δ_t of $\beta_{h\ell}$ in B_t is unique, the vertices $\delta_2, \ldots, \delta_m$ are also independent of the choice of (i, h, j) and thus they are common neighbours of all such vertices (i, h, j). Thus, since the valency of $\Gamma_{\mathcal{B}}$ is mv, B, B_2, \ldots, B_m are the only unlabelled blocks of \mathcal{B} . From this and by a similar argument to that above, we see that for each $h \in I \setminus \{0\}$, all the vertices $(i, h, j), i \in I \setminus \{0, h\}, j \in J$, have a common neighbour in each B_t , which we now label by (0, h, t). Since for distinct h, h'the vertices (i, h, j), (i, h', j) have different neighbours in B_t , the vertices of B_t receive pairwise distinct labels. Now let us label B, B_2, \ldots, B_m with $[0, 1], [0, 2], \ldots, [0, m]$, respectively, and label each α_h with (0, h, 1). Then all the vertices of Γ and all the blocks of \mathcal{B} have been labelled. From the labelling above, the validity of (a) and (b) follows immediately.

Since the valency of Γ is m(v-1), the argument above also shows that for each $h \in I$ the connected component of Γ containing the vertex α_h is the complete v-partite graph K_m^v with v-partition $\{\{(i,h,j): j \in J\}: i \in I\}$, where we set $\alpha_0 = \beta_{11}$. Hence we have $\Gamma \cong (v+1) \cdot K_m^v$. Also, $\Gamma_{\mathcal{B}}$ is the complete (v+1)-partite graph K_m^{v+1} with (v+1)-partition $\mathbf{B} := \{\mathbf{i} : i \in I\}$, where $\mathbf{i} := \mathcal{B}(\alpha_i) = \{[i,j]: j \in J\}$ for $i \in I$. Clearly, $(\Gamma_{\mathcal{B}})_{\mathbf{B}} \cong K_{v+1}$ and \mathbf{B} is a *G*-invariant partition of \mathcal{B} . From Lemma 2.1(b), G_B is doubly transitive on $\{\mathcal{B}(\gamma) : \gamma \in B\}$. The setwise stabilizer in *G* of the block $\mathbf{0}$ contains G_B as a subgroup, and so is doubly transitive on the neighbourhood $\mathbf{B} \setminus \{\mathbf{0}\}$ of $\mathbf{0}$ in $(\Gamma_{\mathcal{B}})_{\mathbf{B}}$. Therefore, *G* is 3-transitive on \mathbf{B} .

Finally, for $G = X \times Y$ with X triply transitive on I and Y doubly transitive on J whenever $m \ge 2$, Example 2.2 shows that the graph Γ defined in (a) satisfies all the conditions in the theorem.

Remark 3.2 In Theorem 3.1, G may or may not be faithful on **B**. (This can be seen from Example 2.2, where the action of G on **B** is permutationally isomorphic to the action of Xon I which is not necessarily faithful.) Let K be the kernel of the action of G on **B**, and set H := G/K. Then H is 3-transitive and faithful on **B** of degree v + 1, and G is an extension of Kby H. From the classification of finite highly transitive permutation groups (see e.g. [2, 6]), His one of the following: S_{v+1} ($v \ge 3$), A_{v+1} ($v \ge 4$), M_{v+1} (v = 10, 11, 21, 22, 23), M_{11} (v = 11), AGL(d, 2) ($v = 2^d - 1$), $\mathbb{Z}_2^4.A_7$ (v = 15), and $PSL(2, v) \le H \le P\Gamma L(2, v)$ (v a prime power). Example 2.2 shows that $m = |\mathcal{B}(\alpha)|$ defined in (2) can be any positive integer and H can be any group listed above.

References

- N. L. Biggs, Algebraic Graph Theory (Second edition), Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1993).
- [2] P. J. Cameron, 'Finite permutation groups and finite simple groups', Bull. London Math. Soc. 13 (1981), 1-22.
- [3] J. D. Dixon and B. Mortimer, *Permutation Groups* (Springer, New York, 1996).
- [4] A. Gardiner and C. E. Praeger, 'A geometrical approach to imprimitive graphs', Proc. London Math. Soc. (3) 71 (1995), 524-546.
- [5] A. Gardiner, C. E. Praeger and S. Zhou, 'Cross ratio graphs', Proc. London Math. Soc., to appear.
- [6] W. M. Kantor, 'Homogeneous designs and geometric lattices', J. Combin. Theory Ser. A 38 (1985), 66-74.
- [7] C. H. Li, C. E. Praeger and S. Zhou, 'A class of finite symmetric graphs with 2-arc transitive quotients', Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 1, 19-34.
- [8] C. E. Praeger, 'Imprimitive symmetric graphs', Ars Combinatoria 19A (1985), 149-163.
- [9] S. Zhou, 'Almost covers of 2-arc transitive graphs', submitted.
- [10] S. Zhou, 'Imprimitive symmetric graphs, 3-arc graphs and 1-designs', Discrete Mathematics, to appear.
- [11] S. Zhou, 'Constructing a class of symmetric graphs', submitted.

Department of Mathematics and Statistics The University of Western Australia Perth, WA 6907, Australia Email: *smzhou@maths.uwa.edu.au*

Current address:

Department of Mathematics and Statistics

The University of Melbourne

Parkville, VIC 3052, Australia