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Abstract

We answer a recent question posed by Li et al. [‘Imprimitive symmetric graphs with cyclic blocks’,
European J. Combin. 31 (2010), 362–367] regarding a family of imprimitive symmetric graphs.
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A graph 0 = (V, E) is called G-symmetric if 0 admits G as a group of automorphisms
such that G is transitive on V and on the set of arcs of 0, where an arc is an ordered pair
of adjacent vertices. If in addition 0 admits a nontrivial G-invariant partition, that is,
a partition B of V such that 1< |B|< |V | and Bg

:= {αg
: α ∈ B} ∈ B for B ∈ B and

g ∈ G, then 0 is called an imprimitive G-symmetric graph. In this case the quotient
graph 0B of 0 with respect to B is defined to have vertex set B such that B, C ∈ B are
adjacent if and only if there exists at least one edge of 0 between B and C . We assume
that 0B contains at least one edge, so that each block of B is an independent set of 0.
Denote by 0(α) the neighbourhood of α ∈ V in 0, and define 0(X)=

⋃
α∈X 0(α) for

X ∈ B. For blocks B, C ∈ B adjacent in 0B , let 0[B, C] be the bipartite subgraph of 0
induced on (B ∩ 0(C)) ∪ (C ∩ 0(B)). Then 0[B, C] is independent of the choice of
(B, C) up to isomorphism. Define

v := |B| and k := |B ∩ 0(C)|

to be the block size of B and the size of each part of the bipartition of 0[B, C],
respectively.

In line with a geometrical approach suggested in [1], various situations may
occur for 0, G, 0B , 0[B, C] and a certain 1-design with point set B; see, for
example, [1, 3, 5–7]. The case where k = v − 2≥ 1 was studied in [2, 4] and a
necessary and sufficient condition for 0B to be (G, 2)-arc-transitive was given in [2].
In this case, the multigraph 0B

[2] with vertex B and an edge joining the two vertices
of B \ 0(C) for every C ∈ 0B(B) plays an important role in the structure of 0 and 0B ,
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where 0B(B) is the neighbourhood of B in 0B . Since 0 is G-symmetric, up to
isomorphism 0B is independent of the choice of B, and the multiplicity of each
edge {α, β} of 0B , namely

m := |{C ∈ 0B(B) : B \ 0(C)= {α, β}}|,

is independent of the choice of {α, β}. Denote by Simple(0B) the underlying simple
graph of 0B and by GB the setwise stabilizer of B in G. It has been proved [2,
Theorem 2.1] that Simple(0B) is GB-vertex-transitive and GB-edge-transitive, and
either 0B is connected or v is even and Simple(0B) is a perfect matching (v/2) · K2.
In the latter case detailed information about 0 was obtained in [2, Theorem 1.3]
when 0B is simple. In [4], Li et al. proved that, if Simple(0B) is a cycle, then v
must be small, namely v is equal to 3 or 4. Based on this they posed the following
question.

QUESTION 1. In the case where k = v − 2 and 0B is connected, is v bounded by
some function of the valency of Simple(0B)?

Define

b := val(0B), s := val(0[B, C]), r := |{C ∈ B : α ∈ 0(C)}|

to be respectively the valency of 0B , the valency of 0[B, C], and the number of
blocks of B that contain at least one neighbour of a fixed vertex α ∈ V in 0. Note
that v, k, b, r and s all rely on the G-invariant partition B.

In this paper we answer Question 1 by proving the following stronger result: there
are only two possibilities for Simple(0B) and v can take two values only.

THEOREM 2. Suppose that 0 is a G-symmetric graph which admits a nontrivial
G-invariant partition B such that k = v − 2≥ 1, 0B is connected and Simple(0B)

is connected with valency d ≥ 2. Then one of the following occurs.

(a) Simple(0B)∼= Kv , v = d + 1, b = m(v − 1)v/2, and G B
B is 2-homogeneous.

(b) Simple(0B)∼= Kv/2,v/2, v = 2d, b = mv2/4, and the bipartition of
Simple(0B) induces a G-invariant partition B∗ of the vertex set of 0 (which is
a refinement of B) such that one of the following holds for its parameters:

(i) v∗ = k∗ + 1= v/2, b∗ = b, r∗ = r , s∗ = s;
(ii) v∗ = k∗ + 1= v/2, b∗ = 2b, r∗ = 2r , s∗ = s/2;
(iii) v∗ = 2k∗ + 1= v/2, b∗ = 2b, r∗ = r , s∗ = s.

PROOF. Suppose that 0, G and B satisfy the conditions in the theorem. Denote
� := Simple(0B). Let B and C be two blocks of B adjacent in 0B , and let
{α, β} = B \ 0(C) be the corresponding edge of �. Define

U := (�(α) ∪�(β)) \ {α, β}

to be the neighbourhood of the subset {α, β} of B in �, and set

W := B \ (U ∪ {α, β}).
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Since � has valency d ≥ 2, we have U 6= ∅. Since every element of GBC (= (GB)C )
fixes {α, β} setwise, it follows that every element of GBC fixes each of U and W
setwise. Thus GBC ≤ GU ∩ GW .

Claim 1. W = ∅, that is, U = B \ {α, β}, or every vertex in B is adjacent to at least
one of α and β in �.

Suppose otherwise and let δ ∈W . Since U 6= ∅, we may take a vertex γ ∈U .
Since δ, γ 6= α, β, there exist δ1, γ1 ∈ C adjacent to δ, γ in 0, respectively. (It
may occur that δ1 = γ1.) Since 0 is G-symmetric, there exists g ∈ G such that
(γ, γ1)

g
= (δ, δ1). Since g maps γ ∈ B to δ ∈ B and γ1 ∈ C to δ1 ∈ C , it fixes B and C

setwise. Hence g ∈ GBC ≤ GU ∩ GW . However, this is a contradiction, because g
maps γ ∈U to δ ∈W . Therefore W = ∅ as claimed.

Since � has valency d , by Claim 1, d − 1≤ |U | ≤ 2(d − 1). Since v = |U | + 2 by
Claim 1, it follows that

d + 1≤ v ≤ 2d.

Claim 2. In � any two adjacent vertices have 2d − v common neighbours, and two
nonadjacent vertices have the same neighbourhood.

In fact, since � is GB-edge-transitive [2, Theorem 2.1], the number λ of
common neighbours of a pair of adjacent vertices in � is a constant. Consider the
neighbourhood U of {α, β} in �, where α and β are as above. There are exactly
d − λ− 1 vertices in B which are adjacent to α but not β (β but not α, respectively).
Thus, by Claim 1, 2(d − λ− 1)+ λ= v − 2, which implies that λ= 2d − v.

Now let σ and τ be any two nonadjacent vertices of �. If γ ∈ B is adjacent to σ
in �, then by applying Claim 1 to the edge {σ, γ }, every vertex in B is adjacent to
either σ or γ in �. Thus, since τ is not adjacent to σ , it must be adjacent to γ in �
and so �(σ)⊆�(τ). Similarly, �(τ)⊆�(σ). Hence �(σ)=�(τ) and Claim 2 is
proved.

Consider any maximal (with respect to set-theoretic inclusion) independent set X
of �. By Claim 2 the vertices in X have the same neighbourhood in �. Denote
this common neighbourhood by Y , so that |Y | = d . If B \ (X ∪ Y ) 6= ∅, then by
the maximality of X , any vertex in B \ (X ∪ Y ) must be adjacent to at least one
vertex δ ∈ X in �, which implies that δ is adjacent to d + 1 vertices in �. This
contradiction shows that X ∪ Y = B and consequently |X | = v − d . Since this holds
for any maximal independent set of � and since � is GB-vertex-transitive, we have
the following claim.

Claim 3. v − d divides d and� is a complete t-partite graph with each part containing
v − d vertices, where t = v/(v − d).

Based on this we now prove the following claim.

Claim 4. �∼= Kv or Kv/2,v/2; that is, t = v or 2.
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Suppose to the contrary that 2< t < v. Denote by B1, B2, . . . , Bt the parts of the
t-partition of �. Similarly, for any D ∈ B, denote by D1, D2, . . . , Dt the parts of the
t-partition of Simple(0D) (∼=�). Set

B∗ := {D1, D2, . . . , Dt
: D ∈ B}.

It is straightforward to verify that B∗ is a nontrivial G-invariant partition of the vertex
set of 0 and that B∗ is a refinement of B. For adjacent B, C ∈ B and {α, β} =
B \ 0(C) as above, α and β belong to different parts of �, and so we may assume
that α ∈ B1 and β ∈ B2 without loss of generality. Since t < v, each part of � has
size at least two and hence we can take a vertex ξ ∈ B2

\ {β}. Since t > 2, � has
at least three parts and so we can take a vertex η ∈ B3. Since B \ 0(C)= {α, β} and
ξ, η 6= α, β, each of ξ and η has at least one neighbour in C . Let ξ be adjacent to γ ∈ C
and η adjacent to δ ∈ C . Since 0 is G-symmetric, there exists an element g ∈ G which
maps (η, δ) to (ξ, γ ). Thus g ∈ GBC . Since B∗ is G-invariant and g maps η ∈ B3 to
ξ ∈ B2, g should map B3 to B2. Since every vertex in B3 has a neighbour in C , it
follows that every vertex in B2 has a neighbour in C . However, this is a contradiction
since β ∈ B2 has no neighbour in C . Therefore we have proved Claim 4.

Obviously, if �∼= Kv , then d = v − 1, b = mdv/2= m(v − 1)v/2, and moreover
GB is 2-homogeneous on B since � is GB-edge-transitive by [2, Theorem 2.1].

In the case �∼= Kv/2,v/2, we have d = v/2, b = mdv/2= mv2/4, and the G-
invariant partition B∗ above becomes B∗ = {D1, D2

: D ∈ B}. Obviously, B∗ is a
nontrivial partition of the vertex set of 0 and is a refinement of B. In the case where
each of 0(B1) and 0(B2) has nonempty intersection with exactly one of C1 and C2, it
is easy to see that v∗ = k∗ + 1, b = b∗, r = r∗ and s = s∗, and so case (b)(i) occurs. In
the remaining case, each of 0(B1) and 0(B2) has nonempty intersection with both C1

and C2, and hence b∗ = 2b. If further every vertex in B1
\ {α} has neighbours in

both C1 and C2, then v∗ = k∗ + 1, r∗ = 2r and s∗ = s/2, and so case (b)(ii) occurs.
If not every vertex in B1

\ {α} has neighbours in both C1 and C2, then by symmetry
the numbers of vertices in B1

\ {α} having neighbours in C1 and C2 are equal. This
implies that

k∗ = (v∗ − 1)/2, r∗ = b∗k∗/v∗ = b(v − 2)/v = r and s∗ = rs/r∗ = s,

and hence case (b)(iii) occurs. 2

Example 2.4 in [2] can serve as an example for case (a) in Theorem 2 when v = 3.
Examples for case (b)(i) when v = 4 can be obtained from [4, Construction 3.2]: let M
be a regular map on a closed surface such that its underlying graph6 has valency four.
(A regular map is a 2-cell embedding of a connected (multi)graph on a closed surface
such that its automorphism group is regular on incident vertex–edge–face triples.) For
each edge {σ, σ ′} of 6, let f and f ′ denote the faces of M with {σ, σ ′} as a common
edge. Denote by fσ and f ′σ the other two faces of M incident with σ and opposite
to f and f ′ respectively, and define fσ ′ and f ′

σ ′
similarly. Let 01(M), 02(M), 03(M)

and 04(M) be the graphs [4] with vertices the incident vertex–face pairs of M and
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adjacency defined as follows (where ∼ means adjacency): for each edge {σ, σ ′} of
6, (σ, f )∼ (σ ′, f ) and (σ, f ′)∼ (σ ′, f ′) in 01(M); (σ, f )∼ (σ ′, f ′) and (σ, f ′)∼
(σ ′, f ) in 02(M); (σ, fσ )∼ (σ ′, fσ ′) and (σ, f ′σ )∼ (σ

′, f ′
σ ′
) in 03(M); (σ, fσ )∼

(σ ′, f ′
σ ′
) and (σ, f ′σ )∼ (σ

′, fσ ′) in 04(M). These graphs are G-symmetric [4,
Lemma 3.3] and admit B := {B(σ ) : σ ∈ V (6)} as a G-invariant partition, where
B(σ )= {(σ, f ) : σ incident with f }, such that k = v − 2= 2, 0B ∼=6, 0B(σ )

= K2,2
and 0[B(σ ), B(τ )] = 2 · K2 for adjacent B(σ ), B(τ ) ∈ B. These four graphs fall
into case (b)(i) in Theorem 2 and the G-invariant partition induced by the bipartition
of 0B(σ ) is B∗ := {B1(σ ), B2(σ ) : σ ∈ V (6)}, where B1(σ )= {(σ, f ), (σ, fσ )} and
B2(σ )= {(σ, f ′), (σ, f ′σ )}.
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