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Abstract. Let G be a graph with order p, size q and component number w. For each
i between p — W and q, let ^i(G) be the family of spanning i-edge subgraphs of G with
exactly u> components. For an integer-valued graphical invariant if, if H —> H' is an
adjacent edge transformation (AET) implies \<f>(H) — <p(H')\ < 1, then <f> is said to be
continuous with respect to AET. Similarly define the continuity of (p with respect to simple
edge transformation (SET). Let Mj(<p) and mj(tp) be the invariants defined by Mj(ip)(H) =

max <f(T), mj(if>)(H) = min f(T). It is proved that both M p - u ( < p ) and mp-M(<f>)

interpolate over ^i(G), p — u> < i ^ q, if y> is continuous with respect to AET, and that
Mj(f>) and mj(<p) interpolate over ^i(G), p — u> < j < i < q, if (p is continuous with
respect to SET. In this way a lot of known interpolation results, including a theorem due
to Schuster etc., are generalized.

1. INTRODUCTION

Let & be a family of graphs and (p an integer-valued graphical invariant. We view
(p as a mapping from & to the set of integers. If the image set <p(&) = (f(H):
H € &} is an integer interval, that is, if it consists of consecutive integers, then <p
is said to interpolate over & ([5]). In previous work it was shown that a number
of invariants interpolate over some families of subgraphs, e.g. the family of spanning
trees, of a connected graph. In this direction, the following result is well-known.

Theorem 1 ([2, 7, 9]). For each integer m > 0, let em be the invariant defined
by £m(H) — \{v G V(H): dn(v) < m}\ for any graph H. Then em interpolates over
the family of spanning trees of any connected graph.

Note that e1 (H) is just the number of pendant vertices of H if H contains no
isolated vertices. So Theorem 1 answers affirmatively a problem proposed by Char-
trand [3]. As a generalization of this result, Barefoot [1] proved that EI interpolates
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over the family of connected z'-edge spanning subgraphs of any connected graph G
for each i with |V(G)| - 1 < i < \E(G)\ (a short proof for this result can be found
in [11]). In this paper, we are going to generalize Theorem 1, as well as a lot of other
interpolation results, along another direction.

Throughout the paper graphs are finite, undirected and with no loops and multi-
edges. We will always use G to denote a graph with order p, size q and component
number u. For each i, p—ui < i < q, let ^(G) be the family of spanning subgraphs of
G with i edges and u components. In particular, ^p_1(G) is the family of spanning
trees of G if G is connected. For two graphs H and H' with the same vertex set, if
H' = H-e + e' for some e € E(H)\E(H') and e' 6 E(H')\E(H), then call H -> H'
a simple edge transformation (SET for short) or a simple edge exchange as used in
[5]. If H' = H — e + e' for adjacent e and e', then call H —> H1 an adjacent edge
transformation (AET). An integer-valued invariant (f> is said to be continuous with
respect to SET (AET, respectively) if H -» H' is SET (AET, respectively) implies
that \<p(H) — (f(H')\ < 1. For an invariant <p and a graph H, define

for each j with |F(H)| - u(H) < j < \E(H)\, where uj(H) is the number of compo-
nents of H and ^ (H) is the family of spanning subgraphs of H with j edges and
u(H) components. Note that if j = \E(H)\, then Mj((p)(H) = m j ( ( p ) ( H } - (f>(H).
One of the main results in this paper is the following

Theorem 2. Both Mj(ip) and m,j((p} interpolate over ^(G) provided that one of
the following conditions is satisfied:

(a) </? is continuous with respect to SET, p - u > < j < i < q ;
(b) <f is continuous with respect to AET, p — u> = j < i < q.

To prove this we need the following rather simple fact, which reveals the connection
between global and local interpolations.

Proposition 1 [11]. An invariant ip interpolates over a family & if and only if
there exists a connected graph G(&) with vertex set & such that (p interpolates
over N[H] for each H € &, where N[H] is the subset of & consisting of H and its
neighbors in graph G(J^).

Theorem 2 is proved in the next section, and its further generalizations are given
in Section 3. At the end of the paper some consequences of the main results are
discussed.
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2. PROOF OF THEOREM 2

Let Ti(G] be the graph with vertex set ^(G) in which H and H' adjacent if and
only if H -> H' is a SET. Similarly define the graph Ai(G) on '^(G) in which H and
H' adjacent if and only if H -> H' is an AET. Let G1 , . . . , Gr be the components of
the graph obtained from G by deleting all bridges and the resultant isolated vertices.
Let 4j_i(G) be the subgraph of A q - 1 ( G ) induced by tfq-1(G) = {G-e: e E E(Gk)},
1 < k < r. Then we have

Lemma 1. (a) For each i, p — w < i < q — 1, Ti(G) is connected. In fact, it is
hamiltonian.

(b) A q - 1 ( G ) , 1 < k < r, are exactly the components of A q - 1 ( G ) .

P r o o f , (a) Note that T,(G) is just the tree graph [6] of a matroid on G. In
fact, this matroid is the elongation [10] of the cycle matroid of G to height i. Since
i < q - 1, T i{(G) contains cycles. By the hamiltonicity of the tree graphs of matroids
[6], Ti(G) is hamiltonian.

(b) If G is 2-connected, then A q - 1 ( G ) is connected ([5], see also [12]). By using
this fact in general case we know each A q _ 1 ( G ) is connected. If H 6 <

q - 1 ( G ) ,
H' q-1(G), k = k', then H -> H' cannot be an AET and hence H, H' are not
adjacent in A q - 1 ( G ) . So (b) follows immediately.

The following lemma is a refinement of Lin's elegant proof [7] for Theorem 1.

Lemma 2. If ip interpolates over ^q-1(G) for any graph G, then it interpolates
over Vi(G) for each i, p - u < i< q, as well.

P r o o f . The result is trivial when i = q. Suppose p — w<iq -1 , then Ti(G)
is connected by Lemma l(a). For each H E ^(G), let N[H] be the closed neighbor
set of H in Ti(G), i.e. the set consisting of H and the neighbors of it in T;(G). Then

and hence

Note that H + e has i + 1 edges, so ^(^(H + e)) is an integer interval by the
hypothesis. Since all ^(^(H + e)), e € E(G) \ E(H), share a common element
<p(H), ip(N[H]) is also an integer interval. From Proposition 1 we conclude that <p
interpolates over ^i(G).
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Lemma 3. Let H,H' e ^q-1(G) and p — w < j < q - 1 . Then we have

provided that one of the following conditions is satisfied:
(a) (p is continuous with respect to SET and H and H' are adjacent in Tq-1(G);
(b) (f is continuous with respect to AET and H and H' are adjacent in A q - 1 ( G ) .

P r o o f . As an example we prove the inequalities under condition (b). Since
M q - 1 ( ¥ > ) ( H ) = m q - 1 ( ) ( H ) = v ( H } , M q - 1 ( v ) ( H ' ) = mq-1M(H') = *»(H'), both
(1) and (2) are valid if j — q - 1. In the following we assume j < q - 2. Suppose
H' = H - e + e', where e and e' are adjacent edges. Let

Since G = H + e' = H1 + e, we have 3>0 = {T € tfj(G): e,e' # E(T)}, & = {T 6
tfj(G): e e E(T),e' £ £(T)} and 0' = {T 6 <^-(G): e g £(T),e' e E(T)}. It can
be seen that the mapping f: 0 -> 0' defined by f(T) = T - e + e' is a bijection
from 0 to &.

Let n = Mj((f}(H) and T0 e ĵ(H) be such that (p(T 0 ) = n. We distinguish four
cases.

Case 1. TO E 3>0, max^(T) < n.

For each T' € 0', let T = f - 1(T') = T' - e' + e. Since T -> T' is an AET and (p
is continuous with respect to AET, we have </>(T') < <p(T) + 1 < (n - 1) + 1 = n. So
M j(v)(H')=n.

Case 2, T0 e ^0, max^(T) = n.
T€S>

By a similar argument as above we get Mj(<p)(H') = n or n + 1.
Case 3. T0 € &, max <^(T) < n.

T€@0
In such case <p(T) <n-1 for each T E ^0. Let T0 = T0-e+e', then <^(T0) = n-1,

n or n + 1. For each T' € &', let T = T' - e' -f e. Then <p(T') < v'(T) + 1 < n + 1.
So Mj((f)(H') = n - 1, n or n + 1.

Case 4. T0 £ 0, max w(T) = n.
res>0

Take T: e ^0 with <p(T1) = n. Then

So max</5(T) = n. Replacing TO by TI the case reduces to Case 2.
Tg©
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In each case above we have \Mj(<p)(H) — Mj(if>)(H')\ < 1. In a similar way we
can prove \rrij(<p)(H) - mj(<p)(H')\ < 1. This completes the proof of Lemma 3.

Now we can proceed to the proof of Theorem 2.

P r o o f of T h e o r e m 2. By Lemma 2 it suffices to prove that both Mj((p)
and mj(ip) interpolate over ^ q - 1 ( G ) under the given conditions.

(a) By Lemma 3 both Mj ((p) and mj (<p) interpolate over the closed neighbor set
of H in Tq-1(G). Since Tq-1(G) is connected by Lemma l(a), the result follows
immediately from Proposition 1.

(b) Combining Lemma l(b) and Lemma 3 with Proposition 1 we know both
M p - w ( < p ) ( & q - 1 ( G ) ) and mp_w(v?)(^q-1(G)) are integer intervals, 1 < k < r. Let
T0 € ^p_w(G) be such that <p(T0) = max <p(T). Since T0 is a forest and Gk is

T E * p - w ( G )

2-connected, there must exists an edge ek € E(Gk) which is not in T0. Thus T0 is a
subgraph of Gk - ek € q - 1 (G) . So M p - w ( t p ) ( G k - ek) = y>(T0). Thus all integer
intervals Mp_w(<p)(<£q - 1(G)),l < k < r, share a common element <p(T0), implying
that Mp_w(^)(^7

q_1(G)) = U MP_w(^)('^q-1(G)) is an integer interval. Simi-
l<k<r

larly mp_w((/?)('ifq-1(G)) is an integer interval. This completes the proof.

3. FURTHER RESULTS

The proof of Lemma 3 conveys more information than what has been used. In this
section we will give a general result, which implies Theorem 2(a), by using Lemma
3 repeatedly.

For integers l, j, p - w < l< j < q - 1, and H € ^q-1(G),T e tfj(H), let

Let

and

Then we have

Lemma 4. Let H,H' e ^q-1(G), p - w < l < j < q - 1 . If H -> H' is a SET
and (p is continuous with respect to SET, then
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P r o o f . If j = q - 1, then M m j , l ( < f > } ( H ) = m l ( t p ) ( H ) , m M j , l ( < p ) ( H ) =
Mi((p)(H). The result follows from Lemma 3. In the following we suppose j < q — 2.
We first prove that if T £ tfj(H), T' e tfj(H') and T -> T' is a SET, then

In fact in such case TUT' (the union of T and T') has exactly j+1 edges. Since T, T' €
tfj(T U T') and (p is continuous with respect to SET, we obtain (5-6) immediately
from Lemma 3. Replacing <p by ipi in the proof of Lemma 3 and applying inequality
(6) we get

which is just (3). Analogously we can prove (4).

Combining Proposition 1 and Lemmas 1, 2, 4 we get

Theorem 3. Suppose tp is continuous with respect to SET and p — w < l < j <
i < q, then both M m j , l ( < £ > ) and m M j , l ( f > ) interpolate over ^(G).

Note. We need not consider M M j , l ( < p ) and m m j , l ( f > ) since

We can go even further in the theme of Theorem 3. For p — uj < j1 < ... <
J2k < j2k+1 < q, put M 1 m j 2 , j 1 ( ( p ) - M m j 2 , j 1 ( t p ) and m 1 M j 2 , j 1 (v ) = mM j 2 , j 1 ( ip ) .
Inductively define

and

Define

and

By induction we can prove a lemma which is similar to Lemma 4 for the invariants
above. This leads to the following
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Theorem 4. If <p is continuous with respect to SET and p - w < j1 < ... <
j2k < j2k+1 < i < q, then M k m k

j 2 k , . . . , j 1 <p) , m k M k
2 k , . . . , j 1 ( t f ) , M k + l m k

2 k + 1 , . . . , j 1 ( (p )
and wk+1Mj2k+1,...,1j1 (v) all interpolate over ^(G).

If j1 = ... = J2k = l < j = j2k+1, then

and

So Theorem 4 generalizes both Theorem 2 (a) and Theorem 3.

4. CONSEQUENCES

Theorem 2 generalizes a number of known interpolation results. For example, if
j = i = p — u> and if is continuous with respect to AET, then Mj (if) = mj (if) = (p
and Theorem 2 says that if interpolates over ^p-w(G). This implies Theorem 1
since em is continuous with respect to AET. For an integer m > 0, let 6m(H) =
\{v e V(H): dn(v) > m}\. For a spanning subgraph H of G, let em(H) = em(H)
and 6m(H) = 5m(H), where H is the complement graph of H with respect to G. In
general for any graph K with G as its spanning subgraph and any spanning subgraph
H of G, let ~H(K) - K - E(H) be the complement graph of H with respect to K.
Define e*(H) = em(H(K)) and J m (H) = 6 m ( H ( K ) ) as in [13]. Then gm = em and
Jm = <5m. It is not difficult to prove that all these invariants are continuous with
respect to AET. So Theorem 2 implies the following

Corollary 1. If if = em, 6m, em, 8m, e£ or 8m, then both M p - w ( i p ) and m p - w ( ( f )
interpolate over ^(G), p - w < i < q. In particular, em, 6m, em, 6m, £m and 6m all
interpolate over 'tfp-w (G), the family of spanning forests having the same number of
components as G.

As mentioned earlier, this corollary implies the result in Theorem 1. It also implies
the main results of [13], which in turn imply the main result of [8] since for H 6 ^i(G),
S0(H) — \{v e V(H): dn(v) = dc(v)}\ is exactly the number of degree-preserving
vertices of H [8].

A large number of invariants have been shown to be continuous with respect to
SET. Hence they all interpolate over ^i(G) according to Proposition 1 and Lemma
l{a). These invariants include the connectivity, edge connectivity, independence
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number, edge independence number, vertex covering number, edge covering number,
chromatic number, edge chromatic number, domination number, and so on. The
reader is refered to [5, 11, 14] for such invariants. Here we give only two examples to
show how to generalize the existing interpolation results for these invariants by our
main results in previous sections. It was shown [14] that the conditional chromatic
number XP and the conditional edge chromatic number x'p are continuous with
respect to SET for any hereditary graphical property P (a property P is hereditary
if whenever a graph possesses P then all subgraphs of it have P as well). Here Xp(H)
is defined [4] to be the minimum order n of a partition {V 1 , . . . , Vn} of V(H) such
that each induced subgraph H[Vi] possesses the property P. The conditional edge
chromatic number x'P(H] is defined similarly. From Proposition 1 and Lemma 1,
both XP and x'p interpolate over ^(G) (this was proved in [14] for the case when G
is connected, interpolation for XP and x'p wltn respect to other families of subgraphs
can also be found in [14]). From Theorems 2 and 4 this can be strengthened as follows:
Mj-.Ocp). mh(xp), M j 1 ( x ' P ) , m j 1 (x ' P ) , M m j 2 , j 1 ( x p ) , mM j 2 , j 1 (xp) , Mm j2 , j1(x!P),
mMj2,j1 (x'p),...., all interpolate over ^(C?), p - w < j1 < j1 < ... < i < q. For
dozens of other invariants which are continuous with respect to SET we can get the
similar results. Due to the limited space we cannot go into details.
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