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Abstract. Let / be an integer-valued function defined on the vertex set V(G) of a graph
G. A subset D of V(G) is an /-dominating set if each vertex x outside D is adjacent to
at least f(x) vertices in D. The minimum number of vertices in an /-dominating set is
denned to be the /-domination number, denoted by 7/(G). In a similar way one can define
the connected and total /-domination numbers 7C|/(G) and 7t,f(G). If }(x) = 1 for all
vertices x, then these are the ordinary domination number, connected domination number
and total domination number of G, respectively. In this paper we prove some inequali-
ties involving 7/(G),7C,f/(G),7t,f(G) and the independence domination number i(G). In
particular, several known results are generalized.
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1. INTRODUCTION

A dominating set of a graph G = (V(G),E(G)) is a subset D of V(G) such that

each vertex outside D is adjacent to at least one vertex in D. The domination number

of G, denoted by 7(G), is the minimum number of vertices in a dominating set of
G. For a given positive integer n, a subset D of V(G) is an n-dominating set if each
vertex outside D is adjacent to at least n vertices in D [4, 5]. The smallest cardinality
of an n-dominating set is the n-domination number [4, 5], denoted by 7n(G). Clearly,
the 1-domination number is just the ordinary domination number. In [8], a more
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general domination concept was introduced. For a given integer-valued function /
defined on the vertices of G, a subset D of V (G) is an $-dominating set if each vertex
x € V(G) - D is adjacent to at least f(x) vertices in D. The /-domination number
7/ (G) of G was defined in [10] to be the minimum cardinality of an /-dominating set
of G. The authors of [8] discussed the /^-domination number and thus gave some
estimations for n-domination number, where j, k are given integers with 0 < j< k,
fj,k(x) = min{j, j — k+d(x)} for x 6 V(G), and d(x) is the degree of x in G. A study
on general /-domination number was initiated in [10]. An /-dominating set D of G
is said to be a connected f-dominating set of G [11] if the subgraph G[D] induced
by D is connected. Note that if G is connected, then connected /-dominating sets
of G exist since V(G) is such a set. In such a case the connected /-domination
number 7c,/(G) was defined in [11] to be the minimum cardinality of a connected
/-dominating set of G. A subset .D is a total f-dominating set of G [11] if each
vertex £ of G is adjacent to at least f(x) vertices in D. Obviously, G contains total
/-dominating sets if and only if j ( x ) < d(x) for all vertices x G V(G). If this is the
case we define [11] the total f-domination number of G, denoted by 7t,f/(G), to be the
minimum cardinality of a total /-dominating set of G. Results for 7C,f(G) and 7*,/(G)
were obtained in [11], and several Gallai-type equalities for 7/(G), i y c , f ( G ) and some
other invariants concerning / were given in [12]. In particular, it was shown that
7/(G) + /3/*(G) = |V(G)| for any /, where /* is defined by f*(x) = d(x) - f(x) + 1
for x e V(G) and /3/(G) is the maximum cardinality of an /-independent set of G,
that is a subset X of V(G) such that each vertex x E X has degree less than / ( x )
in G[X]. This tightens the inequality 7/(G) + /?/.(G) < |V(G)| observed in [11]
earlier. We note that Theorems 2, 3 and 5 of [4] can be generalized to /-domination
number immediately. In fact, one can check that 7/(G) > A/c^i+Af//] ' and that
7/(G) > 7(G) + max{0,m(/)-2} if m(/) > 1, where we denote m(/) = min / ( x ) ,

x£V(G)

M(f) = max /(#). Furthermore, we have7/(G) = min7/(#), where the minimum
x€V(G)

is taken over all spanning bipartite subgraphs H of G.

Until recently we noticed that the concept of /-domination appeared in [7] in
a slightly different way. Let the vertices of G be X 1 , X 2 , . . . , X P and the degrees of
these vertices be d1, d 2 , . . . , dp, respectively. Suppose that an integer bi is associated
with each vertex Xi, where 0 < 6i < di, and denote b = (b1,b2, • • • bp)• A set Z) of
vertices of G is a b-dominating set [7] if each Xi e V(G) — D is adjacent to at least
bi vertices in D. The minimum number of vertices in a b-dominating set was defined
in [7] to be the b-domination number of G. Clearly, if / is the function defined
by f ( x i ) = b{, 1 < i < p, then the b-domination number is just the /-domination
number.
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The concept of /-domination number has the following practical interpretation.
Suppose we are given, say, a communication network, and we are asked to construct
information centers at some of the existing nodes of the network in such a way that
each node is either a center or can communicate directly with at least the given
number of centers. At least how many centers should we construct? If the given
number for node x is f(x), then the minimum number of centers required is exactly
the /-domination number of the network.

As a continuation of [10, 11], we will in this paper prove some inequalities in-
volving 7/(G),7C,f(G),7 t ,f(G) and i(G), where i(G) is the independence domina-
tion number, that is, the minimum cardinality of a maximal independent set of
G. In the paper we always suppose G is a simple graph with p vertices and /
is a function from V(G) to the set of nonnegative integers. We say / is proper
if 1 < /(#) < d(x) for each vertex x. Note that G admits a proper / only if
it contains no isolated vertices. An /-dominating set with the minimum cardinal-
ity is called a minimum /-dominating set. The similar terminology will be used
for connected and total /-dominating sets. For X C V(G), let X = V(G) — X
and G[X] be the subgraph of G induced by X. Denote f(X) = £ f ( x ) and

_ *ex
N(X) = {y 6 X: there exists a vertex in X which is adjacent to y}. In particular,
N(x) is the set of neighbours of x. In the case where a possible ambiguity exists
we write d g ( x ) , N g ( X ) , NG(X) instead of d(x), N(X), N(x) to emphasis that the
underlying graph is G. The maximum and minimum degrees of the vertices of G
are denoted by A(G) and S(G), respectively. Let K1,k+1 denote the star on k + 2
vertices (i.e., the tree on k + 2 vertices with maximum degree k + 1). The graph G
is said to be K 1 , k + 1 - f ree if it has no induced subgraph isomorphic to K1,k+1- For a
real number a, fa] denotes the smallest integer no less than o.

2. RELATIONSHIPS BETWEEN -y/(G) AND i(G)

It was shown in [10] that there exists a subset of V(G) which is both /-dominating
and /-independent. Evidently such a subset must be a maximal /-independent set,
but not conversely even if / is proper. For example, if G is the windmill graph
with vertices x0,x1,...,x6 and edges x1x2,x3x4,x5x6 and x0X i ,1 < i < 6, then
for the proper function / defined by f ( x 0 ) = 6, f ( x i ) = 1,1 < i < 6, {x1,x3,x5}
is a maximal /-independent set but not an /-dominating set of G. This is quite
different from the situation of the ordinary case where a set D C V(G) is a maximal
independent set if and only if it is both dominating and independent. Thus in that
case we have j(G) < i(G). Allan and Laskar [1] proved that if G is ATj^-free, then
i(G) < 7(G) and hence 7(G) = i(G). This was generalized by Bollobas and Cockayne
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P r o o f . Let D be a minimum /-dominating set of G and £>i a maximal inde-
pendent set of G[D]. Let W be the subset of D consisting of such vertices that are
not adjacent to any vertex in D\. We divide the proof into two cases.

Case 1. W = 0.
Then each vertex in D is adjacent to at least one vertex in D1. Thus, D\ is

a maximal independent set of G and hence i(G) < |£>i| < \D\ = 7/(G). Since
m(f) < Jfe - 1, we have 7/(G) > t(G) > "Mffffl"1) + 1, which implies the required
inequality.

Case 2. W = 0.
Let Wi be a maximal independent set of G[W]. By the definition of W, W\ UDi is

a maximal independent set of G and hence i(G) < |W1| + |D1|. Let e(D — D1, W1) be
the number of edges joining the vertices of D — D1 and W1. Since each vertex in Wi
is adjacent to at least f(x) vertices in D - D1, we have /(W1) < e(D - D1, W1). On
the other hand, since G is K1 ,k+1-free and each vertex in D — D\ must be adjacent to
at least one vertex in D1, we know that each vertex in D — D1 is adjacent to at most
fc-1 vertices in W1. Thus, e (D-D 1 , W1) < ( k -1)D-D^ = (fc-l)(7/(G)-|£>i|)-
So m(/)|W1| < /(W1) «$ e(D - £>i,W1) < (* - 1)(7/(G) - |Z?i|). Therefore we
have m(/)i(G) < m(f)\W1\ + m(f)\Dl\ < (* - 1)(7/(G) - |d1|) + n»(/)|^i| =
(k - 1)7/(G) - (k - m(f) - l)|£>i|, which implies (1) since |£>i| ̂  1.

In general the extremal graphs for (1) are not unique but the structure of them
is clear. Suppose G is such an extremal graph, that is m(f)i(G) = (k — 1)7/(G) —
(k — m(f) — 1). If, using the notations in the proof above, W = 0, then m(/) = k — 1
and (1) becomes i(G) = 7/(G). Prom the proof we know i(G) = \D\\ = \D\ = 7/(G)
and hence D1 = D. That is, D is a maximal independent set of G with the minimum
cardinality i(G). Furthermore, each vertex in D is adjacent to at most k vertices
in D since G is /fi^+i-free. Now we suppose G is an extremal graph with W ^ 0.
From the proof of (1) we have

(a) |Di| = 1 for any choice of DI, and hence G[D] is a complete graph;
(b) t(G) = \W1\ + l-D1 l = |W1| + 1 = (fc"1)^/

(
)
Q)~1) + 1;

(c) Vo; € W1, f(x) = m(f) and x is adjacent to exactly m(f) vertices in D — D1

and
(d) Vj/ € D - D1, y is adjacent to exactly k - 1 vertices in W1.

[2] who proved that if G is /fi,fe+i-free (k > 2), then i(G) < (k - 1)7(G) - (k - 2).
Based on a similar idea, we now give a further generalization of this latter result.

Theorem 1. If G is Ki^+i-free and k > max{2,m(/) + 1}, then
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Since Wj. is any maximal independent set of G[VF], we have from (c) that
(cl) Va; € W, f ( x ) = m(f) and x is adjacent to exactly m(/) vertices in D.
Let D = {x 6 D: x is adjacent to all vertices in D}. For each x € D — D, there

exists at least one vertex y in D which is not adjacent to x. Taking D1 = {y}, (cl)
implies

(c2) Vx € D - D, f ( x ) = m(f) and x is adjacent to exactly m(/) vertices in D.
From (d) we then have
(dl) Vj/ e D, y is adjacent to at least k - 1 vertices in D - D.
Note that (c2) and (dl) imply m(f) > 1. For each y £ D denote by Wy the set

of vertices in D — D which are not adjacent to y. From (b) and (dl) we have
(d2) Vy € D, any maximal independent set W* of GfVFy] contains exactly k - 1

neighbours of any other vertex in D, and W1* U {y} is a maximal independent set of
G with the minimum cardinality i(G).

In summary we know the equality in (1) holds only if one of the following two sets
of conditions is satisfied:

(i) i(G) = 7/(G), m(f) = k — 1, each minimum /-dominating set D of G is
a maximal independent set with the minimum cardinality i(G), and each vertex in
D is adjacent to at most k vertices in D;

(ii) any minimum /-dominating set D induces a complete graph and G has the
following structure: V(G) = D U D U ( (J 5y), where D, Sy satisfy

veD
(111) D C D, each vertex in D is adjacent to all vertices in D, and for each

x € D - D, f ( x ) = m(f) and x is adjacent to exactly m(/) vertices in D; and
(112) Sy = N(y)r\(D-D), any maximal independent set of G(D-D-Sy] contains

exactly k — 1 neighbors of each vertex of D different from y and such an independent
set together with y consists of an independent set of G with cardinality i(G).

Conversely, one can check that if (i) or (ii) is satisfied, then G is an extremal
graph for (1). Note that if the maximum independence number of the subgraphs
induced by the minimum /-dominating sets of G is 6(G), then from the proof of (1)
we actually have

which could be much better than (1) in some cases. Theorem 1 implies the following

Corollary 1. If G is K 1 , k + 1 - f r e e and k > max{2,n + 1}, then

In particular, we have
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P r o o f . Let GD be the bipartite graph with bipartition (D, D) whose edges are
those of G with one end-vertex in D and the other in D. Since e(D, D) > £ f ( x ) =

_ x€~D

/(D), there exists a vertex z 6 D which is adjacent to at least 1 M\ vertices in

D. Let A = N(z) f~l D and X be a maximal independent set of G containing z. Then
X C V(G) - A, For a maximum matching M of GD and each edge xy e M, at least
one of x, y is not in X. So there are at least |M| - 1 vertices of V(G) — A which are
not in X. Thus, we have

Corollary 2. (Bollobas and Cockayne [2]) If G is #i1,k+1-free (k ^ 2), then

Now we give more inequalities concerning 7/(G) and i(G). It is easy to see that
7/(G) = p holds if and only if f(x) > d(x) for all vertices x of G. In the remainder of
this section we suppose this is not the case. So we have 7/(G) < p. For U C V(G),
denote S(U) = \U\ - \N(U)\. For a minimum /-dominating set D of G, define
S(G,D) = max6(U) and S(G,D) = max<J(J7). Then we have

UCD UCD V '

Theorem 2. Let D be & minimum /-dominating set of G. Tien

where /3'(Go) = \M\ is the edge independence number of GD- By the Main Matching
Theorem of [6, pp. 127], we have 0'(GD) = |Z>|-<S(G,Z)). Pluging this into the right-
hand side of (4) and noting that \D\ = p-7/(G), we get (2). Similarly, there exists a
vertex z € D which is adjacent to at least _;• )Q\ vertices in D. Let B = N(z)nD
and y be a maximal independent set of G containing z. Then Y C V(G) - B. By
an analogous argument as above we get i(G) ^ \Y\ < p - \B\ - P'(GD) + 1 <
P - P(GD) - [^kl + 1, which implies (3).

Dually, if we use 0'(GD) = \D\ - S(G,D) (see [6, pp. 127]) in the proof above,
then we get
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If f(x) < ±i for all x e V(G), then 7/(G) < p - 0 f ( G ) as shown in [10]. In
such a case, (2) and (5) are better than (3) and (6), respectively. On the other hand,
one can find examples for which (3) and (6) are better than (2) and (5), respectively.

Now we give two ways for estimating 6(G, D) and (5(G, D). If U C I), then
\N(U)\ > max f(x) and hence 6(G,~D) ^ maxdi/l - max f(x)) (note that the right-

x£U UCD X€U

hand side of this inequality is nonnegative). Now suppose m(f) > 1, U C £), and G
contains no isolated vertices. Let G' be the graph obtained from G by deleting, for
each x g D, \N(x) PI D\ — f(x) edges connecting x and the vertices in N(x) C\ D such
that the number of edges of G1 incident with the vertices in U is as large as possible.
Then x e D has exactly f(x) neighbours in G' and U = \J (No'(x) n U).

x£NG,(U)
So we have \U\ < £ \NG>(x) n [7| < M(/)|JVO'(J/)|, which implies \N(U)\ 2

xeNG,(u)

\NO'(U)\ 2 [^] • Thus, 6(G, D) < wgx(\U\ - f ̂ ]) = |£»| - [^]. By using

these estimations we get the following two corollaries of Theorems 2 and 3.

Corollary 3. Let D be a minimum f-dominating set of G. Tien
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Theorem 3. Let D be a minimum f-dominating set of G. Then

Corollary 4. Suppose that G has no isolated vertices and m(f) > 1, and let D
be a minimum /-dominating set of G. Tien

We can use f(D) > m(f)(p - 7/(G)) or f(D) = f(V(G)) - f(D) > f(V(G)) -
M(/)7/(G) to slacken the right-hand sides of (9)-(10) and get inequalities which do
not depend on D. Corollary 3 implies



Setting n = 1 in (11) we get the following

Corollary 7. (Bollobas and Cockayne [2]) If G has no isolated vertices, then

Corollary 5. If n + 7«(G) < p, then

and

Ifn + 7n(G) >p, then

and

Prom Corollary 4, we have

Corollary 6. IfG contains no isolated vertices, then

This inequality is sharp in some cases, as shown in [2].

3. INEQUALITIES INVOLVING 7c,/(G),7t,/(G) AND i(G)

In this section we will prove two inequalities involving the independence domi-
nation number and the connected and total /-domination numbers. We suppose
without mention in the following that G is a connected graph and / is proper. Thus,
both 7c,/(G) and 7t,/(G) are well-defined.

Theorem 4. If D is a minimum connected f-dominating set of G, then
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P r o o f . The proof uses similar idea as in the proof of Theorem 2. Suppose D
is a minimum connected /-dominating set of G. Since the number of edges between
D and D is no less than f ( D ) , there exists z € D which is adjacent to at least

•^TTfy vertices in D. Let A = N(z) n D and X be a maximal independent set of
G containing z. Then X C V(G) - A. Since G[D] is connected, # = G[V(G) - A]
contains no isolated vertices and hence 0'(H) > hm+i ^ £(G?+i ^y 1^1 • So we
have i(G) < |X^< p - |A| - /?'(#) < p - |A| - ^L = ^^(p - \A\) <

A^O+I (p ~ \ £ / $ > ) } ) . I n a similar way'one can prove (14).
It was shown in [11] that for any positive integer k, there exists a tree and a

proper function / for T such that %,/(T) - 7*,/(T) = k, and that there exists a
tree T and a proper / with 7t,/(T) — %j(T) = k. So neither one of (13), (14) is
implied by the other. Since f(D) 2 n»(/)(p-7c,/(G)) and f(D) = f ( V ( G ) ) - f ( D ) >
f(V(G)) - M(/)7c,/(G), we have

If D is a minimum total f-dominating set ofG, then

For 7t,/(G) we have similar results. In the particular case where f(x) — n for
all x 6 V(G), 7c,/(G) and 7t,/(G) are called the connected n-domination number
7c,n(G) and the total n-domination number and denoted by 7c,n(G) and 7t,n(G),
respectively. So we have the following

Corollary 8.

In particular, for the total domination number 7t(<3) = jt,i(G) we have

Corollary 9.
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We do not mention the similar inequality for the connected domination number
7C(G?) = 7c,/(C?) because it is implied by (15) in view of 7t(G) < 7C(&). The equality
in (15) is attained when, for example, G is the complete bipartite graph Kk,k-
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