$Bolyai\ Society-Springer-Verlag$

ALMOST COVERS OF 2-ARC TRANSITIVE GRAPHS

SANMING ZHOU

Received June 19, 2001

Let Γ be a G-symmetric graph whose vertex set admits a nontrivial G-invariant partition \mathcal{B} with block size v. Let $\Gamma_{\mathcal{B}}$ be the quotient graph of Γ relative to \mathcal{B} and $\Gamma[B,C]$ the bipartite subgraph of Γ induced by adjacent blocks B, C of \mathcal{B} . In this paper we study such graphs for which $\Gamma_{\mathcal{B}}$ is connected, (G,2)-arc transitive and is almost covered by Γ in the sense that $\Gamma[B,C]$ is a matching of $v-1\geq 2$ edges. Such graphs arose as a natural extremal case in a previous study by the author with Li and Praeger. The case $\Gamma_{\mathcal{B}} \cong K_{v+1}$ is covered by results of Gardiner and Praeger. We consider here the general case where $\Gamma_{\mathcal{B}} \ncong K_{v+1}$, and prove that, for some even integer $n \geq 4$, $\Gamma_{\mathcal{B}}$ is a near n-gonal graph with respect to a certain G-orbit on n-cycles of $\Gamma_{\mathcal{B}}$. Moreover, we prove that every (G,2)-arc transitive near n-gonal graph with respect to a G-orbit on n-cycles arises as a quotient $\Gamma_{\mathcal{B}}$ of a graph with these properties. (A near n-gonal graph is a connected graph Σ of girth at least 4 together with a set \mathcal{E} of n-cycles of Σ such that each 2-arc of Σ is contained in a unique member of \mathcal{E} .)

1. Introduction

Let Γ be a finite graph and $s \geq 1$ an integer. An *s*-*arc* of Γ is a sequence of s+1 vertices of Γ , not necessarily all distinct, such that any two consecutive terms are adjacent and any three consecutive terms are distinct. If Γ admits a group G of automorphisms such that G is transitive on the vertex set $V(\Gamma)$ of Γ and, in its induced action, transitive on the set $A_s(\Gamma)$ of *s*-arcs of Γ , then Γ is said to be (G, s)-*arc transitive*. As usual in the literature, a 1-arc is called an *arc* and a (G, 1)-arc transitive graph is called a *G*-symmetric graph.

Mathematics Subject Classification (2000): 05C25, 05E99

SANMING ZHOU

The study of symmetric graphs and highly arc-transitive graphs has long been one of the main themes in algebraic combinatorics (see e.g. [1]). In a vast number of cases, the vertex set $V(\Gamma)$ of a G-symmetric graph Γ admits a nontrivial G-invariant partition, that is, a partition \mathcal{B} of $V(\Gamma)$ such that $1 < |B| < |V(\Gamma)|$ and $B^g \in \mathcal{B}$ for any $B \in \mathcal{B}$ and $q \in G$ (where $B^g := \{\alpha^g : \{\alpha^$ $\alpha \in B$). If this occurs then Γ is said to be an *imprimitive G-symmetric* graph. From permutation group theory [5], this is the case precisely when the stabilizer G_{α} in G of a vertex $\alpha \in V(\Gamma)$ is not a maximal subgroup of G. In the opposite case, G is primitive on $V(\Gamma)$ and the O'Nan–Scott Theorem [12], which categorizes primitive permutation groups into a number of distinct types, has been proved to be a very useful tool. In this sense the main difficulty in studying symmetric graphs lies in the imprimitive case. For this case it was suggested in [6] that the following three configurations associated with (Γ, \mathcal{B}) may have a strong influence on the structure of Γ : (i) The quotient graph $\Gamma_{\mathcal{B}}$ of Γ with respect to \mathcal{B} ; (ii) the bipartite subgraph $\Gamma[B,C]$ of Γ induced by adjacent blocks B,C of \mathcal{B} ; and (iii) a certain 1design $\mathcal{D}(B)$ with point set B. (These are defined carefully in Section 2, paragraph 2.) In some sense the graph Γ is "decomposed" into the "product" of these configurations, and a natural problem is to characterize Γ in terms of the triple $(\Gamma_{\mathcal{B}}, \Gamma[B, C], \mathcal{D}(B))$. In the particular case where $\Gamma[B, C]$ is a perfect matching between B and C, Γ is said to be a *cover* of $\Gamma_{\mathcal{B}}$. The covering graph construction given in [1, pp. 149–154] provides a means for constructing some symmetric graphs with this covering property, and is a standard technique in constructing symmetric graphs.

In [11], Li, Praeger and the author found a very natural and simple method (see Section 2 for details) for constructing larger symmetric graphs from smaller ones which bears some similarity with the covering graph construction mentioned above. The constructed graphs can be characterized ([11, Theorem 1], restated here as Theorem 2.1) as imprimitive G-symmetric graphs Γ such that the block size v := |B| of \mathcal{B} is at least 3 and is one more than the block size of the design $\mathcal{D}(B)$, and $\Gamma_{\mathcal{B}}$ is (G,2)-arc transitive, for a certain G-invariant partition \mathcal{B} of $V(\Gamma)$. For such graphs, $\mathcal{D}(B)$ contains no repeated blocks (Theorem 2.1), $\Gamma_{\mathcal{B}}$ has valency v and the actions of G_B on B and on the set of blocks of \mathcal{B} adjacent to B in $\Gamma_{\mathcal{B}}$ are permutationally isomorphic and 2-transitive ([11, Theorem 5(a)(b)]), where G_B is the setwise stabilizer of B in G. In the present paper, we explore this construction in the case where the "inter-block" configuration $\Gamma[B,C]$ is a matching of v-1 edges, that is, $\Gamma[B,C] \cong (v-1) \cdot K_2$. In this case we say that Γ is an almost cover of $\Gamma_{\mathcal{B}}$, and that $\Gamma_{\mathcal{B}}$ is almost covered by Γ . In the special case where $\Gamma_{\mathcal{B}} \cong K_{v+1}$, all possibilities for Γ and G were classified in [8,

Theorem 1.1(b)(ii)(iii)(iv)], see also [19, Theorem 3.19] for an explicit list. Here we study the general case where $\Gamma_{\mathcal{B}} \cong K_{v+1}$ and $\Gamma_{\mathcal{B}}$ is connected. In this general case we find a very close connection between such graphs Γ and an interesting class of graphs, namely near-polygonal graphs, which are associated with the Buekenhout geometries [2,14] of the following diagram:

For an integer $n \ge 4$, a near n-gonal graph [14] is a pair (Σ, \mathcal{E}) consisting of a connected graph Σ of girth at least 4, together with a set \mathcal{E} of n-cycles of Σ , such that each 2-arc of Σ is contained in a unique member of \mathcal{E} . In this case we also say that Σ is a near n-gonal graph with respect to \mathcal{E} . (The girth of a graph Σ , denoted by girth (Σ) , is the length of a shortest cycle of Σ if Σ contains cycles, and is defined to be ∞ otherwise.) Our main result may be stated as follows.

Theorem 1.1. Suppose Γ is a finite *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} of block size $v \geq 3$ such that $\Gamma_{\mathcal{B}}$ is connected and $\Gamma_{\mathcal{B}} \ncong K_{v+1}$. Suppose further that Γ almost covers $\Gamma_{\mathcal{B}}$ and that the design $\mathcal{D}(\mathcal{B})$ ($\mathcal{B} \in \mathcal{B}$) has no repeated blocks. Then, for some even integer $n \geq 4$, $\Gamma_{\mathcal{B}}$ is a (*G*,2)-arc transitive near *n*-gonal graph with respect to a certain *G*-orbit on *n*-cycles of $\Gamma_{\mathcal{B}}$. Moreover, any (*G*,2)-arc transitive near *n*-gonal graph (where $n \geq 4$ is even) with respect to a *G*-orbit on *n*-cycles can appear as such a quotient $\Gamma_{\mathcal{B}}$.

We will present and prove this result in terms of the graph construction introduced in [11] (see Theorem 3.1). As a consequence of this result we obtain a sufficient condition for a two-arc transitive graph to be near-polygonal, see Corollary 4.1 for details.

A G-symmetric graph Γ is said to be G-locally primitive if, for $\alpha \in V(\Gamma)$, G_{α} is primitive in its action on the neighbourhood $\Gamma(\alpha)$ of α in Γ (that is, the set of vertices adjacent to α in Γ). If Γ is a G-locally primitive graph admitting a G-invariant partiton \mathcal{B} with block size $v \geq 3$ such that v is one more than the block size of $\mathcal{D}(B)$, and if $\Gamma_{\mathcal{B}}$ is connected, then Γ almost covers $\Gamma_{\mathcal{B}}$ ([6, Lemma 3.1(a))]), and $\mathcal{D}(B)$ contains no repeated blocks ([6, Lemma 3.3(c)]) and hence $\Gamma_{\mathcal{B}}$ is (G,2)-arc transitive (Theorem 2.1). In this case, we get as a consequence of Theorem 1.1 an amended form of [6, Theorem 5.4] (see Corollary 4.2 in Section 4). Discovering that the proof of the result [6, Theorem 5.4] was incomplete, was one of the motivations for the investigation leading to the results of this paper.

The reader is referred to [18] for a systematic study of the graph construction [11] used in this paper, and to [19, 20] for a more general construction of imprimitive symmetric graphs starting from point- and block-transitive 1-designs. In a recent work of the author with Iranmanesh and Praeger we used Theorem 1.1 in the study of a family of symmetric graphs with two-arc transitive quotients, see [10, Theorem 1.4] for details.

2. Definitions and preliminaries

We refer to [5,17] for notation and terminology on permutation groups. If G is a group acting transitively on a finite set Ω , then the fixed point sets $\operatorname{fix}_{\Omega}(G_{\alpha}) := \{\beta \in \Omega : \beta^g = \beta \text{ for all } g \in G_{\alpha}\}$, for $\alpha \in \Omega$, form a G-invariant partition $\{(\operatorname{fix}_{\Omega}(G_{\alpha}))^g : g \in G\}$ of Ω ([5, pp. 19]). We write $G_{\alpha\beta} = (G_{\alpha})_{\beta}$, $G_{\alpha\beta\gamma} = (G_{\alpha\beta})_{\gamma}$, etc., for $\alpha, \beta, \gamma \in \Omega$. For a group G acting on two finite sets Ω_1, Ω_2 , the actions of G on Ω_1 and Ω_2 are said to be permutationally equivalent if there exists a bijection $\lambda : \Omega_1 \to \Omega_2$ such that $\lambda(\alpha^g) = (\lambda(\alpha))^g$ for all $\alpha \in \Omega_1$ and $g \in G$. We use K_n and C_n to denote respectively the complete graph and the cycle on n vertices, and we use $K_{n,n}$ to denote the complete bipartite graph with n vertices in each part of its bipartition. For a finite graph Γ , $n \cdot \Gamma$ denotes the union of n vertex-disjoint copies of Γ . An edge of Γ joining two non-consecutive vertices in a cycle of Γ is said to be a *chord* of the cycle. Instead of $A_1(\Gamma)$ we will use $A(\Gamma)$ to denote the set of arcs of Γ . We will denote an arc (σ, τ) of a graph by $\sigma\tau$ when this is convenient and unlikely to cause confusion.

Let Γ be a finite *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} . The quotient graph $\Gamma_{\mathcal{B}}$ of Γ with respect to \mathcal{B} is the graph with vertex set \mathcal{B} in which two blocks $B, C \in \mathcal{B}$ are adjacent if and only if there exists at least one edge of Γ joining a vertex of B and a vertex of C. Clearly $\Gamma_{\mathcal{B}}$ is *G*-symmetric under the induced action (possibly unfaithful) of G on \mathcal{B} , and we assume in the following that it has at least one edge. Then each $B \in \mathcal{B}$ is an independent set of Γ [6,15]. Set $\Gamma(B) := \bigcup_{\alpha \in B} \Gamma(\alpha)$. For two adjacent blocks B, C of \mathcal{B} , let $\Gamma[B, C]$ denote the induced bipartite subgraph of Γ with bipartition $\{\Gamma(C) \cap B, \Gamma(B) \cap C\}$. Define $\mathcal{D}(B)$ to be the 1-design with point set B and blocks $\Gamma(C) \cap B$ (with possible repetitions) for all blocks $C \in \Gamma_{\mathcal{B}}(B)$, where $\Gamma_{\mathcal{B}}(B)$ is the neighbourhood of B in $\Gamma_{\mathcal{B}}$. Since Γ is G-symmetric, up to isomorphism $\Gamma[B, C]$ and $\mathcal{D}(B)$ are independent of the choice of specific blocks B, C. Moreover, the block size k of $\mathcal{D}(B)$ is $|\Gamma(C) \cap B|$.

Let Σ be a (G,2)-arc transitive graph of valency $v \geq 3$ (where G is a subgroup of the full automorphism group $\operatorname{Aut}(\Sigma)$ of Σ), and let Δ be a G-orbit on $A_3(\Sigma)$. If Δ is *self-paired*, that is, $(\tau, \sigma, \sigma', \tau') \in \Delta$ implies $(\tau', \sigma', \sigma, \tau) \in \Delta$, then the 3-*arc graph* $\operatorname{Arc}_{\Delta}(\Sigma)$ of Σ with respect to Δ is defined [11, Definition 3] to be the graph with vertex set $A(\Sigma)$ in which $\sigma\tau, \sigma'\tau'$ are adjacent if and only if $(\tau, \sigma, \sigma', \tau') \in \Delta$. The requirement that Δ is self-paired guarantees that the adjacency of $\Gamma := \operatorname{Arc}_{\Delta}(\Sigma)$ is well-defined. One can see that G preserves the adjacency of Γ and hence induces a faithful action as a group of automorphisms of Γ . Moreover, Γ is G-symmetric and admits a G-invariant partition $\mathcal{B}(\Sigma) := \{B(\sigma) : \sigma \in V(\Sigma)\}$ such that $\Sigma \cong \Gamma_{\mathcal{B}(\Sigma)}$ with respect to the bijection $\sigma \mapsto B(\sigma)$ ([11, Theorem 10(b)]), where $B(\sigma) := \{\sigma\tau : \tau \in \Sigma(\sigma)\}$ for $\sigma \in V(\Sigma)$. The 3-arc graphs can be characterized as follows.

Theorem 2.1 ([11, Theorem 1]). Let Γ be a finite *G*-symmetric graph, and \mathcal{B} a nontrivial *G*-invariant partition of $V(\Gamma)$ with block size $v = k + 1 \geq$ 3. Then $\mathcal{D}(B)$ contains no repeated blocks if and only if $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive, and in this case $\Gamma \cong \operatorname{Arc}_{\Delta}(\Gamma_{\mathcal{B}})$ for some self-paired *G*-orbit Δ of 3-arcs of $\Gamma_{\mathcal{B}}$. Conversely, for any self-paired *G*-orbit Δ of 3-arcs of a (G, 2)arc transitive graph Σ of valency $v \geq 3$, the graph $\Gamma = \operatorname{Arc}_{\Delta}(\Sigma)$, group *G*, and partition $\mathcal{B}(\Sigma)$ satisfy all the conditions above.

Thus, the class of *G*-symmetric graphs Γ satisfying the conditions of Theorem 1.1 is precisely the class of 3-arc graphs $\Gamma := \operatorname{Arc}_{\Delta}(\Sigma)$ of connected (G,2)-arc transitive graphs Σ such that Γ almost covers Σ (in the sense that it almost covers $\Gamma_{\mathcal{B}(\Sigma)}$). So in the following we may use the language of 3-arc graphs. Parts (a) and (c) of the following lemma are self-evident, and part (b) of it was proved in [11, Theorem 10(a)].

Lemma 2.2. Let Σ be a finite connected (G,2)-arc transitive graph and let $\Delta := (\tau, \sigma, \sigma', \tau')^G$, a G-orbit on $A_3(\Sigma)$. Then

(a) Δ is self-paired if and only if $\sigma \tau$ and $\sigma' \tau'$ can be interchanged by an element of G, and in this case

(b) for $\varepsilon \in \Sigma(\sigma)$, $\sigma \varepsilon$ is the only vertex of $B(\sigma)$ not adjacent in $\operatorname{Arc}_{\Delta}(\Sigma)$ to any vertex of $B(\varepsilon)$, and

(c) $\operatorname{Arc}_{\Delta}(\Sigma)$ almost covers Σ if and only if τ' is fixed by $G_{\tau\sigma\sigma'}$ (that is, $G_{\tau\sigma\sigma'} = G_{\tau\sigma\sigma'\tau'}$).

Let $\Gamma = \operatorname{Arc}_{\Delta}(\Sigma)$ be a 3-arc graph of the (G,2)-arc transitive graph Σ . If Γ almost covers Σ , then for each $\tau \in \Sigma(\sigma) \setminus \{\sigma'\}$ there exists a unique $\tau' \in \Sigma(\sigma') \setminus \{\sigma\}$ such that $(\tau, \sigma, \sigma', \tau') \in \Delta$, and hence $\tau \mapsto \tau'$ defines a bijection from $\Sigma(\sigma) \setminus \{\sigma'\}$ to $\Sigma(\sigma') \setminus \{\sigma\}$. Note that this bijection depends on Δ . Since there will be no danger of confusion, we will denote it just by $\phi_{\sigma\sigma'}$.

Lemma 2.3. Let Σ be a finite connected (G,2)-arc transitive graph, let Δ be a self-paired G-orbit on $A_3(\Sigma)$ and let $\sigma\tau$ be an arc of Σ . Suppose that

the 3-arc graph $\Gamma := \operatorname{Arc}_{\Delta}(\Sigma)$ almost covers Σ . Then the following (a)–(d) hold:

(a) The actions of G_{σ} on $B(\sigma)$ and $\Sigma(\sigma)$ are permutationally equivalent, 2-transitive and faithful.

(b) The actions of $G_{\sigma\tau}$ on $\Sigma(\sigma) \setminus \{\tau\}$ and on $\Gamma(\sigma\tau)$ are permutationally equivalent, where $\Gamma(\sigma\tau)$ is the set of vertices of Γ adjacent in Γ to the vertex $\sigma\tau$ of Γ . In particular, Γ is G-locally primitive if and only if G_{σ} is 2primitive on $\Sigma(\sigma)$; and $G_{\sigma\tau}$ is regular on $\Gamma(\sigma\tau)$ if and only if G_{σ} is sharply 2-transitive on $\Sigma(\sigma)$.

(c) $\phi_{\sigma\tau}^{-1} = \phi_{\tau\sigma}$.

(d) $(\phi_{\sigma\tau}(\varepsilon))^g = \phi_{\sigma^g\tau^g}(\varepsilon^g)$ for $\varepsilon \in \Sigma(\sigma) \setminus \{\tau\}$ and $g \in G$. In particular, the actions of $G_{\sigma\tau}$ on $\Sigma(\sigma) \setminus \{\tau\}$ and $\Sigma(\tau) \setminus \{\sigma\}$ are permutationally equivalent with respect to $\phi_{\sigma\tau}$.

Proof. (a) The actions of G_{σ} on $B(\sigma)$ and $\Sigma(\sigma)$ are permutationally equivalent with respect to the bijection $B(\sigma) \to \Sigma(\sigma)$ defined by $\sigma\tau \mapsto \tau$ for $\tau \in \Sigma(\sigma)$. Since Σ is (G,2)-arc transitive, these actions are 2-transitive. The faithfulness follows from Theorem 2.1 and [11, Lemma 1(a) and Theorem 5(e)].

(b) For each $\varepsilon \in \Sigma(\sigma) \setminus \{\tau\}$, let $\lambda(\varepsilon)$ denote the unique vertex in $B(\varepsilon)$ adjacent to $\sigma\tau$ in Γ . (The existence of $\lambda(\varepsilon)$ follows from Lemma 2.2(b).) Then λ establishes a bijection from $\Sigma(\sigma) \setminus \{\tau\}$ to $\Gamma(\sigma\tau)$, and the actions of $G_{\sigma\tau}$ on $\Sigma(\sigma) \setminus \{\tau\}$ and on $\Gamma(\sigma\tau)$ are permutationally equivalent with respect to λ . From this the last two assertions in (b) follow immediately.

(c) This is obvious from the definition of $\phi_{\sigma\tau}$.

(d) For $(\varepsilon, \sigma, \tau, \eta) \in \Delta$ and $g \in G$, since Δ is *G*-invariant we have $(\varepsilon^g, \sigma^g, \tau^g, \eta^g) \in \Delta$ and so $(\phi_{\sigma\tau}(\varepsilon))^g = \eta^g = \phi_{\sigma^g\tau^g}(\varepsilon^g)$ (by the definitions of $\phi_{\sigma\tau}$ and $\phi_{\sigma^g\tau^g}$). In particular, $(\phi_{\sigma\tau}(\varepsilon))^g = \phi_{\sigma\tau}(\varepsilon^g)$ for $g \in G_{\sigma\tau}$ and hence the assertion in the last sentence of (d) is true.

The next lemma will be used to prove a corollary of our main result. It shows that, for a (G,2)-arc transitive graph Σ , if G_{σ} is sharply 2-transitive on $\Sigma(\sigma)$ (that is, G_{σ} holds the "weakest" 2-transitivity on $\Sigma(\sigma)$), then all the 3-arc graphs of Σ are forced to be almost covers of Σ .

Lemma 2.4. Suppose that Σ is a finite (G, 2)-arc transitive graph of valency $v \geq 3$ such that G_{σ} is sharply 2-transitive on $\Sigma(\sigma)$ for $\sigma \in V(\Sigma)$. Then, for every self-paired G-orbit Δ on $A_3(\Sigma)$, the 3-arc graph $\Gamma := \operatorname{Arc}_{\Delta}(\Sigma)$ is an almost cover of Σ , and moreover $G_{\sigma\tau}$ is regular on the neighbourhood $\Gamma(\sigma\tau)$ of $\sigma\tau \in V(\Gamma)$ in Γ .

Proof. Let $\sigma\tau$ be an arc of Σ . Then the sharp 2-transitivity of G_{σ} on $\Sigma(\sigma)$ implies that $G_{\sigma\tau}$ is regular on $\Sigma(\sigma) \setminus \{\tau\}$, and hence we have $|G_{\sigma\tau}| =$

 $|\Sigma(\sigma)| - 1$. Since $\Gamma(\sigma\tau)$ contains exactly *s* points of each block $B(\delta)$ for $\delta \in \Sigma(\sigma) \setminus \{\tau\}$, where *s* is the valency of the bipartite graph $\Gamma[B(\sigma), B(\delta)]$, we then have $|\Gamma(\sigma\tau)| = s(|\Sigma(\sigma)| - 1) = s|G_{\sigma\tau}|$. On the other hand, since $G_{\sigma\tau}$ is transitive on $\Gamma(\sigma\tau)$, by the well-known orbit-stabilizer property (see e.g. [5, Theorem 1.4A]), $|\Gamma(\sigma\tau)|$ is a divisor of $|G_{\sigma\tau}|$. So we have s = 1, that is, $\Gamma[B(\sigma), B(\tau)] = (v-1) \cdot K_2$, and hence Γ almost covers Σ . Since $G_{\sigma\tau}$ is regular on $\Sigma(\sigma) \setminus \{\tau\}$, from Lemma 2.3(b) we know that $G_{\sigma\tau}$ is also regular on $\Gamma(\sigma\tau)$.

Lemma 2.5. Let Σ be a finite connected (G, 2)-arc transitive graph with valency $v \geq 3$. Then girth $(\Sigma) = 3$ if and only if $\Sigma \cong K_{v+1}$, which in turn is true if and only if G is 3-transitive on $V(\Sigma)$.

Proof. If $\Sigma \cong K_{v+1}$, then girth $(\Sigma) = 3$ and G is 3-transitive on $V(\Sigma)$ since G_{σ} is 2-transitive on $\Sigma(\sigma) = V(\Sigma) \setminus \{\sigma\}$ and G is transitive on $V(\Sigma)$. Next suppose that G is 3-transitive on $V(\Sigma)$. Then, for each $\sigma \in V(\Sigma)$, G_{σ} is 2-transitive on $V(\Sigma) \setminus \{\sigma\}$ and hence $V(\Sigma) \setminus \{\sigma\}$ induces a complete graph K_v (note that $V(\Sigma) \setminus \{\sigma\}$ contains adjacent vertices). This implies $\Sigma \cong K_{v+1}$. Finally, if girth $(\Sigma) = 3$, then $\Sigma(\sigma)$ induces a complete graph K_v by the 2-transitivity of G_{σ} on $\Sigma(\sigma)$. Hence $\Sigma \cong K_{v+1}$ by the connectedness of Σ .

A circulant is a Cayley graph $\operatorname{Cay}(\mathbb{Z}_n, S)$ with vertex set the additive group \mathbb{Z}_n of integers modulo n in which $x, y \in \mathbb{Z}_n$ are adjacent if and only if $x - y \in S$, where S is a subset of \mathbb{Z}_n such that $0 \notin S$ and $-S := \{-x : x \in S\}$ is equal to S. For a near n-gonal graph (Σ, \mathcal{E}) , the cycles in \mathcal{E} are called basic cycles of (Σ, \mathcal{E}) . We use $C(\sigma, \tau, \varepsilon)$ to denote the unique basic cycle of (Σ, \mathcal{E}) containing a given 2-arc $(\sigma, \tau, \varepsilon)$ of Σ . We also use $A_3(\Sigma, \mathcal{E})$ to denote the set of all 3-arcs of Σ which are contained in some basic cycle of (Σ, \mathcal{E}) . Any subgroup $G \leq \operatorname{Aut}(\Sigma)$ induces an action on n-cycles of Σ , and if \mathcal{E} is G-invariant, then G induces an action on \mathcal{E} .

Lemma 2.6. Suppose (Σ, \mathcal{E}) is a finite (G, 2)-arc transitive near *n*-gonal graph. Then the following statements (a)–(c) are equivalent:

(a) \mathcal{E} is *G*-invariant.

(b) \mathcal{E} is a G-orbit on n-cycles of Σ .

(c) $A_3(\Sigma, \mathcal{E})$ is a self-paired G-orbit on $A_3(\Sigma)$.

Moreover, if one of these occurs, then the following (d)–(e) hold:

(d) Any element of G fixing a 2-arc $(\sigma, \tau, \varepsilon)$ of Σ must fix each vertex in $C(\sigma, \tau, \varepsilon)$.

(e) The subgraph of Σ induced by the vertex set of a basic cycle of (Σ, \mathcal{E}) is isomorphic to a circulant graph $\operatorname{Cay}(\mathbb{Z}_n, S)$, for some S with $1 \in S$. Moreover, each such basic cycle is chordless (that is, $\operatorname{Cay}(\mathbb{Z}_n, S) \cong C_n$) unless, for adjacent vertices σ, τ of Σ , either (i) G_{τ} is sharply 2-transitive on $\Sigma(\tau)$ (and hence $|\Sigma(\tau)|$ is a prime power); or

(ii) $G_{\sigma\tau}$ is imprimitive on $\Sigma(\tau) \setminus \{\sigma\}$.

Proof. The equivalence of (a) and (b) is obvious since each 2-arc of Σ lies in a unique cycle of \mathcal{E} . If (a) holds, then $A_3(\Sigma, \mathcal{E})$ is a G-orbit on $A_3(\Sigma)$. Moreover, in this case $A_3(\Sigma, \mathcal{E})$ is also self-paired. In fact, for $(\sigma, \tau, \varepsilon, \eta) \in$ $A_3(\Sigma,\mathcal{E})$ there exists $g \in G$ such that $(\sigma,\tau,\varepsilon)^g = (\eta,\varepsilon,\tau)$ as Σ is (G,2)-arc transitive. Thus, $(C(\sigma,\tau,\varepsilon))^g = C(\eta,\varepsilon,\tau)$. But $C(\sigma,\tau,\varepsilon)$ is the unique basic cycle containing $(\sigma, \tau, \varepsilon)$, and it is also the unique basic cycle containing (η,ε,τ) . So g fixes $C(\sigma,\tau,\varepsilon)$ and $\eta^g = \sigma$, implying $(\eta,\varepsilon,\tau,\sigma) = (\sigma,\tau,\varepsilon,\eta)^g \in$ $A_3(\Sigma, \mathcal{E})$. Hence $A_3(\Sigma, \mathcal{E})$ is self-paired. Thus (a) implies (c). Conversely suppose that (c) holds. Let $C(\sigma_0, \sigma_1, \sigma_2) = (\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_{n-1}, \sigma_0)$ be a basic cycle of (Σ, \mathcal{E}) , and let $g \in G$. For each $i = 0, 1, \dots, n-1$ (subscripts modulo n here and in the remaining part of the proof), it follows from (c) that both $(\sigma_{i-1}^g, \sigma_i^g, \sigma_{i+1}^g, \sigma_{i+2}^g)$ and $(\sigma_i^g, \sigma_{i+1}^g, \sigma_{i+2}^g, \sigma_{i+3}^g)$ lie in basic cycles, and they must lie in the same basic cycle since these two 3-arcs have the 2-arc $(\sigma_i^g, \sigma_{i+1}^g, \sigma_{i+2}^g)$ in common and since each 2-arc of Σ is contained in a unique basic cycle of (Σ, \mathcal{E}) . Since this is true for all *i*, it follows that $(C(\sigma_0, \sigma_1, \sigma_2))^g$ must be a basic cycle of (Σ, \mathcal{E}) and hence (c) implies (a).

In the remainder of this proof, we suppose \mathcal{E} is *G*-invariant, so both (b) and (c) hold. Thus the vertex sets of the basic cycles of (Σ, \mathcal{E}) induce mutually isomorphic subgraphs. If $g \in G$ fixes the 2-arc $(\sigma_0, \sigma_1, \sigma_2)$, then it fixes the basic cycle $C(\sigma_0, \sigma_1, \sigma_2)$ and, since *g* fixes each of σ_1, σ_2 , it follows that *g* must fix σ_3 . Inductively, one can see that *g* fixes each vertex in $C(\sigma_0, \sigma_1, \sigma_2)$ and thus (d) is proved.

In proving (e), we set $V := \{\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_{n-1}\}$, the vertex set of $C(\sigma_0, \sigma_1, \sigma_2)$, and denote by Σ_1 the subgraph of Σ induced by V. Since Σ is (G, 2)-arc transitive, there exists $h \in G$ such that $(\sigma_{n-1}, \sigma_0, \sigma_1)^h = (\sigma_0, \sigma_1, \sigma_2)$. Since \mathcal{E} is G-invariant it follows that h fixes V setwise and leaves $C(\sigma_0, \sigma_1, \sigma_2)$ invariant. The only element of $\operatorname{Aut}(\Sigma_1)$ which leaves $C(\sigma_0, \sigma_1, \sigma_2)$ invariant and maps $(\sigma_{n-1}, \sigma_0, \sigma_1)$ to $(\sigma_0, \sigma_1, \sigma_2)$ is the rotation $\rho: \sigma_i \mapsto \sigma_{i+1}$, for all i. Thus the permutation h^V of V induced by h is ρ , and by [1, Lemma 16.3], since $\langle \rho \rangle \cong \mathbb{Z}_n$ is regular on V, Σ_1 is isomorphic to a circulant $\operatorname{Cay}(\mathbb{Z}_n, S)$ for some S. Since σ_i is adjacent to σ_{i+1} , we have $1 \in S$ and the first part of (e) is proved. In proving the second part of (e), we assume that $C(\sigma_0, \sigma_1, \sigma_2)$ contains a chord. Since the group induced on $C(\sigma_0, \sigma_1, \sigma_2)$ contains ρ , it follows that σ_1 is adjacent to some vertex σ_i with $i \neq 0, 2$, that is to say, $\{\sigma_1, \sigma_i\}$ is a chord; and the set $X := \operatorname{fix}_{\Sigma(\sigma_1) \setminus \{\sigma_0\}}(G_{\sigma_0 \sigma_1 \sigma_2})$ contains both σ_2 and σ_i . On the other hand, the (G, 2)-arc transitivity of Σ implies that $G_{\sigma_0 \sigma_1}$ is transitive on $\Sigma(\sigma_1) \setminus \{\sigma_0\}$, and the stabilizer $G_{\sigma_0 \sigma_1 \sigma_2}$ (which fixes $C(\sigma_0, \sigma_1, \sigma_2)$ pointwise) fixes $|X| \geq 2$ points of $\Sigma(\sigma_1) \setminus \{\sigma_0\}$. As mentioned at the beginning of this section, X is a block of imprimitivity for $G_{\sigma_0\sigma_1}$ in $\Sigma(\sigma_1) \setminus \{\sigma_0\}$, and hence either $X = \Sigma(\sigma_1) \setminus \{\sigma_0\}$ or X induces a nontrivial $G_{\sigma_0\sigma_1}$ -invariant partition of $\Sigma(\sigma_1) \setminus \{\sigma_0\}$. In the former case the possibility (i) in (e) occurs; whilst in the latter case the possibility (ii) in (e) occurs. Note that if (i) occurs then by [17, pp. 23] the valency $|\Sigma(\sigma_1)|$ must be a prime power.

3. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. In fact, we will prove the following theorem which, together with Theorems 2.1, yields a proof of Theorem 1.1.

Theorem 3.1. Suppose that Σ is a finite connected (G,2)-arc transitive graph with valency $v \geq 3$ and that $\Sigma \ncong K_{v+1}$. Then Σ is almost covered by a 3-arc graph $\operatorname{Arc}_{\Delta}(\Sigma)$ of Σ if and only if, for some even integer $n \geq 4$, Σ is a near *n*-gonal graph with respect to a *G*-orbit \mathcal{E} of *n*-cycles of Σ , and in this case we have $\Delta = A_3(\Sigma, \mathcal{E})$, the set of all 3-arcs of Σ contained in the *n*-cycles in \mathcal{E} .

Proof. Suppose Σ is almost covered by a 3-arc graph $\Gamma := \operatorname{Arc}_{\Delta}(\Sigma)$ of Σ , where Δ is a self-paired G-orbit on $A_3(\Sigma)$. Recall that, for adjacent vertices σ, σ' of Σ , we use $\phi_{\sigma\sigma'}$ to denote the bijection from $\Sigma(\sigma) \setminus \{\sigma'\}$ to $\Sigma(\sigma') \setminus \{\sigma\}$ such that $\phi_{\sigma\sigma'}(\tau) = \tau'$ precisely when $(\tau, \sigma, \sigma', \tau') \in \Delta$. Let $(\sigma_0, \sigma_1, \sigma_2)$ be a 2-arc of Σ . Set $\sigma_3 := \phi_{\sigma_1 \sigma_2}(\sigma_0)$, and inductively define $\sigma_{i+2} :=$ $\phi_{\sigma_i\sigma_{i+1}}(\sigma_{i-1})$ for $i \geq 1$. Then we get a sequence $\sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_{i-1}, \sigma_i, \sigma_{i+1}, \sigma_i, \sigma_{i+1}, \sigma_i, \sigma_{i+1}, \sigma_{i+$ σ_{i+2},\ldots of vertices of Σ such that $(\sigma_{i-1},\sigma_i,\sigma_{i+1},\sigma_{i+2}) \in \Delta$ for each $i \geq 1$. Our assumption $\Sigma \cong K_{v+1}$ implies that girth($\Sigma \geq 4$ (Lemma 2.5) and hence all such 3-arcs $(\sigma_{i-1}, \sigma_i, \sigma_{i+1}, \sigma_{i+2})$ are proper, that is, any four consecutive vertices in this sequence are pairwise distinct. Since Σ has a finite number of vertices, the sequence must eventually contain repeated vertices. Let σ_n be the first vertex in the sequence that coincides with one of the preceding vertices. We claim that σ_n must coincide with σ_0 . Suppose to the contrary that $\sigma_n = \sigma_m$ for some m such that $1 \le m < n$. Then since Σ is (G, 2)-arc transitive, there exists $g \in G$ such that $(\sigma_m, \sigma_{m+1}, \sigma_{m+2})^g = (\sigma_0, \sigma_1, \sigma_2)$. From Lemma 2.3(d), we have $\sigma_{m+3}^g = \phi_{\sigma_{m+1}^g \sigma_{m+2}^g}(\sigma_m^g) = \phi_{\sigma_1 \sigma_2}(\sigma_0) = \sigma_3$. Inductively we have that $\sigma_{m+i}^g = \sigma_i$ for each $i \ge 0$. In particular, $\sigma_n^g = \sigma_{m+(n-m)}^g =$ σ_{n-m} . But since $\sigma_n = \sigma_m$, we have $\sigma_{n-m} = \sigma_n^g = \sigma_m^g = \sigma_0$, contradicting the minimality of n. Therefore we must have $\sigma_n = \sigma_0$. Thus, each 2-arc $(\sigma_0, \sigma_1, \sigma_2)$ of Σ determines a unique (undirected) *n*-cycle $C(\sigma_0, \sigma_1, \sigma_2) :=$ $(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_{n-1}, \sigma_0)$ of Σ . Note again that $n \ge 4$ since girth $(\Sigma) \ge 4$.

Set $\tau := \phi_{\sigma_1 \sigma_0}(\sigma_2)$, then we have $\sigma_2 = \phi_{\sigma_0 \sigma_1}(\tau)$ by Lemma 2.3(c). We claim that τ must coincide with σ_{n-1} . For the 2-arc $(\tau, \sigma_0, \sigma_1)$, the construction in the previous paragraph will give the sequence $\tau, \sigma_0, \sigma_1, \sigma_2, \ldots, \sigma_{n-1}, \sigma_n = \sigma_0$, and since the first repeated vertex is the same as the starting vertex τ , it follows that $\tau = \sigma_{n-1}$. Similarly, one can show that $\sigma_{n-2} = \phi_{\sigma_0 \sigma_{n-1}}(\sigma_1)$ and hence $\sigma_1 = \phi_{\sigma_{n-1}\sigma_0}(\sigma_{n-2})$. Therefore, reading the subscripts modulo n (here and in the remainder of this section), we have $\sigma_{i+2} = \phi_{\sigma_i \sigma_{i+1}}(\sigma_{i-1})$ and hence $\sigma_{i-1} = \phi_{\sigma_{i+1}\sigma_i}(\sigma_{i+2})$ for each $i \ge 1$ (Lemma 2.3(c)). This implies that the 2-arcs $(\sigma_{i-1}, \sigma_i, \sigma_{i+1})$ and $(\sigma_{i+1}, \sigma_i, \sigma_{i-1})$ contained in $C(\sigma_0, \sigma_1, \sigma_2)$ (for $i \geq 1$) also determine the same *n*-cycle $C(\sigma_0, \sigma_1, \sigma_2)$. By definition of $C(\sigma_0, \sigma_1, \sigma_2)$ and by Lemma 2.3(d), we have $C(\sigma_0^g, \sigma_1^g, \sigma_2^g) = (C(\sigma_0, \sigma_1, \sigma_2))^g$ for $g \in G$ and hence $\mathcal{E} := \{C(\sigma, \tau, \varepsilon) : (\sigma, \tau, \varepsilon) \in A_2(\Sigma)\}$ is G-invariant and each 2-arc lies in a unique cycle of \mathcal{E} . By the (G,2)-arc transitivity of Σ , the length n of $C(\sigma,\tau,\varepsilon)$ is independent of the choice of $(\sigma, \tau, \varepsilon)$ and G is transitive on \mathcal{E} . Thus \mathcal{E} is a G-orbit on n-cycles of Σ and Σ is a near *n*-gonal graph with respect to \mathcal{E} . Moreover, the argument above shows that $\Delta = A_3(\Sigma, \mathcal{E})$. In particular, in the sequence $\sigma_0 \sigma_1, \sigma_1 \sigma_0, \sigma_2 \sigma_3, \sigma_3 \sigma_2, \dots, \sigma_{2i-2} \sigma_{2i-1}, \sigma_{2i-1} \sigma_{2i-2}, \sigma_{2i} \sigma_{2i+1}, \sigma_{2i+1} \sigma_{2i}, \dots$ of vertices of Γ , for each *i*, the (2i-1)-st vertex $\sigma_{2i-2}\sigma_{2i-1}$ and the 2*i*-th vertex $\sigma_{2i-1}\sigma_{2i-2}$ are not adjacent, while the 2*i*-th vertex and the (2i+1)st vertex $\sigma_{2i}\sigma_{2i+1}$ are adjacent. By the definition of n, the n-th vertex of this sequence is $\sigma_{n-1}\sigma_{n-2}$, and it is adjacent to $\sigma_0\sigma_1$ (= $\sigma_n\sigma_{n+1}$) since $(\sigma_{i-1}, \sigma_i, \sigma_{i+1}, \sigma_{i+2}) \in \Delta$ for each *i* (subscripts modulo *n*). It follows that n must be an even integer.

To prove the "if" part of the theorem, suppose that (Σ, \mathcal{E}) is a (G, 2)arc transitive near *n*-gonal graph with valency $v \geq 3$ and \mathcal{E} is a *G*-orbit on *n*-cycles of Σ , for some even $n \geq 4$. Then by Lemma 2.6, $\Delta := A_3(\Sigma, \mathcal{E})$ is a self-paired *G*-orbit on $A_3(\Sigma)$. Let $\Gamma := \operatorname{Arc}_{\Delta}(\Sigma)$ and let $(\tau, \sigma, \sigma', \tau') \in \Delta$. Then $\sigma \tau \in B(\sigma)$ is adjacent to $\sigma' \tau' \in B(\sigma')$ in Γ . If $\sigma \tau$ is adjacent in Γ to a second vertex, say $\sigma' \varepsilon'$, of $B(\sigma')$, then $(\tau, \sigma, \sigma', \tau'), (\tau, \sigma, \sigma', \varepsilon')$ are distinct 3-arcs in Δ and hence the 2-arc (τ, σ, σ') is contained in two distinct basic cycles of (Σ, \mathcal{E}) . This contradiction shows that $\Gamma[B(\sigma), B(\sigma')] \cong (v-1) \cdot K_2$ and hence Γ almost covers $\Gamma_{\mathcal{B}(\Sigma)}$.

Remark 3.2. By Lemma 2.6(e), the vertex set of each basic cycle of (Σ, \mathcal{E}) in Theorem 3.1 induces a circulant subgraph of Σ , and these basic cycles are chordless unless either (e)(i) or (e)(ii) in that lemma occurs. This latter fact is interesting from a combinatorial point of view. The following example shows that the basic cycles of (Σ, \mathcal{E}) may contain chords. It also provides an example of such a graph Σ with the smallest valency (namely 3) and shows that the near *n*-gonal graph (Σ, \mathcal{E}) occurring in Theorem 3.1 is not necessarily an *n*-gonal graph. (A near *n*-gonal graph is said to be an *n*-gonal graph [14] if *n* is equal to the girth of the graph.) Moreover, it shows that the graph $\operatorname{Arc}_{\Delta}(\Sigma)$ may not be connected, even if Σ is connected and (G, 2)-arc transitive.

Example 3.3. Let Σ be the complete bipartite graph $K_{3,3}$ with vertex set $\{0,1,2,3,4,5\}$ and bipartition $(\{0,2,4\},\{1,3,5\})$. We will show that there exists a unique subgroup $G \leq \operatorname{Aut}(\Sigma)$ such that Σ is a (G,2)-arc transitive near 6-gonal graph with respect to a G-orbit \mathcal{E} of 6-cycles of Σ . By the definition of near polygonal graphs, one can easily check that

$$\mathcal{E}_1 := \{(0, 1, 2, 3, 4, 5, 0), (0, 5, 2, 1, 4, 3, 0), (0, 1, 4, 5, 2, 3, 0)\}$$

and

$$\mathcal{E}_2 := \{ (0, 1, 2, 5, 4, 3, 0), (0, 3, 2, 1, 4, 5, 0), (0, 1, 4, 3, 2, 5, 0) \}$$

are the only possible sets \mathcal{E} of 6-cycles of Σ such that (Σ, \mathcal{E}) is a near 6-gonal graph. On the other hand, we have $\operatorname{Aut}(\Sigma) = S_3 \operatorname{wr} S_2 \cong$ $\langle (024), (02), (01)(23)(45) \rangle$ and again it is easily checked that (024) and (01)(23)(45) fix \mathcal{E}_1 and \mathcal{E}_2 setwise, whilst (02) interchanges \mathcal{E}_1 and \mathcal{E}_2 . Thus $\operatorname{Aut}(\Sigma)$ interchanges \mathcal{E}_1 and \mathcal{E}_2 and so a subgroup G of $\operatorname{Aut}(\Sigma)$ with index 2 fixes \mathcal{E}_1 and \mathcal{E}_2 setwise. We have seen that G contains $H = \langle (024), (01)(23)(45) \rangle \cong A_3 \operatorname{wr} S_2$, but does not contain (02). Thus |G:H|=2. The element (13) is the conjugate of (02) by (01)(23)(45), and hence $(13) \in \operatorname{Aut}(\Sigma)$ and (13) interchanges \mathcal{E}_1 and \mathcal{E}_2 . Therefore (02)(13)fixes \mathcal{E}_1 and \mathcal{E}_2 setwise and does not lie in H, so $G = \langle H, (02)(13) \rangle$. It is easy to check that G is transitive on the 2-arcs of Σ , and hence (Σ, \mathcal{E}_i) is a (G,2)-arc transitive near 6-gonal graph for i=1 and i=2. If Σ is (K,2)-arc transitive and K preserves the \mathcal{E}_i , then $K \leq G$ and |K| is divisible by the number of 2-arcs, that is, by 36. Hence K = G. Finally, for $\Delta_i := A_3(\Sigma, \mathcal{E}_i)$, i = 1, 2, we have $\operatorname{Arc}_{\Delta_i}(\Sigma) \cong 3 \cdot C_6$. We show this graph in Figure 1, where the three blocks on the left-hand side are B(0), B(2) and B(4), and that on the right-hand side are B(1), B(3) and B(5).

The following proposition shows further that the graph Σ in Example 3.3 is the only connected trivalent non-complete graph which is (G, 2)-arc transitive and near *n*-gonal for an even integer *n* such that the basic cycles have chords.

Proposition 3.4. Suppose Σ is a finite, connected, (G,2)-arc transitive, trivalent graph and $\Sigma \not\cong K_4$. Suppose Δ is a self-paired G-orbit on $A_3(\Sigma)$ such that $\Gamma := \operatorname{Arc}_{\Delta}(\Sigma)$ almost covers Σ . Then Σ is a near n-gonal graph with respect to some G-orbit \mathcal{E} of n-cycles (and n is even). Moreover the

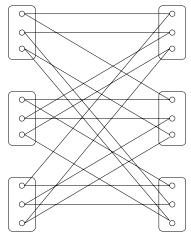


Figure 1. $\Gamma = 3 \cdot C_6, \Sigma = K_{3,3}$

cycles in \mathcal{E} have chords if and only if $\Sigma \cong K_{3,3}$, $\Gamma \cong 3 \cdot C_6$, and $\mathcal{E} \cong \mathcal{E}_1$ or \mathcal{E}_2 , where G, \mathcal{E}_1 and \mathcal{E}_2 are as in Example 3.3.

Proof. By Theorem 3.1, Σ is a near *n*-gonal graph with respect to some *G*-orbit \mathcal{E} of *n*-cycles for an even integer $n \geq 4$. So we need only to prove that the cycles in \mathcal{E} have chords if and only if $\Sigma, \Gamma, G, \mathcal{E}$ are as claimed. The "if" part was in fact proved in Example 3.3. We prove the "only if" part in the following.

Suppose $\{\sigma_0, \sigma_m\}$ is a chord of the basic cycle $C(\sigma_0, \sigma_1, \sigma_2) :=$ $(\sigma_0, \sigma_1, \sigma_2, \dots, \sigma_{n-1}, \sigma_0)$. Then $\{\sigma_i, \sigma_{i+m}\}$ is a chord of $C(\sigma_0, \sigma_1, \sigma_2)$ for each i (by Lemma 2.6(e)). Since Σ is trivalent and connected, the only possibility is m = n/2 and $\Sigma \cong \operatorname{Cay}(\mathbb{Z}_n, \{1, m, n-1\})$. Since $\Sigma \ncong K_4$, we have $m \ge 3$. Now the unique *n*-cycle $C(\sigma_m, \sigma_0, \sigma_1)$ containing $(\sigma_m, \sigma_0, \sigma_1)$ must be the following sequence of vertices: $\sigma_m, \sigma_0, \sigma_1, \sigma_{m+1}, \sigma_{m+2}, \sigma_2, \sigma_3, \sigma_{m+3}, \sigma_{m+4}, \dots$ If m is even, this sequence does not even form an n-cycle since it never returns to the vertex σ_m . (Once we arrive at σ_{m-1} , the next vertex in the sequence is σ_{n-1} and from σ_{n-1} the sequence returns to σ_0 . For example, if m=4, then the sequence is the 7-cycle $(\sigma_0, \sigma_1, \sigma_5, \sigma_6, \sigma_2, \sigma_3, \sigma_7, \sigma_0)$.) So m is odd, and in this case the sequence does give an *n*-cycle. By the (G,2)-arc transitivity of Σ , there exists $g \in G$ such that $(\sigma_{n-1}, \sigma_0, \sigma_1)^g = (\sigma_m, \sigma_0, \sigma_1)$. From Lemma 2.3(d), we have $(C(\sigma_{n-1}, \sigma_0, \sigma_1))^g = C(\sigma_m, \sigma_0, \sigma_1)$. Therefore, $\sigma_0^g = \sigma_0$, $\sigma_1^g = \sigma_1, \sigma_{n-1}^g = \sigma_m, \sigma_{n-3}^g = \sigma_{n-1}$. Since σ_0, σ_m are adjacent, we know that σ_0^g and σ_m^g are adjacent, and hence the only possibility for σ_m^g is $\sigma_m^g = \sigma_{n-1}$ (note that $\sigma_m^g \neq \sigma_1^g = \sigma_1, \sigma_m^g \neq \sigma_{n-1}^g = \sigma_m$). But $\sigma_{n-3}^g = \sigma_{n-1}$ as mentioned above, so we get $\sigma_m = \sigma_{n-3}$. Therefore,

n = 6 and hence $\Sigma = \operatorname{Cay}(\mathbb{Z}_6, \{1, 3, 5\}) \cong K_{3,3}$. From the discussion in Example 3.3, we then have $\Gamma = 3 \cdot C_6$, \mathcal{E} is either \mathcal{E}_1 or \mathcal{E}_2 , and G is the group $\langle (024), (02)(13), (01)(23)(45) \rangle$.

4. Corollaries

We conclude the paper by giving two corollaries of our main result. The first one, stated below, might be useful in constructing two-arc transitive near-polygonal graphs.

Corollary 4.1. Suppose that Σ a finite connected (G,2)-arc transitive graph of valency $v \ge 3$ such that $\Sigma \not\cong K_{v+1}$ and G_{σ} is sharply 2-transitive on $\Sigma(\sigma)$ for $\sigma \in V(\Sigma)$. If one of the G-orbits on $A_3(\Sigma)$ is self-paired (that is, G contains an element reversing a 3-arc of Σ), then, for some even integer $n \ge 4$, Σ is a near n-gonal graph with respect to a G-orbit on n-cycles of Σ .

This follows immediately from Theorem 3.1 and Lemma 2.4. Moreover, since G_{σ} is sharply 2-transitive on $\Sigma(\sigma)$, by a well known result (see [5,17]) the valency $v = |\Sigma(\sigma)|$ of Σ must be a prime power. The reader is referred to [16] for information about the group G.

Our second corollary examines an important special case of almost covers which motivated the study in this paper. Recall that if Γ is a G-symmetric, G-locally primitive graph admitting a nontrivial G-invariant partition \mathcal{B} of block size $v = k + 1 \ge 3$ such that $\Gamma_{\mathcal{B}}$ is connected, then $\mathcal{D}(B)$ contains no repeated blocks ([6, Lemma 3.3(c)]) and $\Gamma_{\mathcal{B}}$ is almost covered by Γ ([6, Lemma 3.1(a)]). By Theorem 2.1, $\Gamma = \operatorname{Arc}_{\Delta}(\Sigma)$ for some self-paired G-orbit Δ on 3-arcs of $\Sigma := \Gamma_{\mathcal{B}}$, and \mathcal{B} is identical with $\mathcal{B}(\Sigma)$ (see [11, Section 5]). Note that Lemma 2.3 parts (a) and (b), and the G-local primitivity of Γ , imply that G_B is 2-primitive on B and $\Sigma(B)$. If in addition girth(Σ) = 3 (that is, $\Sigma \cong K_{v+1}$, see Lemma 2.5), then G is 3-primitive on \mathcal{B} and the argument in the proof of [6, Theorem 5.4] from (Line, Page) = (25, 534)to (12, 535) is valid, and hence we get the possibilities for (Γ, G) listed in part (a) and the second half of part (b) of [6, Theorem 5.4]. However, in the general case where girth(Σ) > 4, the argument in [6, lines 33–41, pp. 534] should be modified since the block D therein is not adjacent to C. In this case, as shown in Theorem 1.1, Σ is a near *n*-gonal graph with $n \ge 4$ and n even. Moreover, $G_B^{\varSigma(B)}$ is 2-primitive. Hence if basic cycles of \varSigma have chords, then by Lemma 2.6(e), G_B is sharply 2-primitive on $\Sigma(B)$. Hence G_B is also sharply 2-primitive on B, and so v is a prime power and, for $\alpha \in B, \ G_{\alpha}^{B \setminus \{\alpha\}} = \mathbb{Z}_{v-1}$ with v-1 a prime. Hence either v=3, or $v=2^p$ for a

prime p with $q=2^p-1$ a Mersenne prime. In the former case Proposition 3.4 implies that $\Sigma = K_{3,3}$, $\Gamma = 3 \cdot C_6$, and G and \mathcal{E} are as in Example 3.3. In the latter case $G_B^B = (\mathbb{Z}_2)^p \cdot \mathbb{Z}_q$. Theorems 1.1, 2.1 and 3.1 and the argument above imply Corollary 4.2, an amended form of [6, Theorem 5.4].

For a prime power v, and distinct elements u, w, y, z of the projective line $\operatorname{GF}(v) \cup \{\infty\}$, the cross-ratio (see e.g. [13, pp. 59]) is defined as c(u, w; y, z) := (u-y)(w-z)/(u-z)(w-y). For each $x \in \operatorname{GF}(v) \setminus \{0\}$, the cross-ratio graph $\operatorname{CR}(v, x)$ was defined in [6,9] to be the graph with vertices the ordered pairs of distinct elements of $\operatorname{GF}(v) \cup \{\infty\}$ in which uw and yz are adjacent if and only if c(u, w; y, z) = x.

Corollary 4.2. Suppose that Γ is a finite *G*-symmetric, *G*-locally primitive graph admitting a nontrivial *G*-invariant partition \mathcal{B} of block size $v = k+1 \ge 3$ such that $\Gamma_{\mathcal{B}}$ is connected. Then $\Gamma_{\mathcal{B}}$ is a (G,2)-arc transitive graph of valency v, the actions of G_B on B and $\Gamma_{\mathcal{B}}(B)$ are permutationally equivalent and 2-primitive, and the following (a)–(b) hold.

(a) If $\Gamma_{\mathcal{B}} \cong K_{v+1}$, then either (i) $\Gamma \cong (v+1) \cdot K_v$ and G is one of the following: S_{v+1} ($v \ge 3$), A_{v+1} ($v \ge 4$), M_{v+1} (v = 10, 11, 22, 23), M_{11} (v = 11), PGL(2, 2^p) ($v = 2^p$ with 2^p-1 a Mersenne prime), or (ii) $\Gamma \cong CR(3, -1) = 3 \cdot C_4$ and G = PGL(2,3) (v = 3), or (iii) $\Gamma \cong CR(2^p, x)$ and $G = PGL(2, 2^p)$ ($v = 2^p$) for some $x \in GF(2^p) \setminus \{0,1\}$ with $2^p - 1$ a Mersenne prime.

(b) If $\Gamma_{\mathcal{B}} \cong K_{v+1}$, then for some even integer $n \ge 4$, $\Gamma_{\mathcal{B}}$ is a near *n*-gonal graph with respect to a certain *G*-orbit \mathcal{E} on *n*-cycles of $\Gamma_{\mathcal{B}}$ and $\Gamma \cong \operatorname{Arc}_{\Delta}(\Gamma_{\mathcal{B}})$ for $\Delta := A_3(\Gamma_{\mathcal{B}}, \mathcal{E})$. Moreover, each basic cycle of $(\Gamma_{\mathcal{B}}, \mathcal{E})$ is chordless unless G_B^B is sharply 2-primitive and either

(i) v=3, $\Gamma_{\mathcal{B}}\cong K_{3,3}$, $\Gamma\cong 3\cdot C_6$, and G and \mathcal{E} are as in Example 3.3, or

(ii) $G_B^B = (\mathbb{Z}_2)^p . \mathbb{Z}_q$ and $v = 2^p$ with p a prime and $q = 2^p - 1$ a Mersenne prime.

The smallest v in part (b)(ii) above is $v = 2^2 = 4$. In this case we have $G_B^B = (\mathbb{Z}_2)^2 . \mathbb{Z}_3$ and a similar argument as in the proof of Proposition 3.4 shows that, if the basic cycles of $(\Gamma_{\mathcal{B}}, \mathcal{E})$ have chords, then the subgraph induced by the vertex set of each basic cycle is isomorphic to the circulant $\operatorname{Cay}(\mathbb{Z}_n, S)$ for $S = \{1, n/2, n-1\}$.

Acknowledgement. The author appreciates greatly Professor Cheryl E. Praeger for her invaluable suggestions which led to significant improvement in both the results and the presentation of this paper.

References

- N. L. BIGGS: Algebraic graph theory (Second edition), Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
- [2] F. BUEKENHOUT: Diagrams for geometries and groups, J. Combinatorial Theory Ser. A 27 (1979), 121–151.
- [3] P. J. CAMERON: Finite permutation groups and finite simple groups, Bull. London Math. Soc. 13 (1981), 1–22.
- [4] J. H. CONWAY, R. T. CURTIS, S. P. NORTON, R. A. PARKER and R. A. WILSON: An atlas of finite simple groups, Clarendon Press, Oxford, 1985.
- [5] J. D. DIXON and B. MORTIMER: *Permutation groups*, Springer, New York, 1996.
- [6] A. GARDINER and CHERYL E. PRAEGER: A geometrical approach to imprimitive graphs, Proc. London Math. Soc., 71(3) (1995), 524–546.
- [7] A. GARDINER and CHERYL E. PRAEGER: Topological covers of complete graphs, Math. Proc. Cambridge Philos. Soc. 123 (1998), 549–559.
- [8] A. GARDINER and CHERYL E. PRAEGER: Symmetric graphs with complete quotients, Preprint, The University of Western Australia, 1999.
- [9] A. GARDINER, CHERYL E. PRAEGER and SANMING ZHOU: Cross ratio graphs, J. London Math. Soc. 64(2) (2001), 257–272.
- [10] MOHAMMAD A. IRANMANESH, CHERYL E. PRAEGER and SANMING ZHOU: Finite symmetric graphs with two-arc transitive quotients, J. Combinatorial Theory Ser. B, to appear.
- [11] CAI HENG LI, CHERYL E. PRAEGER and SANMING ZHOU: A class of finite symmetric graphs with 2-arc transitive quotients, *Math. Proc. Cambridge Philos. Soc.* 129 (2000), 19–34.
- [12] M. W. LIEBECK, CHERYL E. PRAEGER and J. SAXL: On the O'Nan–Scott theorem for finite primitive permutation groups, J. Australia Math. Soc. 44 (1988), 389–396.
- [13] P. M. NEUMANN, G. A. STOY and E. C. THOMPSON: Groups and geometry, Oxford University Press, Oxford, 1994.
- [14] M. PERKEL: Near-polygonal graphs, Ars Combinatoria **26(A)** (1988), 149–170.
- [15] CHERYL E. PRAEGER: Imprimitive symmetric graphs, Ars Combinatoria 19(A) (1985), 149–163.
- [16] JIE WANG: Primitive permutation groups with a sharply 2-transitive subconstituent, J. Algebra 176 (1995), 702–734.
- [17] H. WIELANDT: Finite permutation groups, Academic Press, New York, 1964.
- [18] SANMING ZHOU: Imprimitive symmetric graphs, 3-arc graphs and 1-designs, Discrete Math. 244 (2002), 521–537.
- [19] SANMING ZHOU: Constructing a class of symmetric graphs, European J. Combinatorics 23 (2002), 741–760.
- [20] SANMING ZHOU: Symmetric graphs and flag graphs, Monatshefte Mathematik 139 (2003), 69–81.

Sanming Zhou

Department of Mathematics and Statistics The University of Melbourne Parkville, VIC 3010 Australia smzhou@ms.unimelb.edu.au