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a b s t r a c t

Let j ≥ k ≥ 0 be integers. An `-L(j, k)-labelling of a graph G = (V , E) is a mapping φ :
V → {0, 1, 2, . . . , `} such that |φ(u)−φ(v)| ≥ j if u, v are adjacent and |φ(u)−φ(v)| ≥ k
if they are distance two apart. Let λj,k(G) be the smallest integer ` such that G admits
an `-L(j, k)-labelling. Define λj,k(G) to be the smallest ` if G admits an `-L(j, k)-labelling
with φ(V ) = {0, 1, 2, . . . , `} and∞ otherwise. An `-cyclic L(j, k)-labelling is a mapping
φ : V → Z` such that |φ(u) − φ(v)|` ≥ j if u, v are adjacent and |φ(u) − φ(v)|` ≥ k
if they are distance two apart, where |x|` = min{x, ` − x} for x between 0 and `. Let
σj,k(G) be the smallest ` − 1 of such a labelling, and define σ j,k(G) similarly to λj,k(G).
We determine λ2,0, λ2,0, σ2,0 and σ 2,0 for all Hamming graphs Kq1�Kq2� · · ·�Kqd (d ≥ 2,
q1 ≥ q2 ≥ · · · ≥ qd ≥ 2) and give optimal labellings, with the only exception being
2q ≤ σ 2,0(Kq�Kq) ≤ 2q+1 for q ≥ 4. We also prove the following ‘‘sandwich theorem’’: If
q1 is sufficiently large then λ2,1(G) = λ2,1(G) = σ 2,1(G) = σ2,1(G) = λ1,1(G) = λ1,1(G) =
σ 1,1(G) = σ1,1(G) = q1q2−1 for any graphG between Kq1�Kq2 and Kq1�Kq2� · · ·�Kqd , and
moreover we give a labelling which is optimal for these eight invariants simultaneously.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We investigate four versions of the well-known L(j, k)-labelling problem (Table 1) which originated from channel
assignment in communication networks. The reader is referred to [1] for a survey and [11,12,15,22,23] for background
information on this problem. In the present paper we concentrate on Hamming graphs, namely Cartesian products of
complete graphs, and the case where (j, k) = (2, 0), (2, 1) or (1, 1). In recent years considerable efforts have been made
toward the L(j, k)-labelling problem forHamming graphs; see [7,9,23] for related results and [24] for a short survey of related
results. Due to close connection betweenHamming graphs and coding theory, the results obtained in this paper can be easily
interpreted in coding-theoretic language.
Let G = (V , E) be a graph and j ≥ k ≥ 0 integers. A mapping φ : V → {0, 1, 2, . . .} is an L(j, k)-labelling [8,11] of G if,

for u, v ∈ V ,

|φ(u)− φ(v)| ≥
{
j, dG(u, v) = 1;
k, dG(u, v) = 2,
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Table 1
Four versions of the L(j, k)-labelling problem.

L(j, k)-labelling No-hole L(j, k)-labelling

Euclidean metric λj,k λj,k
λ := λ2,1 λ := λ2,1

Cyclic metric σj,k σ j,k
σ := σ2,1 σ := σ 2,1

where dG(u, v) is the distance in G between u and v. Wewill always assumew.l.o.g that minv∈V φ(v) = 0. Call φ(u) the label
of u under φ, and sp(G;φ) = maxv∈V φ(v) the span of φ. The λj,k-number [8,11] of G, denoted by λj,k(G), is the minimum
span over all L(j, k)-labellings of G. An L(j, k)-labelling φ is no-hole if {φ(v) : v ∈ V } is a set of consecutive integers. Define
λj,k(G) to be the minimum span over all no-hole L(j, k)-labellings of G if such a labelling exists and∞ otherwise. In the
literature λ(G) := λ2,1(G) is widely known as the λ-number [11] and an L(2, 0)-labelling is called a 2-distant colouring.
Denote λ(G) := λ2,1(G).
The cyclic version of the L(j, k)-labelling problem was first studied in [13,22] for (j, k) = (d, 0), (2, 1) respectively. An

`-cyclic L(j, k)-labelling of G is a mapping φ : V → Z` such that

|φ(u)− φ(v)|` ≥
{
j, dG(u, v) = 1;
k, dG(u, v) = 2

for u, v ∈ V , where |x−y|` := min{|x−y|, `−|x−y|} is the `-cyclic distance. Wemay assumew.l.o.g that minv∈V φ(v) = 0.
An `-cyclic L(j, k)-labelling of G exists for sufficiently large `. Define σj,k(G) to be the minimum integer ` − 1 such that G
admits an `-cyclic L(j, k)-labelling. A cyclic L(j, k)-labelling φ is no-hole if {φ(v) : v ∈ V } is a set of consecutive integers.
Let σ j,k(G) be the minimum `− 1 such that G admits a no-hole `-cyclic L(j, k)-labelling, and∞ if no such a labelling exists.
Denote σ(G) := σ2,1(G) and σ(G) := σ 2,1(G). Note that σ(G) thus defined is one smaller than the σ -number defined in [13]. (It
seems more convenient to define σj,k(G) as above but not the minimum ` such that G admits an `-cyclic L(j, k)-labelling.)
In general, it is hard to determine λj,k, λj,k, σj,k and/or σ j,k even for small values of j and k. The reader may consult [2–7,

14,16–18,20,21], respectively, for known results on λ and λ2,0. In this paper we focus on Hamming graphs Hq1,q2,...,qd :=
Kq1�Kq2� · · ·�Kqd (where d ≥ 2 and we always assume q1 ≥ q2 ≥ · · · ≥ qd ≥ 2) and the case where (j, k) = (2, 0), (2, 1)
or (1, 1). The vertex set of Hq1,q2,...,qd is Zq1 ×Zq2 ×· · ·×Zqd and two vertices (i1, i2, . . . , id) and (j1, j2, . . . , jd) are adjacent
in Hq1,q2,...,qd if and only if they differ at exactly one coordinate. In the case q1 = q2 = · · · = qd = q, we write H(d, q) in
place of Hq1,q2,...,qd . In particular, H(d, 2) is the hypercube Qd of dimension d, and H(2, 2) = Q2 ∼= C4 is the cycle of length 4.
Our first main result is the following theorem. (We include the trivial result λ2,0(Hq1,q2,...,qd) = 2(χ(Hq1,q2,...,qd)− 1) =

2q1 − 2 for completeness of the theorem.)

Theorem 1.1. Let d ≥ 2 and q1 ≥ q2 ≥ · · · ≥ qd ≥ 2 be integers. Then
(a) λ2,0(Hq1,q2,...,qd) = 2q1 − 2 and σ2,0(Hq1,q2,...,qd) = 2q1 − 1.
(b) Hq1,q2,...,qd admits a no-hole L(2, 0)-labelling ⇔ Hq1,q2,...,qd admits a no-hole cyclic L(2, 0)-labelling ⇔ Hq1,q2,...,qd 6= Q2,
and in this case the following (i)–(iii) hold:
(i) if q1, q2, . . . , qd are not all the same, then

λ2,0(Hq1,q2,...,qd) = σ 2,0(Hq1,q2,...,qd) = 2q1 − 1;
(ii) if d ≥ 3 and q ≥ 2, then

λ2,0(H(d, q)) = 2q− 1, σ 2,0(H(d, q)) = 2q;
(iii) if d = 2 and q ≥ 3, then

λ2,0(H(2, q)) = 2q, σ 2,0(H(2, 3)) = 8, 2q ≤ σ 2,0(H(2, q)) ≤ 2q+ 1 (q ≥ 4).
Moreover, we construct explicitly an optimal labelling in each case except σ 2,0(H(2, q)) with q ≥ 4; for this exceptional case

we give a no-hole (2q+ 2)-cyclic L(2, 0)-labelling of H(2, q).

We conjecture that σ 2,0(H(2, q)) is always equal to 2q + 1 for any integer q ≥ 4. We have proved this for q = 4, 5, 6,
but the proof requires significant deviation and hence is not included in this paper. Theorem 1.1(a) together with the
monotonicity of σ2,0 (Lemma 2.8) implies the following corollary (similar result for λ2,0 is obvious).

Corollary 1.2. We have σ2,0(G) = 2q1 − 1 for any subgraph G of Hq1,q2,...,qd with clique number ω(G) ≥ q1. Moreover, the
restriction to G of any optimal cyclic L(2, 0)-labelling of Hq1,q2,...,qd is an optimal cyclic L(2, 0)-labelling of G.

The problem of determining the λ-number of an arbitrary Hamming graph seems to be a difficult task [9,23]. In [23,
Question 6.1(b)] it was asked whether λ(Hq1,q2,...,qd) = q1q2 − 1 for any q1 ≥ q2 ≥ · · · ≥ qd (≥ 2) not all equal to 2.
Theorem 1.3 gives a partial solution to this problem. Let n = n(q2, q3, . . . , qd) be the largest integer such that q2 = qn, and
define

N(q2, q3, . . . , qd) := d+ n− 1+
∑
2≤k≤d

(k− 2)(qk − 1). (1)

The square G2 of a graph G is defined to have the same vertex set as G such that two vertices are adjacent if and only if
their distance in G is at most two.
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Theorem 1.3. Let d ≥ 2 and q1 ≥ q2 ≥ · · · ≥ qd ≥ 2 be integers. Then, Hq1,q2,...,qd admits a no-hole L(2, 1)-labelling
⇔ Hq1,q2,...,qd admits a no-hole cyclic L(2, 1)-labelling⇔ Hq1,q2,...,qd 6= Q2. Moreover, if q1 ≥ N(q2, q3, . . . , qd), then

λ(Hq1,q2,...,qd) = λ(Hq1,q2,...,qd) = σ(Hq1,q2,...,qd) = σ(Hq1,q2,...,qd) = q1q2 − 1,

λ1,1(Hq1,q2,...,qd) = λ1,1(Hq1,q2,...,qd) = σ 1,1(Hq1,q2,...,qd) = σ1,1(Hq1,q2,...,qd) = q1q2 − 1,

and we give a labelling of Hq1,q2,...,qd which is optimal for all these invariants simultaneously. Furthermore, in this case we have
χ(H2q1,q2,...,qd) = q1q2 and the same labelling gives rise to a minimum (proper) vertex-colouring of H

2
q1,q2,...,qd as well.

In the two-dimensional case Hq1,q2 6= Q2, we have d = 2, n = 2 and q1 ≥ 3 = N(q1, q2). Thus, we obtain
the following corollary of Theorem 1.3 which is partly known in the literature. (In [13, Theorem 3.2] it was proved that
λ(Hq1,q2) = σ(Hq1,q2) = q1q2 − 1 for Hq1,q2 6= Q2.)

Corollary 1.4. Let q1 ≥ q2 ≥ 2 be integers such that (q1, q2) 6= (2, 2). Then

λ(Hq1,q2) = λ(Hq1,q2) = σ(Hq1,q2) = σ(Hq1,q2) = q1q2 − 1,

λ1,1(Hq1,q2) = λ1,1(Hq1,q2) = σ 1,1(Hq1,q2) = σ1,1(Hq1,q2) = q1q2 − 1,

and we give a labelling of Hq1,q2 which is optimal for the eight invariants simultaneously.

Theorem 1.3 implies, and is equivalent to, the following ‘‘sandwich theorem’’.

Corollary 1.5. Let d ≥ 2 and q1 ≥ q2 ≥ · · · ≥ qd ≥ 2 be such that q1 ≥ N(q2, q3, . . . , qd). Then, for any subgraph G of
Hq1,q2,...,qd which contains Hq1,q2 as a subgraph, we have

λ(G) = λ(G) = σ(G) = σ(G) = q1q2 − 1,
λ1,1(G) = λ1,1(G) = σ 1,1(G) = σ1,1(G) = q1q2 − 1.

Moreover, the restriction to G of the optimal labelling of Hq1,q2,...,qd guaranteed in Theorem 1.3 is optimal for these eight invariants
simultaneously. Furthermore, χ(G2) = q1q2 and the same labelling is a minimum (proper) vertex-colouring of G2 as well.

All results above can be translated into coding-theoretic language due to close connections between Hamming graphs
and coding theory.
The rest of this paper is organized as follows. In the next sectionwe list preliminary results thatwill be used in subsequent

discussions. In Section 3 we prove Theorem 1.1 and Corollary 1.2 and construct the corresponding optimal labellings. In
Section 4 we prove Theorem 1.3 and Corollary 1.5. The paper concludes with remarks and an open problem related to these
results.

2. Preliminaries

Let Gc denote the complement of G. The equivalence of the second and the third statements in the following lemma is
known in [18], and that of the third and the fourth statements is given in [10]. Other equivalences can be easily established
and hence we omit their proofs.

Lemma 2.1. Let G be a graph with n vertices. Then, G admits a no-hole L(2, 1)-labelling⇔ G admits a no-hole L(2, 0)-labelling
⇔ Gc contains a Hamiltonian path⇔ λ(G) ≤ n− 1.

Similarly, one can prove the following lemma (the equivalence of the last two statements was proved in [13,
Theorem 2.2]).

Lemma 2.2. Let G be a graph with n vertices. Then, G admits a no-hole cyclic L(2, 1)-labelling ⇔ G admits a no-hole cyclic
L(2, 0)-labelling⇔ Gc is Hamiltonian⇔ σ(G) ≤ n− 1.

By Lemma 2.1, ifGc contains a Hamiltonian path, then λ(G), λ2,0(G) are finite andmoreover λ(G) ≤ λ(G), λ2,0(G) ≤ λ(G).
Similarly, by Lemma 2.2 if Gc is Hamiltonian then σ(G), σ 2,0(G) are finite and σ(G) ≤ σ(G), σ 2,0(G) ≤ σ(G). The following
inequalities can be easily established.

Lemma 2.3. The following (2) and (3) hold for any graph G, and (4) and (5) hold for any graph G such that Gc is Hamiltonian.

λ(G) ≤ σ(G) ≤ λ(G)+ 1, [13,22] (2)
λ2,0(G) ≤ σ2,0(G) ≤ λ2,0(G)+ 1, (3)

λ(G) ≤ σ(G), (4)

λ2,0(G) ≤ σ 2,0(G). (5)
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Lemma 2.4. Let G be a graph with n vertices. Then the following inequalities hold, where we assume that Gc contains a
Hamiltonian path in (6) and Gc is Hamiltonian in (7):

max{λ(G), λ2,0(G)} ≤ λ(G) ≤ n− 1, (6)

max{σ(G), σ 2,0(G)} ≤ σ(G) ≤ n− 1. (7)

Hence we have the following results immediately (that λ(G) = σ(G) = n− 1 was proved in [13, Theorem 3.1]).

Lemma 2.5. Let G be a graph with order n and diameter 2.

(a) If Gc contains a Hamiltonian path, then λ(G) = λ(G) = n− 1;
(b) if Gc is Hamiltonian, then σ(G) = σ(G) = n− 1.

The following result will be used in the proof of Lemma 2.7. Since we have been unable to locate it in the literature, we
include its proof for completeness of this paper.

Lemma 2.6. Let d ≥ 2 and q1 ≥ q2 ≥ · · · ≥ qd ≥ 2 be integers. Then, Hcq1,q2,...,qd is Hamiltonian⇔ Hcq1,q2,...,qd contains a
Hamiltonian path⇔ Hq1,q2,...,qd 6= Q2.

Proof. First, Hcq1,q2,...,qd is Hamiltonian⇒ Hcq1,q2,...,qd contains a Hamiltonian path⇒ Hq1,q2,...,qd 6= Q2. It suffices to show
that Hcq1,q2,...,qd is Hamiltonian if Hq1,q2,...,qd 6= Q2. Note that H

c
q1,q2,...,qd has degree

∏d
t=1 qt − 1 −

∑d
t=1(qt − 1). One can

verify that, unless d = 2, q1 ≥ 3 and q2 = 2, or d = 2 and (q1, q2) = (3, 3), we have

d∏
t=1

qt − 1−
d∑
t=1

(qt − 1) ≥
1
2

d∏
t=1

qt

and so Hcq1,q2,...,qd is Hamiltonian by Dirac’s condition for Hamiltonicity. In the two exceptional cases it is straightforward to
check that Hcq1,q2 contains a Hamiltonian cycle. �

Lemmas 2.1, 2.2 and 2.6 together imply the following result.

Lemma 2.7. Let d ≥ 2 and q1 ≥ q2 ≥ · · · ≥ qd ≥ 2. Then, Hq1,q2,...,qd admits a no-hole L(2, 1)-labelling ⇔ Hq1,q2,...,qd
admits a no-hole cyclic L(2, 1)-labelling⇔ Hq1,q2,...,qd admits a no-hole L(2, 0)-labelling⇔ Hq1,q2,...,qd admits a no-hole cyclic
L(2, 0)-labelling⇔ Hq1,q2,...,qd 6= Q2.

Thus, the statements in Theorems 1.1 and 1.3 about the existence of the four types of labellings have been established.
A graphical invariant η is monotonically increasing (see e.g. [25]) if η(G) ≤ η(H) whenever G is a subgraph of H . The

following observation is obvious.

Lemma 2.8. λj,k and σj,k are both monotonically increasing.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 consists of a series of lemmas. For any fixed vertex (i1, i2, . . . , id) of Hq1,q2,...,qd , the set
{(j, i2, . . . , id) : j ∈ Zq1} induces a subgraph of Hq1,q2,...,qd isomorphic to Kq1 , which we call the Kq1-copy of Hq1,q2,...,qd
containing (i1, i2, . . . , id).

Lemma 3.1. Let d ≥ 2 and q1 ≥ q2 ≥ · · · ≥ qd ≥ 2 be integers. Then

λ2,0(Hq1,q2,...,qd) = 2q1 − 2 and σ2,0(Hq1,q2,...,qd) = 2q1 − 1.

Proof. We have λ2,0(Hq1,q2,...,qd) = 2(χ(Hq1,q2,...,qd) − 1) = 2q1 − 2. Under any cyclic L(2, 0)-labelling of Hq1,q2,...,qd
the labels of any two vertices in the same Kq1-copy must differ by at least 2 with respect to the cyclic metric. Thus,
σ2,0(Hq1,q2,...,qd) ≥ 2q1 − 1. The labelling defined by

φ(i1, i2, . . . , id) = (2i1 + 2i2 + · · · + 2id) mod 2q1 (8)

is a 2q1-cyclic L(2, 0)-labelling ofHq1,q2,...,qd . Therefore, σ2,0(Hq1,q2,...,qd) = 2q1−1 andφ is an optimal cyclic L(2, 0)-labelling
of Hq1,q2,...,qd . �

Lemma 3.1 proves part (a) of Theorem1.1. Aswewill see in the following the labellingφ defined in (8) induces an optimal
cyclic L(2, 0)-labelling for any subgraph G of Hq1,q2,...,qd containing Kq1 .



1900 G.J. Chang et al. / Discrete Applied Mathematics 157 (2009) 1896–1904

Proof of Corollary 1.2. SupposeG is a subgraph ofHq1,q2,...,qd containing a copy of Kq1 . Since σ2,0 is monotonically increasing
by Lemma 2.8, using Lemma 3.1 we have 2q1 − 1 = σ2,0(Kq1) ≤ σ2,0(G) ≤ σ2,0(Hq1,q2,...,qd) = 2q1 − 1. Hence
σ2,0(G) = 2q1 − 1 and the restriction to G of any optimal cyclic L(2, 0)-labelling of Hq1,q2,...,qd is an optimal cyclic L(2, 0)-
labelling of G. �

Lemma 3.2. Let d ≥ 2 and q1 ≥ q2 ≥ · · · ≥ qd ≥ 2 be integers such that Hq1,q2,...,qd 6= Q2. Then

2q1 − 1 ≤ λ2,0(Hq1,q2,...,qd) ≤ σ 2,0(Hq1,q2,...,qd). (9)

Proof. The second inequality follows from (5). For any no-hole L(2, 0)-labelling of Hq1,q2,...,qd , choose a vertex u of label 1
and a Kq1-copy containing u. Then the labels of any two vertices in this Kq1-copymust differ by at least 2. Thus, themaximum
label used is at least 2q1 − 1 and so λ2,0(Hq1,q2,...,qd) ≥ 2q1 − 1. �

That σ 2,0(Hq1,q2,...,qd) ≥ 2q1 − 1 (which is implied by (9) can be also obtained from Lemma 3.1 and the fact that
σ2,0(Hq1,q2,...,qd) ≤ σ 2,0(Hq1,q2,...,qd).

Lemma 3.3. Let d ≥ 2 and q1 ≥ q2 ≥ · · · ≥ qd ≥ 2 be integers such that q1, q2, . . . , qd are not all the same. Then

σ 2,0(Hq1,q2,...,qd) ≤ 2q1 − 1.

Proof. Since q1, q2, . . . , qd are not all the same, we have q1 > qd. Define

φ(i1, i2, . . . , id) =
{
(2i1 + 2i2 + · · · + 2id) mod 2q1, id 6= qd − 1;
(2i1 + 2i2 + · · · + 2id + 1) mod 2q1, id = qd − 1

(10)

for 0 ≤ it ≤ qt − 1 and 1 ≤ t ≤ d. Let u and v be two adjacent vertices of Hq1,q2,...,qd , and suppose that they differ
at the kth position only. Let ik 6= jk be the k th coordinates of u and v, respectively. If k < d or k = d but neither id
nor jd is equal to qd − 1, then |φ(u) − φ(v)| = 2|ik − jk| mod 2q1 and hence 2 ≤ |φ(u) − φ(v)| ≤ 2q1 − 2. If
k = d and exactly one of id and jd is equal to qd − 1, say id = qd − 1 and jd 6= qd − 1 (hence 0 ≤ jd ≤ qd − 2), then
|φ(u) − φ(v)| = |2(qd − 1) + 1 − 2jd| mod 2q1 = 2(qd − jd) − 1. Noting that 0 ≤ jd ≤ qd − 2 and qd < q1, in this
case we have 3 ≤ |φ(u) − φ(v)| ≤ 2qd − 1 ≤ 2(q1 − 1) − 1 = 2q1 − 3. Thus, we have proved |φ(u) − φ(v)|2q1 ≥ 2
in all possibilities, and hence φ is a 2q1-cyclic L(2, 0)-labelling of Hq1,q2,...,qd . Note that φ(i1, 0, . . . , 0) = 2i1 takes values
0, 2, . . . , 2q1−2when i1 runs from 0 to q1−1. Also, φ(i1, 0, . . . , 0, qd−1) = (2i1+2qd−1) mod 2q1, which takes values
2qd−1, 2qd+1, . . . , 2q1−1, 1, 3, . . . , 2qd−3when i1 runs from 0 to q1−1. Thus, φ is a no-hole 2q1-cyclic L(2, 0)-labelling
of Hq1,q2,...,qd with span 2q1 − 1. Therefore, σ 2,0(Hq1,q2,...,qd) ≤ 2q1 − 1 and the proof is complete. �

By Lemmas 3.2 and 3.3, if q1, q2, . . . , qd are not all the same, then λ2,0(Hq1,q2,...,qd) = σ 2,0(Hq1,q2,...,qd) = 2q1−1, and this
proves (b)(i) of Theorem 1.1. Moreover, φ given by (10) is an optimal no-hole L(2, 0)-labelling as well as an optimal no-hole
cyclic L(2, 0)-labelling of Hq1,q2,...,qd .
In the case where all q1, q2, . . . , qd are the same, φ defined in (10) is not an L(2, 0)-labelling of Hq1,q2,...,qd . (For instance,

if d = 2 and q1 = q2, then φ(1, 0) = 2 and φ(1, q1 − 1) = 1, violating the 2-distant condition.) In fact, this special case is
relatively harder to handle than the general case, and this is the task of the remainder of this section.

Lemma 3.4. Let d ≥ 3 and q ≥ 2 be integers. Then

λ2,0(H(d, q)) = 2q− 1.

Proof. By Lemma 3.2 it suffices to show that λ2,0(H(d, q)) ≤ 2q − 1. This is achieved by constructing a no-hole L(2, 0)-
labelling φ of H(d, q)with span 2q− 1 as follows. For any vertex (i1, i2, . . . , id) in H(d, q), define

ψ(i1, i2, . . . , id) = (2i1 + 1)+ ((2i2 + 2i3 + · · · + 2id) mod (2q+ 2)), (11)

φ(i1, i2, . . . , id) = ψ(i1, i2, . . . , id) mod (2q+ 1). (12)

For any two adjacent vertices (i1, i2, . . . , id) and (j1, j2, . . . , jd), there is exactly one subscript t , 1 ≤ t ≤ d, with it 6= jt .
By the definition of ψ , the difference (in absolute value) of ψ(i1, i2, . . . , id) and ψ(j1, j2, . . . , jd) is between 2 and 2q − 2.
Thus, |φ(i1, i2, . . . , id)− φ(j1, j2, . . . , jd)| ≥ 2 and so φ is an L(2, 0)-labelling of H(d, q).
Next we argue that φ uses all labels from 0 to 2q− 1. In fact, while (i1, i2, . . . , id) runs over all vertices in H(d, q), 2i1+ 1

runs over all odd integers from 1 to 2q−1 and, since d ≥ 3, (2i2+2i3+· · ·+2id) mod (2q+2) runs over all even integers
from 0 to 2q. Henceψ(i1, i2, . . . , id) runs over all odd integers from 1 to 4q− 1. After taking modulo 2q+ 1, φ(i1, i2, . . . , id)
runs over all integers from 1 to 2q − 1. Note that 2q + 1, 2q + 3, . . . , 4q − 1 respectively become 0, 2, . . . , 2q − 2 after
taken modulo 2q+ 1. �
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Lemma 3.5. Let d ≥ 3 and q ≥ 2 be integers. Then

σ 2,0(H(d, q)) = 2q.

Proof. We first show that 2q is a lower bound for σ 2,0(H(d, q)). Suppose otherwise. Then σ 2,0(H(d, q)) = 2q − 1 by (9).
Let φ be a no-hole 2q-cyclic L(2, 0)-labelling of H(d, q). Since φ is an L(2, 0)-labelling, under φ the vertices of any Kq-copy
must receive labels with pairwise cyclic difference (in absolute value) at least 2. Hence each Kq-copy of H(d, q) uses either
{0, 2, . . . , 2q− 2} or {1, 3, . . . , 2q− 1} as the label set. Since H(d, q) is connected and every vertex of H(d, q) is contained
in d Kq-copies, it follows that either all vertices of H(d, q) use even labels 0, 2, . . . , 2q− 2, or all vertices of H(d, q) use odd
labels 1, 3, . . . , 2q− 1. This contradicts the no-hole condition, and hence σ 2,0(H(d, q)) ≥ 2q.
Define

φ(i1, i2, . . . , id) = (2i1 + 2i2 + · · · + 2id + 1) mod (2q+ 1) (13)

for each (i1, i2, . . . , id). Then, for any two adjacent vertices u and v of H(d, q), we have 2 ≤ |φ(u) − φ(v)| ≤ 2q − 2 and
hence |φ(u)−φ(v)|2q+1 ≥ 2. Since d ≥ 3,

∑d
t=1 it can take integers 0, 1, 2, . . . , q−1, q, q+1, . . . , 2q−2, 2q−1, 2q, . . . ,

and hence φ(i1, i2, . . . , id) can take 1, 3, 5, . . . , 2q−1, 0, 2, . . . , 2q−4, 2q−2, 2q, . . . correspondingly. Thus, φ is a no-hole
(2q+ 1)-cyclic L(2, 0)-labelling of H(d, q) and the proof is complete. �

Part (b)(ii) of Theorem 1.1 follows from Lemmas 3.4 and 3.5 immediately. Moreover, as shown in the proofs above, (11)
and (12) define an optimal no-hole L(2, 0)-labelling and (13) an optimal no-hole cyclic L(2, 0)-labelling of H(d, q) when
d ≥ 3 and q ≥ 2.

Lemma 3.6. Let q ≥ 3 be an integer. Then

λ2,0(H(2, q)) = 2q.

Proof. Recall that H(2, q) has vertex set Zq× Zq. We think of H(2, q) as a drawing on the plane in the usual way, so we can
talk about its rows and columns: the (i + 1)th row consists of those vertices with the first coordinate i, and the (j + 1)th
column consists of vertices with the second coordinate j, for 0 ≤ i, j ≤ q− 1. The vertices in the same row/column induce
a complete subgraph Kq of H(2, q), and hence they must receive labels with mutual difference at least 2 under any L(2, 0)-
labelling.
Let us prove first that λ2,0(H(2, q)) ≥ 2q. Suppose otherwise. Then λ2,0(H(2, q)) = 2q−1 by Lemma 3.2, andH(2, q) has

a no-hole L(2, 0)-labelling φ with span 2q−1. Since φ is no-hole, 2q−2must appear in some row ofH(2, q), say, row R, and
hence both 2q−3 and 2q−1 do not appear in R. Since {0, 2, . . . , 2q−2} is the unique q-subset of [0, 2q−2] ofwhich any two
members differ by at least 2, the vertices in Rmust receive labels 0, 2, 4, . . . , 2q− 2. Also, 1 must appear in some column of
H(2, q), say, column C . This implies that both 0 and 2 do not appear in column C . Again, since {1, 3, . . . , 2q−1} is the unique
q-subset of [1, 2q − 1] of which any two members differ by at least 2, the labels used in column C are 1, 3, 5, . . . , 2q − 1.
Since d = 2, there is a unique common vertex of row R and column C . From the discussion above this vertexmust be labelled
by an odd integer, as well as an even integer. This is a contradiction and hence we have λ2,0(H(2, q)) ≥ 2q.
It remains to prove that 2q is an upper bound for λ2,0(H(2, q)). Define

φ(i, j) =

{0, (i, j) = (0, q− 1), (1, q− 2);
2, (i, j) = (1, q− 1);
(2i+ 2j+ 4) mod (2q+ 1), (i, j) 6= (0, q− 1), (1, q− 2), (1, q− 1).

(14)

Under this labellingφ, the vertices in the first row are labelled 4, 6, 8, . . . , 2q−2, 2q, 0, and hence themutual differences
of these labels are at least 2. Similarly, the labels of the vertices in the second row are 6, 8, 10, . . . , 2q, 0, 2, which differ
pairwise by at least 2. The vertices in the last and second last columns receive labels 0, 2, 5, . . . , 2q− 5, 2q− 3, 2q− 1 and
2q, 0, 3, . . . , 2q−7, 2q−5, 2q−3, respectively, and hence they satisfy the 2-distant condition as well. For all other vertices
(i, j), where 2 ≤ i ≤ q− 1 and 0 ≤ j ≤ q− 3, we have φ(i, j) = (2i+ 2j+ 4)mod (2q+ 1), and hence two such vertices
in the same row or column receive labels with difference at least 2. Thus, φ is an L(2, 0)-labelling of H(2, q). Since q ≥ 3,
φ(q−1, j) = 2j+1, which takes values 1, 3, 5, . . . , 2q−1when j runs from 0 to q−1. Also, φ(i, 0) = 2i+4 = 4, 6, . . . , 2q
when i runs from 0 to q−2. In addition, φ(0, q−1) = 0 and φ(1, q−1) = 2 by definition. So φ is a no-hole L(2, 0)-labelling
with span 2q, and the proof is complete. �

Lemma 3.6 contributes to part (b)(iii) of Theorem 1.1, and (14) gives an optimal no-hole L(2, 0)-labelling of H(2, q) for
any q ≥ 3.

Lemma 3.7. σ 2,0(H(2, 3)) = 8 and 2q ≤ σ 2,0(H(2, q)) ≤ 2q+ 1 for q ≥ 4.

Proof. From (5) and Lemma 3.6 it follows that σ 2,0(H(2, q)) ≥ 2q. (This can be proved also by using the method in the first
paragraph of the proof of Lemma 3.5.)
We first prove σ 2,0(H(2, 3)) = 8. Suppose otherwise. Then since σ 2,0(H(2, 3)) ≥ 6, H(2, 3) admits a no-hole `-cyclic

L(2, 0)-labelling φ, for ` = 7 or 8. Since H(2, 3) has 9 vertices, there is at least one label a ∈ Z` which is used twice by φ.
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By adding ` − a to every label (mod `), we may assume w.l.o.g that a = 0. The two vertices labelled 0 must be in different
row and different column, and by permuting rows and columns when necessary we may assume φ(0, 0) = φ(1, 1) = 0.
Then neither 1 nor `− 1 can appear in the first two rows or the first two columns. Thus, (2, 2) is the only position for both
1 and ` − 1. This contradiction shows that σ 2,0(H(2, 3)) ≥ 8. On the other hand, one can easily find a no-hole 9-cyclic
L(2, 0)-labelling for H(2, 3). Hence σ 2,0(H(2, 3)) = 8.
Let q ≥ 4 and define φ in the same way as in (14) except φ(q − 2, 0) = 2q + 1. Similar to the proof of Lemma 3.6, one

can verify that φ is a no-hole (2q+ 2)-cyclic L(2, 0)-labelling of H(2, q). Hence σ 2,0(H(2, q)) ≤ 2q+ 1 for q ≥ 4. �

Part (b)(iii) of Theorem 1.1 follows from (5) and Lemmas 3.6 and 3.7, and this completes the proof of Theorem 1.1.
Note that the labellings (11)–(13) for H(d, q) (d ≥ 3) do not work for H(2, q), and the labelling (14) for H(2, q) does not

apply to H(d, q) (d ≥ 3).

4. Proofs of Theorem 1.3 and Corollary 1.5

Since Hq1,q2 is a subgraph of Hq1,q2,...,qd with diameter 2, its vertices must receive distinct labels in any no-hole cyclic
L(2, 1)-labelling. Hence σ(Hq1,q2,...,qd) ≥ q1q2 − 1. The following lemma is crucial for the proof of Theorem 1.3.

Lemma 4.1. Let d ≥ 2 and q1 ≥ q2 ≥ · · · ≥ qd ≥ 2 be integers such that Hq1,q2,...,qd 6= Q2. If σ(Hq1,q2,...,qd) ≤ q1q2 − 1, then

λ(Hq1,q2,...,qd) = λ(Hq1,q2,...,qd) = σ(Hq1,q2,...,qd) = σ(Hq1,q2,...,qd) = q1q2 − 1,

λ1,1(Hq1,q2,...,qd) = λ1,1(Hq1,q2,...,qd) = σ 1,1(Hq1,q2,...,qd) = σ1,1(Hq1,q2,...,qd) = q1q2 − 1.

Moreover, any optimal no-hole cyclic L(2, 1)-labelling of Hq1,q2,...,qd is optimal for λ, λ, σ , σ , λ1,1, λ1,1, σ1,1 and σ 1,1
simultaneously. Furthermore,χ(H2q1,q2,...,qd) = q1q2 and the same labelling is aminimum (proper) vertex-colouring of H

2
q1,q2,...,qd .

Proof. Since by Lemma 2.6 Hcq1,q2,...,qd is Hamiltonian, Lemmas 2.3 and 2.4 apply. From (4) and (6) we have λ(Hq1,q2,...,qd) ≤
λ(Hq1,q2,...,qd) ≤ σ(Hq1,q2,...,qd). However, as noticed in [23], q1q2− 1 ≤ λ(Hq1,q2) ≤ λ(Hq1,q2,...,qd) since Hq1,q2 is a diameter-
two subgraph of Hq1,q2,...,qd . Thus, since σ ≤ q1q2 − 1 by our assumption, we must have λ = λ = σ = q1q2 − 1. (Here and
in the rest of the proof parameters refer to that of Hq1,q2,...,qd unless specified otherwise.) Combining this with (2) and (7) we
get q1q2 − 1 = λ ≤ σ ≤ σ = q1q2 − 1, and hence σ = q1q2 − 1.
It is clear that any (cyclic, no-hole, no-hole cyclic) L(2, 1)-labelling is also an L(1, 1)-labelling of the same type. Thus,

since Hq1,q2,...,qd admits no-hole L(2, 1)- and no-hole cyclic L(2, 1)-labellings by Lemma 2.7, it also admits L(1, 1)-labellings
of the same types. Moreover, λ1,1 ≤ λ, λ1,1 ≤ λ, σ 1,1 ≤ σ , σ1,1 ≤ σ , and the right-hand sides of these inequalities are
all equal to q1q2 − 1 as shown above. Similar to (2) and (7), one can see that λ1,1 ≤ σ1,1 ≤ σ 1,1 ≤ σ = q1q2 − 1. However,
under any L(1, 1)-labelling the vertices in Hq1,q2 must all receive distinct labels. Thus, q1q2 − 1 ≤ λ1,1 and consequently
λ1,1 = σ1,1 = σ 1,1 = q1q2 − 1. Similar to (6) and (4), we have λ1,1 ≤ λ1,1 ≤ σ 1,1 and this forces λ1,1 = q1q2 − 1. Clearly,
λ1,1 + 1 ≥ χ(H2q1,q2,...,qd), and χ(H

2
q1,q2,...,qd) ≥ q1q2 due to the subgraph H

2
q1,q2
∼= Kq1q2 of H

2
q1,q2,...,qd . Since λ1,1 + 1 = q1q2,

it follows that χ(H2q1,q2,...,qd) = q1q2.
From the arguments above one can see that any optimal no-hole cyclic L(2, 1)-labelling of Hq1,q2,...,qd is also optimal for

the eight spans and χ(H2q1,q2,...,qd) simultaneously. �

Proof of Theorem 1.3. By Lemma4.1, it suffices to prove thatHq1,q2,...,qd admits a no-hole q1q2-cyclic L(2, 1)-labelling under
the condition q1 ≥ N(q2, q3, . . . , qd). We will define such a labelling recursively as follows. Denote by 〈i2, i3, . . . , id〉 the
Kq1-copy induced by {(i1, i2, i3, . . . , id) : i1 ∈ Zq1}. Define a linear order≺ on the set of all Kq1-copies of Hq1,q2,...,qd by:

〈i′2, i
′

3, . . . , i
′

d〉 ≺ 〈i2, i3, . . . , id〉 ⇔ there is some j such that i′j < ij and i
′

p = ip for p < j.

Under this order, the first Kq1-copy is 〈0, 0, . . . , 0〉 and the last copy is 〈q2 − 1, q3 − 1, . . . , qd − 1〉.
For i = 0, 1, . . . , q2 − 1, denote

[i] = {i+ i1q2 : i1 = 0, 1, . . . , q1 − 1} .

Then, for any fixed i, we have q2 ≤ |j− k| ≤ q1q2 − q2 for any two distinct j, k ∈ [i], and consequently

|j− k|q1q2 ≥ q2 ≥ 2. (15)

In the following we will label the vertices in the Kq1-copies sequentially in accordance with≺. Suppose 〈i2, i3, . . . , id〉 is
the first Kq1-copy that has not been labelled. We will label vertices in 〈i2, i3, . . . , id〉 using integers in [(

∑d
t=2 it) mod q2]

as follows. First, we label (0, i2, i3, . . . , id)with an integer in [(
∑d
t=2 it) mod q2]which does not violate the conditions of a

q1q2-cyclic L(2, 1)-labelling with the previously labelled vertices. (In the following we will justify the existence of such an
integer.) Then define

φ(i1, i2, i3, . . . , id) = (φ(0, i2, i3, . . . , id)+ i1q2) mod q1q2, i1 = 0, 1, . . . , q1 − 1. (16)



G.J. Chang et al. / Discrete Applied Mathematics 157 (2009) 1896–1904 1903

From (15), any two vertices in this Kq1-copy receive labels that differ by at least 2 under the q1q2-cyclic metric. Moreover,
〈i2, i3, . . . , id〉 uses up all integers in [(

∑d
t=2 it) mod q2]. Clearly, (

∑d
t=2 it) mod q2 takes all values in [0, q2 − 1]when it

runs over 0, 1, . . . , qt−1, 2 ≤ t ≤ d. Since the remainder classes [i], i = 0, 1, 2, . . . , q2−1, form a partition of [0, q1q2−1],
it follows that φ is a no-hole labelling with span q1q2 − 1. The remaining part of the proof is to show that this labelling is a
well-defined q1q2-cyclic L(2, 1)-labelling of Hq1,q2,...,qd .
We first verify that (0, i2, i3, . . . , id) can be labelled by an integer in [(

∑d
t=2 it) mod q2] which does not violate the

conditions of a q1q2-cyclic L(2, 1)-labelling with the previously labelled vertices.
Suppose (i′1, i

′

2, i
′

3, . . . , i
′

d) is a previously labelled vertex adjacent to (0, i2, i3, . . . , id). Then, they only differ at one
coordinate, say 0 ≤ i′j < ij for some j ≥ 2. In this case,

φ(0, i2, i3, . . . , id)− φ(i′1, i
′

2, i
′

3, . . . , i
′

d) ≡ ij − i
′

j ( mod q2).

The only possibilities for a violation are when i′j = ij − 1, or i
′

j = 0 with ij = qj − 1 = q2 − 1. There are at most d − 1
possibilities for the former case and at most n−1 possibilities for the latter. Hence there are at most (d−1)+ (n−1) colors
in [Σdi=2(qi − 1) mod q2] that are forbidden for (0, i2, i3, . . . , id).
Suppose (i′1, i

′

2, i
′

3, . . . , i
′

d) is a labelled vertex with distance two from (0, i2, i3, . . . , id) such that φ(0, i2, i3, . . . , id) =
φ(i′1, i

′

2, i
′

3, . . . , i
′

d). Then, they only differ at exactly two coordinates, say i
′

j < ij and i
′

k 6= ik for some 1 ≤ j < k ≤ d. In fact,
j ≥ 2 for otherwise

0 = φ(0, i2, i3, . . . , id)− φ(i′1, i
′

2, i
′

3, . . . , i
′

d) ≡ ik − i
′

k ( mod q2)

contradicting 0 ≤ i′k 6= ik < qk ≤ q2. Now 2 ≤ j < k ≤ d gives that

0 = φ(0, i2, i3, . . . , id)− φ(i′1, i
′

2, i
′

3, . . . , i
′

d) ≡ (ij − i
′

j)+ (ik − i
′

k) ( mod q2),

where 0 ≤ i′j < ij < qj ≤ q2 and 0 ≤ i
′

k 6= ik < qk ≤ q2. There are at most qk − 1 such pairs (i
′

j, i
′

k). Hence at most∑
2≤k≤d

(k− 2)(qk − 1)

integers violate in total. From this and the violations for distance-one vertices, it follows that if q1 > N(q2, q3, . . . , qd) then
we can always choose a proper label for (0, i2, i3, . . . , id).
Next we claim that if we have labelled the vertex x′ = (0, i2, i3, . . . , id) properly, then the label defined in (16) for

x = (i1, i2, i3, . . . , id) is also proper. To see this, for any previously labelled vertex y, consider y′ = y − (i1, 0, 0, . . . , 0).
Notice that x− x′ = y− y′ = (i1, 0, 0, . . . , 0). So, dG(x, y) = dG(x′, y′) and φ(x)− φ(y) ≡ φ(x′)− φ(y′) ( mod q1q2). The
fact that the label for x′ is proper then implies that the label for x is proper. This completes the proof of the theorem. �

Proof of Corollary 1.5. Suppose q1 ≥ N(q2, q3, . . . , qd) and G is a subgraph of Hq1,q2,...,qd containing Hq1,q2 . Since by
Lemma 2.8 the invariants η = λ, σ , λ1,1, σ1,1 are all monotonically increasing, using Theorem 1.3 and Corollary 1.4 we
obtain q1q2 − 1 = η(Hq1,q2) ≤ η(G) ≤ η(Hq1,q2,...,qd) = q1q2 − 1 and hence η(G) = q1q2 − 1 for η = λ, σ , λ1,1, σ1,1.
Since Hq1,q2 is a diameter-two subgraph of Hq1,q2,...,qd , for (j, k) = (2, 1), (1, 1) and any optimal no-hole (cyclic) L(j, k)-

labelling φ of Hq1,q2,...,qd (which has span q1q2 − 1), all labels must be present in Hq1,q2 ⊆ G and hence φ|G is a no-hole
(cyclic) L(j, k)-labelling of G. Thus, η(G) ≤ η(Hq1,q2,...,qd) = q1q2 − 1 for η = λ, σ , λ1,1, σ 1,1. Similarly, η(Hq1,q2) ≤ η(G)
since Hq1,q2 is a subgraph of G. Now that η(Hq1,q2) = q1q2 − 1 by Corollary 1.4, it follows that η(G) = q1q2 − 1 for
η = λ, σ , λ1,1, σ 1,1. The truth of χ(G2) = q1q2 follows from χ(H2q1,q2,...,qd) = q1q2 (Theorem 1.3) and the inclusions
Kq1q2 ∼= H

2
q1,q2 ⊆ G

2
⊆ H2q1,q2,...,qd .

From the arguments above one can see that, for any optimal labelling φ guaranteed in Theorem 1.3, φ|G is optimal for
λ(G), λ(G), σ (G), σ (G), λ1,1(G), λ1,1(G), σ 1,1(G), σ1,1(G) and χ(G2) simultaneously. �

5. Remarks

Since Hq1,q2,...,qd has degree
∑d
t=1(qt − 1), a necessary condition for λ(Hq1,q2,...,qd) = q1q2− 1 is

∑d
t=1 qt ≤ q1q2+ d− 2.

However, this condition is not sufficient since, for example, λ(H3,2,2) = λ(C3�C4) = 8 [19]. Rewriting this necessary
condition, the following question arises naturally from Theorem 1.3.

Question 5.1. Let q2 ≥ · · · ≥ qd ≥ 2 be integers. Determine the smallest integer N ≥ (
∑d
t=2 qt − d+ 2)/(q2 − 1) such that if

q1 ≥ N then λj,k(Hq1,q2,...,qd) = λj,k(Hq1,q2,...,qd) = σ j,k(Hq1,q2,...,qd) = σj,k(Hq1,q2,...,qd) = q1q2 − 1 for (j, k) = (2, 1), (1, 1).

The existence of this integerN is guaranteed by Theorem 1.3. As in Corollary 1.5 the same conditionwould ensure that all
these invariants are equal to q1q2− 1 for any graph between Hq1,q2 and Hq1,q2,...,qd . The proof of Theorem 1.3 suggests that if
we can find a ‘‘better’’ linear order≺ thenwe can reduce the thresholdN(q2, q3, . . . , qd). In view of Lemma 4.1, Question 5.1
is equivalent to determining the smallestN ≥ (

∑d
t=2 qt−d+2)/(q2−1) such that σ(Hq1,q2,...,qd) ≤ q1q2−1 for any q1 ≥ N .
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Question 5.1 is related to [23, Question 6.1], where a similar question was asked for λj,k with 2k ≥ j ≥ k ≥ 1 and
j/k ≤ q1q2 −

∑d
i=1 qi + d. (The latter condition, which is necessary, was neglected in [23, Question 6.1].)

As is widely known we may identify H(d, q) with the d-dimensional Hamming space over an alphabet of size q. In this
way we may view Hq1,q2,...,qd as a subset of H(d, q1), that is, a q1-ary block code. Thus, labelling the vertices of Hq1,q2,...,qd
is meant labelling the codewords in Hq1,q2,...,qd , and all results in this paper can be stated in terms of codes and Hamming
distance in an obvious manner.
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