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a b s t r a c t

A radio labelling of a connected graph G is a mapping f : V (G) → {0, 1, 2, . . .} such that
|f (u) − f (v)| ≥ diam(G) − d(u, v) + 1 for each pair of distinct vertices u, v ∈ V (G),
where diam(G) is the diameter of G and d(u, v) the distance between u and v. The span of
f is defined as maxu,v∈V (G) |f (u) − f (v)|, and the radio number of G is the minimum span
of a radio labelling of G. A complete m-ary tree (m ≥ 2) is a rooted tree such that each
vertex of degree greater than one has exactly m children and all degree-one vertices are
of equal distance (height) to the root. In this paper we determine the radio number of the
complete m-ary tree for any m ≥ 2 with any height and construct explicitly an optimal
radio labelling.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The L(j, k)-labelling problem (j, k ≥ 0) and its variants have been studied extensively (see e.g. [1,2,5–10,17,18]). A major
concern of this problem is to seek an assignment of labels (which are nonnegative integers) to the vertices of a graph such
that the span (difference) between the largest and smallest labels used isminimized, subject to that adjacent vertices receive
labels with separation at least j and vertices at distance two apart receive labels with separation at least k. The minimum
span is called [7] the λj,k-number of the graph.
Motivated by FM channel assignments, a new model, namely the radio labelling problem was introduced in [3,4] and

studied further in [12,15,16]. For a connected graph G = (V (G), E(G)), a radio labelling of G is a mapping f : V (G) →
{0, 1, 2, . . .} such that, for any two distinct vertices u and v of G,

|f (u)− f (v)| ≥ diam(G)− d(u, v)+ 1, (1)

where d(u, v) is the distance in G between u and v and diam(G) the diameter of G. Without loss of generality we will
always assume minv∈V (G) f (v) = 0, and with this convention the span of f is defined to be span(f ) := maxv∈V (G) f (v). The
radio number of G, rn(G), is the minimum span of a radio labelling of G, and a radio labelling with span rn(G) is called an
optimal radio labelling. We remark that for technical reasons we follow the definitions in [15], and thus the radio number
rn(G) defined here is one less than that defined in [4]. The radio labelling problem can be viewed as an instance of the
L(j1, j2, . . . , jd)-labelling problem (see e.g. [7,19]), where d, j1, j2, . . . , jd ≥ 1 are given integers, which aims at minimizing
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the span of a labelling f : V (G)→ {0, 1, 2, . . .} subject to |f (u)− f (v)| ≥ jt whenever d(u, v) = t , 1 ≤ t ≤ d. In the special
case where d = diam(G) and jt = d− t + 1 for each t , the minimum span of such a labelling is exactly the radio number of
G. In particular, if diam(G) = 2, then rn(G) is equal to the λ2,1-number of G.
Determining the radio number of a graph is an interesting yet difficult combinatorial problemwith potential applications

to FM channel assignment. So far it has been explored for a few basic families of graphs. For instance, for paths and cycles
the problemwas studied by Chartrand et al. [3,4,16] and the exact values of the radio number remained open until solved by
Liu and Zhu [15]. Recently, the radio number of the square of a path or cycle was studied in [13,14], and the radio number of
any hypercube was determined in [11] by using generalized binary Gray codes. The results for paths were generalized [12]
to spiders, leading to the exact value of the radio number in certain special cases. (A spider is a tree with at most one vertex
of degree greater than two.) Surprisingly, even for paths and cycles finding the radio number was a challenging task. It is
envisaged that in general determining the radio number would be difficult even for trees, despite a general lower bound for
trees given in [12].
In this paper we solve completely the radio labelling problem for any complete m-ary tree with any height. These trees

are chosen due to their many applications in computer science. Given integers m ≥ 2, k ≥ 1, the complete m-ary tree of
height k, denoted by Tk,m, is a rooted tree such that each vertex other than leaves (degree-one vertices) has m children and
all leaves are distance k apart from the root. (In a tree with root r a vertex v is a child of another vertex u if u, v are adjacent
and d(r, v) = d(r, u)+ 1.) The unique vertex of degreem is designated as the root of Tk,m, denoted by r . In particular, Tk,2 is
the complete binary tree of height k, and we abbreviate it to Tk in the following. It can be easily verified that rn(T1,m) = m+1
for anym ≥ 2. Therefore, we assume k ≥ 2 in the following.
Themain results of the paper are the following two theorems, whichwill be proved in Sections 3 and 4 respectively. Note

that the formula in Theorem 2 does not apply to binary trees.

Theorem 1. Let k ≥ 2 be an integer. Then

rn(Tk) = 13 · 2k−1 − 4k− 5.

Moreover, we give an optimal radio labelling of Tk explicitly.

The optimal radio labelling of Tk will be given in Section 4.2.

Theorem 2. Let m ≥ 3 and k ≥ 2 be integers. Then

rn(Tk,m) =
mk+2 +mk+1 − 2km2 + (2k− 3)m+ 1

(m− 1)2
.

Moreover, we give an optimal radio labelling of Tk,m explicitly.

The promised optimal radio labelling of Tk,m will be given in Section 4.3.
The paper is structured as follows. After setting up notation and terminology in the next section, in Section 3 wewill give

lower bounds for rn(Tk) and rn(Tk,m) respectively. In Section 4 we construct radio labellings of Tk and Tk,m and prove their
optimality by showing that their spans achieve our respective lower bounds. Note that the binary case has to be dealt with
separately, and it is more complicated than the general case.

2. Preliminaries

Let T be a tree rooted at a vertex r . A vertex v is called a descendant of another vertex u (or u is an ancestor of v) if u is on
the unique path of T from r to v. Define the level of u ∈ V (T ) (with respect to r) by

L(u) := d(r, u).

A vertex u of T is in level l if L(u) = l. For distinct u, v ∈ V (T ), define

φ(u, v) := length of the common part of the paths of T from r to u and v.

The subtree of T induced by r , a child u of r , and all descendants of u is referred to as a branch of T . (Note that for technical
reasons we take the root as in every branch of T .) Obviously, we have the following facts, which has been used in [12].

Lemma 3. Let T be a tree rooted at r. Then for distinct u, v ∈ V (T ) the following (a)–(b) hold.

(a) d(u, v) = L(u)+ L(v)− 2φ(u, v);
(b) φ(u, v) = 0 if and only if r ∈ {u, v} or u and v belong to different branches.
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Let f be a radio labelling of T . By (1) f is injective, that is, f (u) 6= f (v) for distinct u, v ∈ V (T ). Hence f induces a linear
order

u0, u1, u2, . . . , un−1 (2)

of the vertices of T , where n = |V (T )|, which is defined by

0 = f (u0) < f (u1) < f (u2) < · · · < f (un−1).

Note that the span of f is equal to f (un−1). Note also that, by (1),

f (ui+1)− f (ui) ≥ diam(T )− d(ui, ui+1)+ 1, 0 ≤ i ≤ n− 2.

We call

Jf (ui, ui+1) := f (ui+1)− f (ui)− (diam(T )− d(ui, ui+1)+ 1), 0 ≤ i ≤ n− 2

the jump of f from ui to ui+1. If Jf (ui, ui+1) = K , then f is said to have a K -jump from ui to ui+1. The total jump of f is defined
as

J(f ) :=
n−2∑
i=0

Jf (ui, ui+1).

In our subsequent discussion we use the notation and terminology above for Tk,m (m, k ≥ 2) with the understanding that
r is the root of Tk,m as specified in its definition. Note that diam(Tk,m) = 2k and level k is the bottom level of Tk,m. Define
w(Tk,m) :=

∑
u∈V (Tk,m)

L(u). Thenw(Tk,m) =
∑k
i=1m

ii and hence (m− 1)w(Tk,m) = kmk+1 −
∑k
i=1m

i. From this we obtain

w(Tk,m) =
kmk+2 − (k+ 1)mk+1 +m

(m− 1)2
. (3)

In particular,

w(Tk) = (k− 1)2k+1 + 2. (4)

3. Lower bounds

3.1. Jumps in Tk

In this subsectionweassume that f is a radio labelling of Tk and that the vertices of Tk are ordered as in (2)with respect to f ,
wheren = |V (Tk)| = 2k+1−1. Letui,ui+1,ui+2, 0 ≤ i ≤ n−3, be consecutive vertices in (2), so that f (ui) < f (ui+1) < f (ui+2).
To obtain the desired lower bound on rn(Tk) we first consider jumps from ui to ui+1 and ui+1 to ui+2 under the following
assumptions:

ui, ui+2 are in the same branch of Tk, and ui+1 is in a different branch of Tk. (5)

Lemma 4. Under the assumption (5), we have

Jf (ui+1, ui+2) ≥ max{2(φ(ui, ui+2)+ L(ui+1)− k)− Jf (ui, ui+1)− 1, 0}.

Proof. Denote li = L(ui), li+1 = L(ui+1) and li+2 = L(ui+2). From Lemma 3 and the assumption (5), we have d(ui, ui+1) =
li+li+1, d(ui+1, ui+2) = li+1+li+2 and d(ui, ui+2) = li+li+2−2φ(ui, ui+2). Thus f (ui+1)−f (ui) = 2k−li−li+1+Jf (ui, ui+1)+1
and f (ui+2)− f (ui+1) = 2k− li+1 − li+2 + Jf (ui+1, ui+2)+ 1. Summing up we get

f (ui+2)− f (ui) = 4k− li − 2li+1 − li+2 + Jf (ui, ui+1)+ Jf (ui+1, ui+2)+ 2.

On the other hand, since f is a radio labelling, we have

f (ui+2)− f (ui) ≥ 2k− d(ui, ui+2)+ 1
= 2k− li − li+2 + 2φ(ui, ui+2)+ 1.

Combining the two expressions above we get Jf (ui+1, ui+2) ≥ 2(φ(ui, ui+2)+ li+1− k)− Jf (ui, ui+1)− 1. Since Jf (ui+1, ui+2)
≥ 0, the result follows immediately. �

In particular, if ui+1 is in level k, then Lemma 4 gives the following corollary. Note that if ui, ui+2 6= r then φ(ui, ui+2) ≥ 1
under the assumption (5).
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Corollary 5. Under the assumption (5), if ui+1 is in level k, then

Jf (ui+1, ui+2) ≥ max{2φ(ui, ui+2)− Jf (ui, ui+1)− 1, 0}.

In particular, if in addition none of ui, ui+2 is the root r, then

Jf (ui, ui+1)+ Jf (ui+1, ui+2) ≥ 1. (6)

Note that in this corollary one of ui, ui+2 or both of them can be in level k. This will be used below in deriving a lower
bound for rn(Tk).

3.2. Lower bound for rn(Tk)

Weuse the notation in Section 3.1 and denote by Lk the set of vertices of Tk in level k. For a segmentD = {ui, ui+1, . . . , uj}
of (2), 0 < i ≤ j < n− 1, define

J(D) :=
j∑

t=i−1

Jf (ut , ut+1).

Lemma 6. Let f be a radio labelling of Tk. Suppose D = {ui, ui+1, . . . , uj}, 0 < i ≤ j < n− 1, satisfies the following conditions:

(a) r 6∈ D;
(b) ui and uj are both in level k;
(c) ut , ut+1 are in different branches, for t = i− 1, . . . , j.

Then

J(D) ≥


|D ∩ Lk|
2

, r 6∈ {ui−1, uj+1}

|D ∩ Lk| − 1
2

, otherwise.
(7)

Proof. We distinguish the following two cases.
Case 1: r 6∈ {ui−1, uj+1}.
Subcase 1.1: D ⊆ Lk. In this case we prove J(D) ≥ |D ∩ Lk|/2 (= |D|/2 = (j− i+ 1)/2) by induction on |D|.
Consider first the casewhen |D| = 2d+1 ≥ 1 is odd. If d = 0, then since ui is in level k, Corollary 5 applies to ui−1, ui, ui+1,

and hence J(D) ≥ 1 by (6). Inductively, suppose, for some d ≥ 0, that J(D) ≥ (2d+ 1)/2 for any D ⊆ Lk with |D| = 2d+ 1.
Then, for anyD ⊆ Lk with |D| = 2d+3, we have J({ui, ui+1, . . . , uj−2}) ≥ (2d+1)/2 by the inductive hypothesis and noting
r 6∈ D, and Jf (uj−1, uj)+ Jf (uj, uj+1) ≥ 1 by (6); hence J(D) ≥ (2d+ 3)/2. Thus the first inequality in (7) holds when D ⊆ Lk
and |D| is odd.
Next we consider the case when |D| = 2d ≥ 2 is even. If d = 1, then ui and ui+1 (= uj) are both in level k, and hence

J(D) ≥ 1 by applying (6) to ui−1, ui, ui+1. Based on this and using (6), by induction as in the previous paragraph one can
verify that the first inequality in (7) holds when D ⊆ Lk and |D| is even.
Subcase 1.2: D 6⊆ Lk. Let D1, . . . ,Dl be maximal segments of consecutive vertices in D that are in level k. Then by the

result for Subcase 1.1 we have J(Dt) ≥ |Dt ∩ Lk|/2, t = 1, . . . , l. Hence J(D) ≥
∑l
t=1 J(Dt) = |D ∩ Lk|/2.

Case 2: r ∈ {ui−1, uj+1}. Consider the case r = ui−1 first. If i = j, then |D| = 1 and the second inequality in (7) becomes
J(D) ≥ 0, which is trivial. Assume then i < j. Let i∗ be the smallest subscript such that i∗ > i and ui∗ is in level k. Since i < j
and uj is in level k, i∗ is well defined. Let D′ = {ui∗ , . . . , uj}. Then ui∗−1 6= r and the result for Case 1 can be applied to D′.
Thus, J(D) ≥ J(D′) ≥ |D′ ∩ Lk|/2 = (|D ∩ Lk| − 1)/2. The case where r = uj+1 can be treated similarly. �

Remark 7. We still have J(D) ≥ (|D ∩ Lk| − 1)/2 if we remove the condition (b) in Lemma 6. This is obtained by applying
Lemma 6 to the longest possible segment {ui′ , . . . , uj′} contained in D such that ui′ and uj′ are in level k.

Corollary 8. Let f be a radio labelling of Tk. Suppose D = {ui, ui+1, . . . , uj}, 0 < i ≤ j < n−1, satisfies the following conditions:

(a) r ∈ {ui+1, . . . , uj−1};
(b) ut , ut+1 are in different branches, for t = i− 1, . . . , j.

Then

J(D) ≥
|D ∩ Lk|
2
− 1.
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Proof. By (a) we may assume ui∗ = r for some i∗ with i < i∗ < j. Let D1 = {ui, . . . , ui∗−1} and D2 = {ui∗+1, . . . , uj}. Then
bothD1 andD2 satisfy the conditions (a) and (c) in Lemma6. Thus, by Lemma6 andRemark 7,wehave J(D) ≥ J(D1)+J(D2) ≥
(|D1 ∩ Lk| − 1)/2+ (|D2 ∩ Lk| − 1)/2 = (|D ∩ Lk|/2)− 1. �

Equipped with Lemma 6 and Corollary 8 we now prove the following lower bound for rn(Tk). Let F denote the set of
radio labellings f of Tk such that for each i = 0, 1, . . . , n− 2 the vertices ui, ui+1 in the linear order (2) induced by f are in
different branches unless one of them is r . Recall thatw(Tk) = (k− 1)2k+1 + 2 by (4).

Lemma 9. Let k ≥ 2 be an integer and n = |V (Tk)| = 2k+1 − 1. Then

rn(Tk) ≥ (n− 1)(2k+ 1)− 2w(Tk)+ 2k−1 + 1
= 13 · 2k−1 − 4k− 5.

Proof. Let f be an arbitrary radio labelling of Tk. As in (2) let u0, u1, . . . , un−1 be the linear order defined by 0 = f (u0) <
f (u1) < · · · < f (un−1). Since the diameter of Tk is 2k, by the definition of a radio labelling,

f (ui+1)− f (ui) = (2k+ 1)− d(ui, ui+1)+ Jf (ui, ui+1), 0 ≤ i ≤ n− 2.

Thus, using Lemma 3, we have

span(f ) = f (un−1)

=

n−2∑
i=0

(f (ui+1)− f (ui))

= (n− 1)(2k+ 1)−
n−2∑
i=0

d(ui, ui+1)+
n−2∑
i=0

Jf (ui, ui+1)

= (n− 1)(2k+ 1)− 2w(Tk)+ L(u0)+ L(un−1)+ σ(f ) (8)

where

σ(f ) :=
n−2∑
i=0

(Jf (ui, ui+1)+ 2φ(ui, ui+1)).

Based on this we now prove

span(f ) ≥ (n− 1)(2k+ 1)− 2w(Tk)+ 2k−1 + 1. (9)

Case 1: f 6∈ F .
A pair ui, ui+1 of vertices is called bad if ui, ui+1 6= r and ui, ui+1 are in the same branch of Tk. Define X to be the subset of

V (Tk) such that a vertex of Tk is in X if and only if it is in at least one bad pair. Then V (Tk) \ X consists of maximal segments
of the sequence u0, u1, . . . , un−1, say, D0,D1, . . . ,Dl, such that each pair of consecutive vertices in the same segment are in
different branches of Tk. Since there are 2k vertices in level k, |V (Tk)\X | ≥ |Lk \X | ≥ 2k−|X |. Exactly one of these segments,
say, D0, contains r . If r is neither the first nor the last vertex of D0, then Corollary 8 applies directly to D0; otherwise the
second inequality in (7) applies to the subsegment (which may be empty) obtained by deleting r from D0. (See Remark 7 for
the latter case.) For each t = 1, . . . , l, the first inequality in (7) applies to the longest possible subsegment {ui′ , . . . , uj′} of
Dt such that ui′ and uj′ are in level k. Combining all these inequalities, we have

n−2∑
i=0

Jf (ui, ui+1) ≥
l∑
t=0

J(Dt) ≥
l∑
t=0

|Dt ∩ Lk|
2

− 1 ≥
2k − |X |
2

− 1.

Note that there are at least |X |/2 bad pairs of vertices and that φ(ui, ui+1) ≥ 1 for each such pair ui, ui+1. Thus∑n−2
i=0 φ(ui, ui+1) ≥ |X |/2 and therefore

σ(f ) ≥
(
2k − |X |
2

− 1
)
+ |X | = 2k−1 +

|X |
2
− 1.

Since f 6∈ F , we have |X | ≥ 1. Hence σ(f ) ≥ 2k−1 − 1/2, which implies σ(f ) ≥ 2k−1 as σ(f ) is an integer. Therefore, since
L(u0)+ L(un−1) ≥ 1, (9) follows from (8) immediately.
Case 2: f ∈ F .
Assume r 6∈ {u0, un−1} first. In this case, applying Corollary 8 to D = {u1, . . . , un−2}, we have σ(f ) ≥ (|D ∩ Lk|/2− 1) ≥

((2k − 1)/2) − 1, which implies σ(f ) ≥ 2k−1 − 1 since σ(f ) is an integer. Since r 6∈ {u0, un−1}, L(u0) + L(un−1) ≥ 2 and
hence (9) follows from (8).
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Fig. 1. Vertex-indices and radio labelling of T3 .

Nextwe assume r ∈ {u0, un−1}. Then L(u0)+L(un−1) ≥ 1, and the equality holds if and only if the vertex in {u0, un−1}\{r}
is a child of r . Setting D = {u1, . . . , un−2}, we have |D ∩ Lk| = 2k if L(u0) + L(un−1) = 1 and |D ∩ Lk| ≥ 2k − 1 if
L(u0) + L(un−1) ≥ 2. Thus, applying Lemma 6 to D and taking Remark 7 into account, we have L(u0) + L(un−1) + σ(f ) ≥
L(u0)+L(un−1)+(|D∩Lk|−1)/2 ≥ 2k−1+1/2, which implies L(u0)+L(un−1)+σ(f ) ≥ 2k−1+1 since L(u0)+L(un−1)+σ(f )
is an integer. In view of (8) we get (9) and hence complete the proof by the arbitrariness of f . �

3.3. Lower bound for rn(Tk,m), m ≥ 3

The following bound can be proved by an argument similar to the one that leads to (8), using L(u0)+ L(un−1) ≥ 1. It is a
special case of the bound given in [12, Theorem 3]. Recall thatw(Tk,m) is given in (3).

Lemma 10. Let m ≥ 3, k ≥ 2 be integers, and let n = |V (Tk,m)| = (mk+1 − 1)/(m− 1). Then

rn(Tk,m) ≥ (n− 1)(2k+ 1)− 2w(Tk,m)+ 1

=
mk+2 +mk+1 − 2km2 + (2k− 3)m+ 1

(m− 1)2
.

4. Optimal radio labellings

In this section we construct radio labellings for Tk and Tk,m (m ≥ 3) and prove their optimality. The latter is achieved by
showing that our radio labellings attain the lower bounds in Lemmas 9 and 10, respectively. Due to jumps in radio labellings
of Tk we have to deal with complete binary trees separately. In what follows we first introduce an index scheme that will be
used for both Tk and Tk,m withm ≥ 3.

4.1. Vertex-indices

As is widely used in the literature we may index the vertices of Tk,m in level l by words of length l with alphabet
{0, 1, . . . ,m − 1}. More explicitly, the m children of the root r are indexed by v0, v1, v2, . . . , vm−2, vm−1; inductively
the m children of a vertex vi1,i2,...,il (0 ≤ i1, i2, . . . , il ≤ m − 1, l < k) in level l are indexed by vi1,i2,...,il,il+1 , where
il+1 = 0, 1, . . . ,m− 1. Thus, for any two vertices va1,a2,...,as and vb1,b2,...,bt other than r , we have

φ(va1,a2,...,as , vb1,b2,...,bt ) = max{l : a1 = b1, a2 = b2, . . . , al = bl}. (10)

To facilitate our radio labelling we now give another index scheme for Tk,m (m, k ≥ 2). We first index r by u0 and
then index other vertices bottom-up starting from level k. (See Fig. 1 for an illustration.) More precisely, for any vertex
vi1,i2,...,il 6= r , we rename uj = vi1,i2,...,il , where

j = 1+ i1 + i2m+ · · · + ilml−1 +
∑

l+1≤t≤k

mt . (11)

For example, a vertex vi1,i2,...,ik in level k is indexed as uj, where j = 1 + i1 + i2m + · · · + ikm
k−1. Note that the minimum

andmaximum indices of vertices in level l (1 ≤ l ≤ k) are 1+ml+1+ · · ·+mk andml+ml+1+ · · ·+mk, respectively. Thus



Author's personal copy

X. Li et al. / Discrete Applied Mathematics 158 (2010) 507–515 513

(11) together with u0 = r defines a bijection from V (Tk,m) to {0, 1, . . . , |V (Tk,m)| − 1}. Note that, by (10) and (11), we have
the following observation.

Lemma 11. φ(uj, uj+1) = 0, 1 ≤ j ≤ n− 2, that is, uj and uj+1 are in different branches of Tk,m.

Lemma 12. Suppose ua, ub are in the same level of Tk,m. Then |b− a| ≥ mζ , where ζ = φ(ua, ub).

Proof. Let ua = va1,a2,...,al , ub = vb1,b2,...,bl , where L(ua) = L(ub) = l. Without loss of generality we may assume b > a. Let
h be the largest subscript such that ah 6= bh. Then ζ + 1 ≤ h ≤ l and b − a = (bζ+1 − aζ+1)mζ + · · · + (bh − ah)mh−1 by
(10) and (11). We must have bh > ah for otherwise b− a ≤ (m− 1)(mζ + · · · +mh−2)−mh−1 < 0, a contradiction. Hence
b− a ≥ −(m− 1)(mζ + · · · +mh−2)+mh−1 = mζ . �

4.2. Optimal radio labelling of Tk

Define f : V (Tk)→ {0, 1, 2, . . .} as follows:

f (u0) = 0;
f (u2t−1) = k+ 3t − 2, f (u2t) = k+ 3t − 1, 1 ≤ t ≤ 2k−1;
f (u2k+1) = k+ 3 · 2

k−1
+ 2;

f (uj+1) = f (uj)+ 2k− (L(uj)+ L(uj+1))+ 1, 2k + 1 ≤ j ≤ 2k+1 − 2.

That is, we label r and the vertices in level k first, and then label other vertices recursively starting from u2k+1. (Fig. 1 shows
this labelling for T3.) Using the recursive relation above and noting that u2k+···+2l+1+t is in level l, 1 ≤ t ≤ m

l, we can give
explicitly the labels of the vertices in levels 1 to k− 1, where 1 < l ≤ k and 1 ≤ t ≤ 2l−1:

f (u2k+2k−1+···+2l+t) = (k+ 3 · 2
k−1)+

k−1∑
i=l

(2(k− i)+ 1)2i + (2(k− l)+ 3)t − (k− l+ 1).

Note that the linear order induced by f is u0, u1, . . . , u2k+1−1, agreeing with our notation in (2).

Lemma 13. Themapping f above is an optimal radio labelling of Tk, andmoreover span(f ) = (n−1)(2k+1)−2w(Tk)+2k−1+1,
where n = |V (Tk)| = 2k+1 − 1 andw(Tk) is as in (4).

Proof. The major task is to prove that f is indeed a radio labelling of Tk. First, it can be verified by induction that
f (uj) − f (u0) = f (uj) ≥ 2k − d(u0, uj) + 1 for j ≥ 1. Thus in the following we only consider pairs ua, ub of vertices
with 1 ≤ a < b ≤ 2k+1 − 2. Note that, by the definition of f ,

f (uj+1)− f (uj) = 2k− (L(uj)+ L(uj+1))+ 1+ εj, (12)

where εj = 1 if j = 2, 4, 6, . . . , 2k and εj = 0 for all other j. Thus, setting ζ = ζ (a, b) := φ(ua, ub),

f (ub)− f (ua) = (2k+ 1)(b− a)−

(
L(ua)+ L(ub)+ 2

b−1∑
j=a+1

L(uj)

)
+

b−1∑
j=a

εj

= {2k− (L(ua)+ L(ub)− 2ζ )+ 1} + δ(a, b)

where

δ(a, b) := (2k+ 1)(b− a− 1)+
b−1∑
j=a

εj − 2
b−1∑
j=a+1

L(uj)− 2ζ .

To verify that f is a radio labelling of Tk it suffices to show that δ(a, b) ≥ 0 for all pairs ua, ub. Denote la = L(ua) and
lb = L(ub). Since a < b by our assumption, we have la ≥ lb ≥ ζ .
Case 1: la = lb = l.
In this case we have l > ζ . Assume first that l = k. Then by our index scheme all vertices uj, a+1 ≤ j ≤ b−1, are in level

k. Thus,
∑b−1
j=a+1 L(uj) = k(b−a−1) and

∑b−1
j=a εj ≥ (b−a−1)/2. Hence, using Lemma 12, δ(a, b) ≥ 3(b−a−1)/2−2ζ ≥

3(2ζ − 1)/2− 2ζ . Note that the right-hand side of this inequality is 0 if ζ = 0;−1/2 if ζ = 1; and at least 1 if ζ ≥ 2. Since
δ(a, b) is an integer, it follows that δ(a, b) ≥ 0.
Next we assume l < k. Then

∑b−1
j=a+1 L(uj) = l(b − a − 1) ≤ (k − 1)(b − a − 1). Hence, using Lemma 12, we get

δ(a, b) ≥ 3(b− a− 1)− 2ζ ≥ 3(2ζ − 1)− 2ζ ≥ 0.
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Case 2: la > lb.
Assume first that la = k. If ub−1 is in level k, then the same argument as in Case 1 leads to δ(a, b) ≥ 0. If ub−1 is

not in level k, then L(ub−1) ≤ k − 1 and so
∑b−1
j=a+1 L(uj) ≤ k(b − a − 1) − 1. This together with Lemma 12 implies

δ(a, b) ≥ (b− a+ 1)− 2ζ ≥ 2ζ + 1− 2ζ > 0.
Now let us assume la < k. In this case by our index scheme all vertices uj, a+ 1 ≤ j ≤ b− 1, are in level k− 1 or above.

Hence
∑b−1
j=a+1 L(uj) ≤ (k− 1)(b− a− 1). Using Lemma 12 we obtain δ(a, b) ≥ 3(b− a− 1)− 2ζ ≥ 3(2

ζ
− 1)− 2ζ ≥ 0.

In summary, we have proved δ(a, b) ≥ 0 in all situations. Therefore, f is a radio labelling of Tk.
By Lemma 11 and (12), f has exactly 2k−1 non-zero jumps, all of which are 1-jumps. Hence J(f ) = 2k−1. Therefore, since

f (u0) = 0, L(u0) = 0 and L(un−1) = 1, in view of Lemma 11 we have

span(f ) =
n−2∑
j=0

(
f (uj+1)− f (uj)

)

= (n− 1)(2k+ 1)−
n−2∑
j=0

(L(ui)+ L(ui+1))+ J(f )

= (n− 1)(2k+ 1)− 2w(Tk)+ L(u0)+ L(un−1)+ J(f )

= (n− 1)(2k+ 1)− 2w(Tk)+ 2k−1 + 1.

Comparing this with Lemma 9, we conclude that f is an optimal radio labelling of Tk. �

Proof of Theorem 1. This follows from Lemmas 9 and 13 immediately. �

4.3. Optimal radio labelling of Tk,m, m ≥ 3

Define fm : V (Tk,m)→ {0, 1, 2, . . .} recursively by

fm(uj) =
{
0, j = 0
fm(uj−1)+ 2k− (L(uj−1)+ L(uj))+ 1, 1 ≤ j ≤ n− 1,

where n = |V (Tk,m)| = (mk+1 − 1)/(m − 1). Working recursively, we obtain the following explicit rule, where 1 < l ≤ k
and 1 ≤ t ≤ ml−1:

fm(umk+mk−1+···+ml+t) = k+
k∑
i=l

(2(k− i)+ 1)mi + (2(k− l)+ 3)t − (k− l+ 1).

Clearly, the linear order induced by fm is u0, u1, . . . , un−1, and this agrees with the notation in (2).

Lemma 14. Themapping fm above is an optimal radio labelling of Tk,m, andmoreover span(fm) = (n−1)(2k+1)−2w(Tk,m)+1,
wherew(Tk,m) is as in (3) and n is as above.

Proof. First, by induction on j one can easily verify that fm(uj)− fm(u0) ≥ 2k− d(u0, uj)+ 1 = 2k− j+ 1, 1 ≤ j ≤ n− 1. By
Lemma 11 and the definition of fm, it is clear that fm has no non-zero jumps, that is, J(fm) = 0. Let 1 ≤ a < b ≤ n−1 and set
ζ = ζ (a, b) := φ(ua, ub). Similar to the proof of Lemma 13, using Lemma 12 and noting thatmζ ≥ 2ζ +1 form ≥ 3, ζ ≥ 0,
we have

fm(ub)− fm(ua) = (2k+ 1)(b− a)−

(
L(ua)+ L(ub)+ 2

b−1∑
j=a+1

L(uj)

)
≥ (2k+ 1)(b− a)− (L(ua)+ L(ub)+ 2k(b− a− 1))

= 2k+ (b− a)− (L(ua)+ L(ub))

≥ 2k+mζ − (L(ua)+ L(ub))

≥ 2k+ 2ζ + 1− (L(ua)+ L(ub))

= 2k− d(ua, ub)+ 1.

Hence fm is a radio labelling of Tk,m.
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Since fm(u0) = 0, L(u0) = 0, L(un−1) = 1 and J(fm) = 0, by Lemma 11 and the definition of fm, we have

span(fm) =
n−2∑
j=0

(
fm(uj+1)− fm(uj)

)

= (n− 1)(2k+ 1)−
n−2∑
j=0

(L(ui)+ L(ui+1))

= (n− 1)(2k+ 1)− 2w(Tk,m)+ 1.

Comparing this with Lemma 10, it is clear that fm is an optimal radio labelling of Tk,m. �

Proof of Theorem 2. This follows from Lemmas 10 and 14 immediately. �

Itmay be the case that Tk,m hasmany optimal radio labellings. However, from the proof of Lemmas 10 and 14, any optimal
radio labelling of Tk,m (m ≥ 3) has no (non-zero) jump and it always assigns 0 to r and the largest label to a child of r .
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