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a b s t r a c t

An arc of a graph is an oriented edge and a 3-arc is a 4-tuple (v, u, x, y) of vertices such that
both (v, u, x) and (u, x, y) are paths of length two. The 3-arc graph of a graphG is defined to
have the arcs ofG as vertices such that two arcsuv, xy are adjacent if and only if (v, u, x, y) is
a 3-arc of G. In this paper, we study the independence, domination and chromatic numbers
of 3-arc graphs and obtain sharp lower and upper bounds for them. We introduce a new
notion of arc-coloring of a graph in studying vertex-colorings of 3-arc graphs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The 3-arc graph construction [12] has recently been proved to be useful in the classification or characterization of several
families of arc-transitive graphs [6,9,12,13,18,19]. (A graph is arc-transitive if its automorphism group acts transitively on
the set of oriented edges.) Although introduced initially in the context of graph symmetry, this construction is of interest for
general graphs. It seemsuseful to investigate graph-theoretic properties of the 3-arc graphof any (not necessarily arc-transitive)
connected graph. In [10] the diameter and connectivity of 3-arc graphswere studied and connections between 3-arc graphs and
line and path graphs were explained. In the present paper, we study the independence, domination and chromatic numbers of
3-arc graphs.

An arc of a graph G is an ordered pair of adjacent vertices. For adjacent vertices u, v of G, we use uv to denote the arc from
u to v, vu (≠uv) the arc from v to u, and {u, v} the edge between u and v. A 3-arc of G is a 4-tuple (v, u, x, y) of vertices such
that both (v, u, x) and (u, x, y) are paths of G. It is allowed to have v = y in a 3-arc (v, u, x, y).

Definition 1. Let G be a graph. The 3-arc graph of G, denoted by X(G), is defined to have, for vertex set, the set of arcs of G. Two
vertices corresponding to two arcs uv and xy are adjacent in X(G) if and only if (v, u, x, y) is a 3-arc of G.

It follows that X(G) is an undirected graph with 2 |E(G)| vertices and
∑

{u,v}∈E(G)(degG(u) − 1) (degG(v) − 1) edges, where
degG(w) denotes the degree of w in G.

Let us illustrate the definition above by three simple examples. For the complete graph K3 on three vertices, say, u,
v and w, X(K3) consists of six vertices and three isolated edges joining uw to vw, uv to wv and vu to wu, respectively.
For the complete bipartite graph K2,3 with bipartition {{u1, u2}, {v1, v2, v3}}, u1v1 is adjacent only to v2u2 and v3u2 in
X(K2,3), while v1u1 is adjacent only to u2v2 and u2v3 in X(K2,3). By symmetry X(G) consists of two 6-cycles, namely
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(u1v1, v2u2, u1v3, v1u2, u1v2, v3u2, u1v1) and (u2v1, v2u1, u2v3, v1u1, u2v2, v3u1, u2v1). A necessary and sufficient condition
for X(G) to be connected was given in [10, Theorem 2]. From this condition, the smallest graph G such that X(G) is connected is
the complete graph on four vertices with one edge removed. Denote by v1, v2, v3 and v4 the vertices of this graph and assume
the edge {v3, v4} is removed. Then X(G) consists of a 10-cycle (v1v3, v4v2, v1v2, v3v2, v1v4, v2v4, v3v1, v2v1, v4v1, v2v3, v1v3)
together with two chords {v1v3, v2v4} and {v1v4, v2v3}.

From [10, Theorem 2], X(G) is always connected if G is connected withminimum degree δ(G) ≥ 3. In [10, Theorem 3] it was
proved further that, if the connectivity κ(G) ≥ 3, then

κ(X(G)) ≥ (κ(G) − 1)2

and this bound is best possible. Regarding the diameter, it was proved in [10, Theorem 4] that, if G is connected with δ(G) ≥ 3,
then

diam(G) ≤ diam(X(G)) ≤ diam(G) + 2

and both bounds are attainable.
In this paper, we focus on independence, domination and vertex-coloring in 3-arc graphs. In the next section, we give a

structural result (Theorem 2) on maximum independent sets of X(G) when δ(G) ≥ 3. We also prove that the ratio of the
independence number of X(G) to that of G is between d and d+1 for any connected d-regular graph Gwith d ≥ 2 (Theorem 5),
and that the independence number of X(G) for any bipartite graph Gwith δ(G) ≥ 2 is equal to |E(G)| (Theorem 6). In Section 3,
for any graph G with δ(G) ≥ 2, we establish sharp lower and upper bounds for the domination number of X(G) and we
characterize the extremal graphs (Theorem 7). Further, we give an upper bound for the domination number of X(G) in terms
of the 2-domination number of G (Theorem 8). We also give a lower bound (Theorem 10) for the domination number of X(G)
in terms of the order and maximum degree of G and compare it with a well-known upper bound for domination number when
G is regular (Corollary 11).

In Section 4, we study the chromatic number of 3-arc graphs. In doing so we introduce a new notion of arc-coloring of a
graph which is different from the existing arc-coloring models [3,8,14,16]. In this new notion, we color the arcs of a graph G
in such a way that two arcs uv and xy with v ≠ x and y ≠ u, whose tails are joined by an edge in G, use distinct colors. The
minimum number of colors required by such a coloring, χ ′

3(G), is exactly the chromatic number of X(G). We give sharp lower
and upper bounds on χ ′

3(G) in terms of χ(G) (Theorem 15), and prove that the problem of deciding whether χ ′

3(G) ≤ 3 is
NP-complete (Theorem 16). We finish the paper by a few remarks and open problems.

The reader is referred to [17] for notation and terminology undefined in the paper.

2. Independence in 3-arc graphs

An independent set of a graph G is a subset of V (G) in which no two vertices are adjacent. The independence number of G,
α(G), is the cardinality of a largest independent set of G.

If δ(G) = 1, then the set of all arcs of G may form an independent set of X(G), as exemplified by the star K1,n. We thus
consider graphs G with δ(G) ≥ 2. To facilitate presentation we introduce the following definition.

Definition 2. A set S of vertices of X(G) is said to be good if there exists a partition of V (G) into (not necessarily non-empty)
subsets V1, V2, V3 such that

(a) V1 is an independent set of G, and vu ∈ S for any v ∈ V1 and u ∈ N(v);
(b) V2 is an independent set of G, any v ∈ V2 has a unique neighbour u in V1, and moreover u is the unique neighbour of v such

that vu ∈ S, and
(c) vu ∉ S for any v ∈ V3 and u ∈ N(v).

In case of possible confusion,weuse {V S
1 , V S

2 , V S
3 } in place of {V1, V2, V3} to emphasize dependence of these subsets on S. Observe

that a good set S ⊆ V (X(G)) is always an independent set of X(G). A goodmaximum independent set is a maximum independent
set which is good.

Lemma 1. Let G be a graph with δ(G) ≥ 2. Then X(G) has at least one good maximum independent set.

Proof. Choose S to be a maximum independent set of X(G) (i.e. |S| = α(X(G))) such that {v ∈ V (G) : vu ∈ S for all u ∈ N(v)}
has maximum cardinality.

We first prove that, for any v ∈ V (G), if there are distinct u1, u2 ∈ N(v) such that vu1, vu2 ∈ S, then vu3 ∈ S for any
u3 ∈ N(v). Suppose otherwise. Then there exists xy ∈ S such that {vu3, xy} ∈ E(X(G)), so that x ∈ N(v) and y ∈ N(x) − {v}.
One of u1 and u2 is not identical to x. Without loss of generality, assume that x ≠ u1. Then {vu1, xy} ∈ E(X(G)) (regardless of
whether x = u2 or not), which is a contradiction. Hence we have proved that, for any v ∈ V (G), either vu ∈ S for any u ∈ N(v),
or vu ∈ S for a unique u ∈ N(v), or vu ∉ S for any u ∈ N(v). We denote the subsets of such vertices v by V1, V2, V3, respectively.
Then {V1, V2, V3} is a partition of V (G).

Suppose that V1 is not an independent set of G. Then there are v1, v2 ∈ V1 such that {v1, v2} ∈ E(G). Since δ(G) ≥ 2, there
exist x ∈ N(v1) − {v2} and y ∈ N(v2) − {v1} such that {v1, x}, {v2, y} ∈ E(G) and hence v1x, v2y ∈ S by the definition of V1.
Hence {v1x, v2y} ∈ E(X(G)), which is a contradiction. Thus V1 must be an independent set of G.
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It remains to verify the first two statements in (b). Suppose v ∈ V2 and let u be the unique neighbour of v such that vu ∈ S.
Since vu ∈ S, for each x ∈ N(v) − {u} and any y ∈ N(x) − {v}, we have xy ∉ S. Thus, there exists z ∈ N(u) − {v} such that
uz ∈ S, for otherwise vx can be added to S to form a larger independent set, which violates the maximality of S. Now we show
that u ∈ V1. Suppose that uz is the unique arc starting at u and belonging to S. Set S ′

= (S−{uz})∪{vx : x ∈ N(v)}. Then S ′ is an
independent set of X(G) and |S ′

| ≥ |S|. If deg(v) > 2, then |S ′
| > |S|, which contradicts the maximality of S. Hence deg(v) = 2

and |S ′
| = |S|. However, |{w : wy ∈ S ′ for every y ∈ N(w)}| > |{w : wy ∈ S for every y ∈ N(w)}|, which contradicts the

choice of S. Thus there are at least two arcs starting from uwhich belong to S and so u ∈ V1. So we have proved that the unique
neighbour u of v such that vu ∈ S must be in V1. If there exists x ∈ N(v)−{u} such that x ∈ V1, then there exists y ∈ N(x)−{v}

as δ(G) ≥ 2. Since x ∈ V1, we have xy ∈ S and {xy, vu} ∈ E(X(G)), a contradiction. Therefore, u is the unique neighbour of v in
V1.

Finally, for distinct v1, v2 ∈ V2, there is a unique ui ∈ N(vi), i = 1, 2, such that viui ∈ S. Moreover, u1, u2 ∈ V1 from the
proof above. Thus, v1 and v2 cannot be adjacent in G, for otherwise {v1u1, v2u2} ∈ E(X(G)), a contradiction. Hence V2 is an
independent set of G. �

In the proof above the maximality of |{v ∈ V (G) : vu ∈ S for all u ∈ N(v)}| was used only when G contains a degree-two
vertex. Thus, in the case when δ(G) ≥ 3, the proof of Lemma 1 gives the following result.

Theorem 2. Let G be a graph with δ(G) ≥ 3. Then all maximum independent sets of X(G) are good.

The following lemma strengthens Lemma 1 and it will be used in subsequent discussion.

Lemma 3. Let G be a graph with δ(G) ≥ 2. Then there exists a good maximum independent set S of X(G) such that V S
1 is a maximal

independent set of G.

Proof. We start with a good maximum independent set S of X(G) (whose existence is guaranteed by Lemma 1). Suppose that
V S
1 is not a maximal independent set of G. Then there exists w ∈ V (G) such that V S

1 ∪ {w} is an independent set of G. Since no
neighbour ofw is in V S

1 , we havew ∈ V S
3 . Moreover, all the neighbours ofw are in V S

2 ∪V S
3 . Denote T = (S−{ux : u ∈ N(w), x ∈

N(u)})∪{wu : u ∈ N(w)}. Since δ(G) ≥ 2 and S is good, using (a)–(c) in Definition 2 one can see that T is an independent set of
X(G) such that |T | ≥ |S|, and the equality occurs if and only if N(w) ∩ V S

3 = ∅. Since S is a maximum independent set of X(G),
we have |T | = |S| and hence N(w)∩V S

3 = ∅, which implies N(w) ⊆ V S
2 . One can prove that T is a goodmaximum independent

set of X(G) with V T
1 = V S

1 ∪ {w}, V T
2 = V S

2 − N(w) and V T
3 = (V S

3 − {w}) ∪ N(w). If V T
1 is a maximal independent set of G,

we are done; otherwise we repeat this procedure. Since G is finite, eventually we obtain a good maximum independent set R
of X(G) such that V R

1 is maximal. �

The word ‘maximal’ in Lemma 3 cannot be replaced by ‘maximum’ in general. For example, let G = K̄3 + C2t (t ≥ 4) be
the join of three isolated vertices K̄3 and the cycle C2t of length 2t . Take S to be a good set of X(G) such that V S

1 consists of the
three vertices of K̄3. Then V S

2 = ∅, |S| = 6t and S is an independent set of X(G). However, V S
1 is not a maximum independent

set of G since α(G) = t . On the other hand, consider a good set T of X(G) such that V T
1 is a maximum independent set of G. In

such a case V T
1 consists of every second vertex of C2t and V T

2 is empty, which gives |T | = 5t . Since |S| > |T |, there is not a good
maximum independent set Q in X(G) such that VQ

1 is a maximum independent set in G.
Since every good set is independent, the following formula is an immediate consequence of Lemma 3, where W plays the

role of V S
1 and α(GW ) = |V S

2 |.

Theorem 4. Let G be a graph with δ(G) ≥ 2. Then

α(X(G)) = max
W


α(GW ) +

−
v∈W

degG(v)


,

where the maximum is taken over all maximal independent setsW of G, and GW is the subgraph of G induced by those vertices which
have exactly one neighbour in W.

Theorem 4 can be used to find α(X(G)) for some graphs G with δ(G) ≥ 2. Consider a cycle of length n, Cn, and let W be
a maximal independent set of Cn. Then the graph induced by V (Cn) − W consists of isolated vertices and edges. Therefore, if
|W | = k, then GW consists of n − 2k isolated edges. Consequently, α(GW ) = n − 2k and α(X(Cn)) = (n − 2k) + 2k = n.
Another maximum independent set of X(Cn) can be obtained by choosing all arcs of Cn in accordance with a fixed orientation of
Cn. One can check that this maximum independent set is not good. This demonstrates that if δ(G) = 2 then not everymaximum
independent set of X(G) is good. In other words, the condition δ(G) ≥ 3 in Theorem 2 cannot be removed.

Next consider the wheel G = Wn on n + 1 vertices. Let W be a maximal independent set of G. If W consists of the central
vertex, then α(GW ) = ⌊

n
2⌋ and so α(GW ) +

∑
v∈W degG(v) = ⌊

3n
2 ⌋. If the central vertex of G is not in W , then k = |W | ≤ ⌊

n
2⌋

and α(GW ) = n − 2k. Hence α(GW ) +
∑

v∈W degG(v) = (n − 2k) + 3k ≤ ⌊
3n
2 ⌋. Therefore, α(X(Wn)) = ⌊

3n
2 ⌋ by Theorem 4.

Theorem 4 implies the following bounds for regular graphs.
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Theorem 5. Let G be a connected d-regular graph with d ≥ 2. Then

d ≤
α(X(G))

α(G)
≤ d + 1. (1)

Moreover, both bounds are attainable.

Proof. Choose a maximum independent set W of G. Then α(X(G)) ≥
∑

v∈W degG(v) = d α(G) by Theorem 4. On the other
hand, by Theorem 4 there exists a maximal independent set W ∗ of G such that α(X(G)) = α(GW∗) +

∑
v∈W∗ degG(v). Since

α(GW∗) ≤ α(G), |W ∗
| ≤ α(G) and G is d-regular, it follows that α(X(G)) ≤ (d + 1)α(G).

Denote by v1, v2, . . . , vn the vertices of a complete graph Kn. Then S = {v1v2, v1v3, . . . , v1vn, v2v1} is a good independent
set of size n in X(Kn), so that α(X(Kn)) ≥ n. Since Kn is (n − 1)-regular and α(Kn) = 1, we have α(X(Kn)) ≤ n by (1). Thus
α(X(Kn)) = n, which achieves the upper bound in (1).

The lower bound in (1) is achieved by the complete bipartite graph Kn,n because α(X(Kn,n)) = |E(Kn,n)| = n2
= n α(Kn,n)

by Theorem 6 below. �

In the proof of Theorem 5, we demonstrated that the upper bound is achieved by complete graphs, which satisfy α(Kn) = 1.
However, this bound is achieved also by graphs G for which α(G) > 1. Let Gt = K2t�Ct be the Cartesian product of K2t and Ct .
That is, Gt consists of t vertex-disjoint copies of K2t with vertices {vi

0, v
i
1, . . . , v

i
2t−1} in the ith copy, 0 ≤ i ≤ t − 1, together

with 2t2 edges {vi
j, v

i+1
j }, 0 ≤ j ≤ 2t − 1, 0 ≤ i ≤ t − 1, where superscripts are taken modulo t . Obviously, Gt is a (2t + 1)-

regular graph. Since any independent set of Gt contains at most one vertex from each copy of K2t and V1 = {v0
0, v

1
1, . . . , v

t−1
t−1}

is an independent set of Gt , we have α(Gt) = t . Now we take S to be the set of arcs of Gt starting from V1 and those from
{v0

t , v
1
t+1, . . . , v

t−1
2t−1} to V1. Then S is a good independent set of X(G) with cardinality |S| = t(2t + 1) + t = (2t + 2)t , which is

the upper bound in (1).
Using Lemma 3 we are able to determine α(X(G)) when G is a bipartite graph.

Theorem 6. Let G be a bipartite graph with δ(G) ≥ 2. Then

α(X(G)) = |E(G)|.

Proof. Let {U,W } be the bipartition of G. Then S = {uv : u ∈ U and v ∈ N(u)} is a good independent set of X(G) with size
|E(G)|. It remains to prove that a maximum independent set of X(G) has cardinality at most |E(G)|.

Let S be a good maximum independent set of X(G) guaranteed by Lemma 3, and let {V S
1 , V S

2 , V S
3 } be the corresponding

partition of V (G). Denote Ui = U ∩ V S
i and Wi = W ∩ V S

i , i = 1, 2, 3. Since V S
1 is an independent set of G, there is no edge of G

with one end-vertex inU1 and the other end-vertex inW1. Similarly, since V S
2 is an independent set, there is no edge betweenU2

andW2. By the definition of {V S
1 , V S

2 , V S
3 }, each vertex inU2 is adjacent to a unique vertex inW1, and each vertex inW2 is adjacent

to a unique vertex in U1. Thus, since δ(G) ≥ 2, each vertex in U2 (W2, respectively) is adjacent to at least one vertex in W3 (U3,
respectively). Hence |(U2,W3)| ≥ |(U2,W1)| and |(U3,W2)| ≥ |(U1,W2)|, where (X, Y ) is the set of edges of G between X ⊆ U
and Y ⊆ W . Therefore, |S| = |(U1,W )|+|(U,W1)|+|(U2,W1)|+|(U1,W2)| ≤ |(U1,W )|+|(U,W1)|+|(U2,W3)|+|(U3,W2)| ≤

|E(G)|. �

The conclusion in Theorem 6 may not be true when δ(G) = 1 as exemplified by α(X(K1,n)) = 2n. On the other hand, if G is
a bipartite graph with δ(G) ≥ 3, then from the proof of Theorem 6, for any good maximum independent set S of X(G) we have
V S
2 = ∅ and V S

3 is an independent set of G. Therefore, if in addition G is connected, then the bipartition of G must be {U1,W3}

or {U3,W1}.

3. Domination in 3-arc graphs

A dominating set of a graph G is a subset S of V (G) such that V (G) − S ⊆ ∪u∈S N(u), where N(u) is the neighbourhood of u
in G. The domination number of G, γ (G), is the minimum cardinality of a dominating set of G.

Theorem 7. Let G be a connected graph of order n ≥ 4 and δ(G) ≥ 2. Then

3 ≤ γ (X(G)) ≤ n (2)

and both bounds are sharp. Moreover, γ (X(G)) = n if and only if G is an n-cycle, and γ (X(G)) = 3 if and only if G contains a 3-cycle
C3 such that |N(u) ∩ V (C3)| ≥ 2 for every u ∈ V (G). Furthermore, for each integer k with 3 ≤ k ≤ n, there exists a graph G with
δ(G) ≥ 2 and order n such that γ (X(G)) = k.

Proof. Since uv does not dominate vu, X(G) does not have any dominating set of cardinality one. Suppose that there exists
a dominating set S of X(G) with |S| = 2, say, S = {uv, wz}. Then u ≠ w for otherwise S does not dominate vu. Further,
{u, w} ∈ E(G) since otherwise S does not dominate uy for y ∈ N(u) − {v}. If v ≠ w, then S does not dominate uw; if z ≠ u
then S does not dominate wu, and if v = w and z = u then S does not dominate uy for y ∈ N(u) − {v}. Hence γ (X(G)) ≥ 3.
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Now we prove γ (X(G)) ≤ n. Since δ(G) ≥ 2, G contains at least one cycle. Let C = (v1, v2, . . . , vh, v1) be a shortest
induced cycle in G, where h ≥ 3. Expand the path v1, v2, . . . , vh to a spanning tree T of G. Let U denote the unicyclic graph
obtained by adding the edge {vh, v1} to T . Let S1 = {v1v2, v2v3, . . . , vh−1vh, vhv1}, and let S2 consist of all arcs xy such that
{x, y} ∈ E(U) − E(C) and x is farther than y from C in U (that is, dU(x, vi) > dU(y, vi) for one and hence all i with 1 ≤ i ≤ h).
Denote S = S1 ∪ S2. Then |S| = n since U is unicyclic. Moreover, by the definition of S1 and S2, the n arcs of S start at n different
vertices of G. For each u ∈ V (G), let ū denote the neighbour of u such that uū ∈ S. For any arc xy of X(G), if y = x̄, then
xy = xx̄ ∈ S; if y ≠ x̄, then xy is dominated by zz̄, where z = x̄ (note that z̄ ≠ x by the choice of S). Hence S is a dominating set
of X(G) and γ (X(G)) ≤ n.

IfG is a cycle, then since S1 above is a dominating set of X(G), we have γ (X(G)) ≤ n. However, each vertex of X(G) dominates
at most one vertex of S1, so that γ (X(G)) ≥ |S1| = n. Thus γ (X(G)) = n in this case.

Suppose that G is not a cycle, so that V (U) − V (C) ≠ ∅. Let w ∈ V (U) − V (C) such that w has degree one in U . Let
S ′

= S −{ww̄}. For any arc xy of G, we have x̄ ≠ w for otherwise both x and w̄ are neighbours of w in U . Thus, if xy ∉ S, then xy
is dominated by zz̄ ∈ S ′, where z = x̄. Since δ(G) ≥ 2, there exists a neighbour u ofw in G other than w̄. Thenww̄ is dominated
by uū. Therefore, S ′ is a dominating set of X(G), which implies γ (X(G)) ≤ |S ′

| < n.
Next we characterize graphs attaining the lower bound.
Suppose first that G contains a 3-cycle C3 = (u1, u2, u3, u1) such that |N(u) ∩ V (C3)| ≥ 2 for each u ∈ V (G). Let

S = {u1u2, u2u3, u3u1}. Consider any arc xy of G not in S. If x ∈ V (C3), say, x = u1, then u2u3 dominates xy. If x ∉ V (C3),
without loss of generality, we may assume u1, u2 ∈ N(x). If y ≠ u1, then xy is dominated by u1u2; if y = u1, then xy is
dominated by u2u3. Hence S is a dominating set of X(G) and γ (X(G)) = 3.

Now suppose that γ (X(G)) = 3. Let S = {u1v1, u2v2, u3v3} be a dominating set of X(G). We first show that |N(x) ∩

{u1, u2, u3}| ≥ 2 for any x ∈ V (G) − {u1, u2, u3}. Since δ(G) ≥ 2, there is a neighbour y of x. Since S dominates xy, we
have |N(x) ∩ {u1, u2, u3}| ≥ 1. Without loss of generality, we may assume that u1 ∈ N(x). Since S dominates xu1, we have
either {u2, x} ∈ E(G) or {u3, x} ∈ E(G). Hence |N(x) ∩ {u1, u2, u3}| ≥ 2. Consequently, |{u1, u2, u3}| ≥ 2. It remains to show
that u1, u2 and u3 form a 3-cycle in G.

We first prove that u1, u2 and u3 are pairwise distinct. Suppose to the contrary that two of them are the same, say, u1 = u2.
Then u3 ≠ u1 and there exists a neighbour z3 of u3 such that z3 ≠ v3. Since u3z3 is not dominated by u3v3, it must be dominated
by u1v1 or u2v2 and hence {u1, u3} ∈ E(G). We must have u1u3 ∈ S for otherwise it is not dominated by any arc in S. Thus,
u1u3 must be identical to one of u1v1 and u2v2. Without loss of generality, we may assume u1u3 = u1v1, so that u3 = v1. We
must have u3u1 ∈ S for otherwise none of the arcs in S dominates u3u1 ∈ S, a contradiction. Hence u3u1 = u3v3 and therefore
v3 = u1. Since n ≥ 4, there exists a vertex x ∈ V (G) − {u1, u3, v2}. Since u1 = u2 and |N(x) ∩ {u1, u2, u3}| ≥ 2 by the previous
paragraph, x is adjacent to both u1 and u3. However, u1x is not dominated by any arc in S, which is a contradiction. So we have
proved that u1, u2 and u3 are pairwise distinct.

Now we prove that u1, u2 and u3 are pairwise adjacent. Suppose otherwise, say, {u1, u2} ∉ E(G). Since δ(G) ≥ 2, there is a
neighbour z1 of u1 such that z1 ≠ v1. Since {u1, u2} ∉ E(G), neither u1v1 nor u2v2 dominates u1z1. Hence u1z1 is dominated by
u3v3 and so {u1, u3} ∈ E(G). Similarly, there exists a neighbour z2 of u2 such that z2 ≠ v2. An analogous argument shows that
{u2, u3} ∈ E(G). Note that neither u2v2 nor u3v3 dominates u1u3. Thus, if u1u3 ≠ u1v1, then none of the arcs in S dominates
u1u3, which is a contradiction. Hence u1v1 = u1u3 and so v1 = u3. Similarly, v2 = u3. Now if v3 ≠ u1 then S does not dominate
u3u1, while if v3 ≠ u2 then S does not dominate u3u2. Hence S is not a dominating set of X(G). This contradiction shows that
u1, u2 and u3 form a 3-cycle in G.

Example 1 below shows that every integer between 3 and n can be taken by γ (X(G)) for some graph G with δ(G) ≥ 2 and
order n. �

Example 1. For any integers k and n with 3 ≤ k ≤ n, there exists a graph with order n and δ(G) ≥ 2 such that
γ (X(G)) = k. In fact, let Gn,k be the graph with vertex set {u1, u2, . . . , un−k} ∪ {v0, v1, . . . , vk−1} and edge set {{ui, v0},
{ui, v1} : 1 ≤ i ≤ n − k} ∪ {{v0, v1}, {v1, v2}, . . . , {vk−2, vk−1}, {vk−1, v0}}. (Note that Gn,n is exactly the n-cycle.) Let S =

{v0v1, v1v2, . . . , vk−2vk−1, vk−1v0}. Observe that any arc of Gn,k can dominate at most one arc of S. Hence γ (X(G)) ≥ |S| = k.
On the other hand, it is easy to see that S dominates X(G). Therefore, γ (X(G)) = k.

A k-dominating set [5] of a graph H is a subset S of V (H) such that |N(u) ∩ S| ≥ k for every u ∈ V (H) − S. The k-domination
number of H , denoted by γk(H), is the minimum cardinality of a k-dominating set of H . Note that γ1(H) = γ (H). Our next
result gives an upper bound for γ (X(G)) in terms of γ2(G). At the time of writing, we are unable to give a sharp upper bound
for γ (X(G)) in terms of γ (G).
Algorithm 1

Input: A graph Gwith δ(G) ≥ 2 and a minimum 2-dominating set T of G.
Output: A set S of arcs of G.

Set S := ∅, i := 0, U := ∅. {Comment: U ⊆ V (G) and i = |U|}
While T − N(U) ≠ ∅ do

i := i + 1;
choose ui ∈ V (G) − (T ∪ U) with N(ui) ∩ (T − N(U)) ≠ ∅;
let N(ui) ∩ (T − N(U)) = {v1, v2, . . . , vk};
if k ≥ 2, then
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if N(ui) ∩ (V (G) − T ) ≠ ∅, then

let S1 = {v1ui, v2ui, . . . , vkui, uiwi, wixi},
where wi ∈ N(ui) ∩ (V (G) − T ) and xi ∈ N(wi) − {ui};
set S := S ∪ S1;

else if N(ui) ∩ N(U) ∩ T ≠ ∅, then

let S2 = {v1ui, v2ui, . . . , vkui, uiwi},
where wi ∈ N(ui) ∩ N(U) ∩ T ;
set S := S ∪ S2;

else

let S3 = {v1ui, uiv1, v2ui, uiv2, . . . , vkui, uivk};
set S := S ∪ S3;

end;
if k = 1, then

let S4 = {v1ui, uiwi}, where wi ∈ N(ui) ∩ N(U) ∩ T ;
set S := S ∪ S4;

end;
U := U ∪ {ui};

end.

Theorem 8. Let G be a graph with δ(G) ≥ 2. Then

γ (X(G)) ≤ 2γ2(G) (3)

and this bound is sharp.

Proof. Let T be a minimum 2-dominating set of G. We apply Algorithm 1 to obtain a set S of arcs of G.
In the ith iteration of the While loop in Algorithm 1, we have U = {u1, u2, . . . , ui−1}. We choose ui ∈ V (G) − (T ∪ U) so

that N(ui) ∩ (T − N(U)) ≠ ∅. In other words, ui has a neighbour in T which is not a neighbour of any uj, j < i. Since T is a
minimum 2-dominating set of G, every vertex v ∈ T has at least one neighbour not in T . Therefore, after several iterations we
have T − N(U) = ∅ and the algorithm terminates.

In the ith iteration of theWhile loop in Algorithm 1, we have either |N(ui)∩ (T −N(U))| ≥ 2, for which we obtain one of S1,
S2 and S3, or |N(ui) ∩ (T − N(U))| = 1, for which we get S4. In the last case, since T is a 2-dominating set of G, there must exist
a neighbour wi of ui such that wi ∈ T ∩ N(U). In all cases we add to S at most 2k arcs, where k is the number of neighbours of
ui in T − N(U). Hence |S| ≤ 2|T |. Now we prove that S dominates X(G) and hence complete the proof of (3).

Let xy be an arbitrary arc of G not in S. We distinguish three cases.
Case 1. x ∈ T . Denote by ui the first vertex in U such that x ∈ N(ui). If y = ui, then xy ∈ S. If y ≠ ui, then uiwi dominates xy in
cases S1, S2 and S4, while in case S3 either uiv1 or uiv2 dominates xy.
Case 2. x ∈ U . In this case x = ui for some i. Then wixi dominates xy in case S1. Observe that wi ∈ T ∩ N(U) in cases S2 and S4.
Hence there exists uj such that j < i and wiuj ∈ S. Since xy ≠ uiwi, the arc wiuj dominates xy in cases S2 and S4. Since xy ∉ S,
case S3 is impossible.
Case 3. x ∉ T ∪ U . Since T is a 2-dominating set in G, there are at least two neighbours of x in T . Let v be a neighbour of x in T
such that v ≠ y, and let ui be the first vertex of U such that v ∈ N(ui). Then vui dominates xy.

So far we have completed the proof of (3). Observe that γ (X(Cn)) = 2γ2(Cn) if n is even. Hence the bound in (3) is sharp. �

Corollary 9. Let G be a bipartite graph with bipartition {U,W } and δ(G) ≥ 2. Then

γ (X(G)) ≤ 2min{|U|, |W |}

and this bound is sharp.

Proof. Since δ(G) ≥ 2, each part of the bipartition of G is a 2-dominating set. By Theorem 8, we have γ (X(G)) ≤ 2γ2(G) ≤

2min{|U|, |W |}. Similar to Theorem 8, the equality is attained by even cycles. �

In the next theorem, we give a lower bound for γ (X(G)) and compare it with an upper bound derived from the following
known result [1,2,15] for any graph H of order n and minimum degree δ

γ (H) ≤
n

δ + 1
(ln(δ + 1) + 1). (4)
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Theorem 10. Let G be a graph with n vertices, m edges, maximum degree ∆ and minimum degree δ ≥ 2. Then
2n
∆


≤ γ (X(G)) ≤

2m
δ2 − 2δ + 2

(ln(δ2
− 2δ + 2) + 1). (5)

Moreover, the lower bound is sharp.

Proof. X(G) has 2m vertices andminimumdegree δ(X(G)) ≥ (δ−1)2. Applying (4) to X(G) and noting that ln x+1
x is a decreasing

function for x ≥ 1, we obtain the upper bound in (5) immediately.
To prove the lower bound in (5), we partition the arcs of G into n disjoint parts Au, u ∈ V (G), where Au = {uv : v ∈ N(u)}.

Let S be a dominating set of X(G) with minimum cardinality. Every arc in S dominates arcs in at most ∆ different parts Au. On
the other hand, it requires at least two different arcs in S to dominate all arcs in a single Au. Counting the number of ordered
pairs (a, Au), where a is an arc in S dominating some arcs in Au, we obtain ∆|S| ≥ 2n. Hence γ (X(G)) = |S| ≥

2n
∆
. Cycles Cn

demonstrate that the lower bound is sharp. �

Theorem 10 can be used to find γ (X(G)) for some graphs G with δ(G) ≥ 2.

Example 2. Let Pk be the prism on 2k vertices with V (Pk) = {u0, u1, . . . , uk−1, v0, v1, . . . , vk−1} and E(Pk) = {{ui, ui+1},
{vi, vi+1}, {ui, vi} : 0 ≤ i ≤ k − 1}, where the addition in subscripts is modulo k. Let t = ⌊

k
3⌋.

If k ≡ 0 mod 3, then k = 3t and γ (X(Pk)) ≥ 4t by Theorem 10. On the other hand, S = {uiui+1, ui+1vi+1, vi+1vi, viui : i =

0, 3, . . . , 3(t − 1)} is a dominating set of X(Pk) with cardinality 4t . Hence γ (X(Pk)) = 4t .
If k ≡ 1mod 3, then k = 3t+1 and γ (X(Pk)) ≥ 4t+ 4

3 by Theorem10. One can check that S = {uiui+1, ui+1vi+1, vi+1vi, viui :

i = 4, 7, . . . , 3(t − 1) + 1} ∪ {u0u1, u1u2, u2v2, v2v1, v1v0, v0u0} is a dominating set of X(Pk) with cardinality 4t + 2. Hence
γ (X(Pk)) = 4t + 2.

In the two cases above the lower bound in (5) is attained.
In the case where k ≡ 2 mod 3, by Theorem 10 and an analogous argument, we obtain ⌈

2n
∆

⌉ = 4t + 3 ≤ γ (X(Pk)) ≤ 4t + 4,
where the lower bound is attained when, say, t = 1.

For a d-regular graph Gwith d ≥ 3, the upper bound in (5) is strictly less than n
d−2 (ln(d2 −2d+2)+1). Thus, by Theorem 10

and Example 2, we have the following corollary.

Corollary 11. Let G be a d-regular graph of order n, where d ≥ 3. Then
2n
d


≤ γ (X(G)) <

n
d − 2

(ln(d2 − 2d + 2) + 1)

and the lower bound is sharp.

For sufficiently large d, this upper bound is better than the one in Theorem 7.

4. Coloring 3-arc graphs

We observe that a proper vertex-coloring of X(G) is exactly a coloring of arcs of G, such that any two arcs uv and xy with
v ≠ x and y ≠ u, whose tails u and x are joined by an edge in G, receive different colors. (A vertex-coloring of a graph or directed
graph is called proper if adjacent vertices receive different colors.) The latter, called a 3-arc coloring of G, is a new notion of arc-
coloring for graphs that is different from the existing arc-coloring models [3,8,14,16]. Define χ ′

3(G) to be the minimum number
of colors needed by a 3-arc coloring of G and call it the 3-arc chromatic index of G. Equivalently,χ ′

3(G) is defined as the chromatic
number of X(G).

The notion of 3-arc coloring can be extended to directed graphs in an obvious way by requiring that any two arcs uv and
xy with v ≠ x and y ≠ u, whose tails are joined by an arc (in either direction), receive distinct colors. So we can speak of the
3-arc chromatic index χ ′

3(D) of a directed graph D, though we will mainly discuss the undirected case. Of course χ ′

3(G) is equal
to the 3-arc chromatic index of the directed graph obtained from G by replacing each edge by two arcs of opposite directions.

A tournament is a digraph T , such that for every u, v ∈ V (T ), u ≠ v, we have either uv ∈ E(T ) or vu ∈ E(T ). The tournament
is transitive if uv, vw ∈ E(T ) implies uw ∈ E(T ) for every triple u, v, w ∈ V (T ). AHalin graph is a planar graphH = T∪C whose
edge set can be partitioned into a tree T with no vertex of degree two and a cycle C whose vertices are exactly the degree-one
vertices of T .

Theorem 12. The following hold:

(a) if Tn is a transitive tournament on n vertices, then χ ′

3(Tn) = n − 1;
(b) χ ′

3(Kn) = n − 1;
(c) for a connected graph G, χ ′

3(G) = 1 if and only if G is a star;
(d) for a connected graph G, χ ′

3(G) = 2 if and only if G is not a star and the subgraph of G induced by the vertices of degree at least
three is bipartite;

(e) if H is a Halin graph, then χ ′

3(H) = 2 if H is bipartite and χ ′

3(H) = 3 otherwise.
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Proof. (a) Since Tn is acyclic, each vertex vi of Tn can be assigned an integer ni such that ni < nj for each arc vivj of Tn. Color
each arc vivj of Tn by ni. Since no arc emanates from vn, this is a 3-arc coloring of Tn using n−1 colors. Hence χ ′

3(Tn) ≤ n−1.
On the other hand, we have χ ′

3(Tn) ≥ n − 1 because v1vn, v2vn, . . . , vn−1vn require pairwise distinct colors in any 3-arc
coloring of Tn.

(b) Since Tn is an orientation of Kn, we have χ ′

3(Kn) ≥ χ ′

3(Tn) = n − 1. Let V (Kn) = {v1, v2, . . . , vn}. Color all arcs emanating
from vi by i, and color vnvi by i, for i = 1, 2, . . . , n − 1. In this way we get a 3-arc coloring of Kn, so that χ ′

3(Kn) = n − 1.
(c) χ ′

3(G) = 1 if and only if X(G) is a graph without edges. Since X(G) is edgeless if and only if G has neither 3-cycles nor paths
of length 3, χ ′

3(G) = 1 if and only if G is a star.
(d) Suppose that G is not a star. Denote by G0 the subgraph of G induced by all vertices of degree at least three. Since χ ′

3(G) = 2
if and only if X(G) is bipartite, it suffices to prove that X(G) has an odd cycle if and only if G0 has an odd cycle.

Suppose that G0 has an odd cycle (u0, u1, . . . , uk−1, u0). Since the degree of ui is at least three, 0 ≤ i < k, there is a
vertex vi in G such that vi ≠ ui−1 and vi ≠ ui+1, the subscripts being modulo k. Then (u0v0, u1v1, . . . , uk−1vk−1, u0v0) is an
odd cycle in X(G).

Now suppose that X(G) contains odd cycles. Let C = (u0v0, u1v1, . . . , uk−1vk−1, u0v0) be a shortest odd cycle in X(G).
We prove that u0, u1, . . . , uk−1 ∈ V (G0). The vertex ui is adjacent to ui−1, ui+1 and vi, 0 ≤ i < k, indices being modulo k.
Suppose that there is a subscript j such that uj−1 = uj+1. If uj−2 = uj then (u0v0, . . . , uj−2vj−2, uj+1vj+1, . . . , u0v0) is an
odd cycle of length k − 2 in X(G), which contradicts the choice of C . Thus, uj−2 ≠ uj and analogously we get uj+2 ≠ uj. But
then (u0v0, . . . , uj−2vj−2, uj−1uj, uj+2vj+2, . . . , u0v0) is a cycle of length k − 2 in X(G), which contradicts the choice of C .
Therefore ui−1 ≠ ui+1 for all i, 0 ≤ i < k. As vi is distinct from both ui−1 and ui+1, the degree of ui is at least 3 in G. Therefore
(u0, u1, . . . , uk−1, u0) is a closed walk of odd length in G0, so that G0 has an odd cycle.

(e) Let H = T ∪ C . Denote C = (v1, v2, . . . , vt , v1) and let f be a proper vertex-coloring of T using colors 1 and 2. Define
f ′

: V (H) → {1, 2, 3} such that f ′(x) = 3 if x = vj for an odd j and f ′(x) = f (x) otherwise. If t is even, then color each
arc xy of H by f ′(x). One can check that this is a 3-arc coloring of H . Assume that t is odd. Since H is a Halin graph, there is
a unique neighbour w of vt not on C . Color each arc xy with x ≠ vt by f ′(x) and color vtv1 by 3. If f ′(vt−1) = f ′(w) = 1,
then color vtvt−1 and vtw by 2; if f ′(vt−1) = f ′(w) = 2, then color vtvt−1 and vtw by 1, and if f ′(vt−1) ≠ f ′(w), then color
vtvt−1 by f ′(vt−1) and vtw by f ′(w). It can be verified that this is a 3-arc coloring of H . Hence χ ′

3(H) ≤ 3. Since each vertex
of H has degree at least three, by (d), χ ′

3(H) = 2 if H is bipartite and χ ′

3(H) = 3 otherwise. �

A major result in this section is Theorem 15 below, which gives sharp lower and upper bounds on χ ′

3(G) in terms of the
chromatic number of G. To prove Theorem 15 we first discuss directed graphs with 3-arc chromatic index one.

Lemma 13. Let Dn be an orientation of a cycle of length n ≥ 3. Then χ ′

3(Dn) = 1 if and only if either Dn is a directed cycle, or n is
even and any two consecutive arcs of Dn have opposite directions.

Proof. The sufficiency is easy to see, so we prove the necessity only.
Hence, suppose that χ ′

3(Dn) = 1. Let v0, v1, . . . , vn−1 be the vertices of Dn in a cyclic order. Suppose that there are two
consecutive arcs of Dn having the same direction. Without loss of generality, we may assume that v0v1 and v1v2 are arcs of Dn.
Since χ ′

3(Dn) = 1, vn−1v0 is an arc of Dn. Similarly, one can show successively that vn−2vn−1, vn−3vn−2, . . . , v2v3 are arcs of Dn.
Thus, Dn is a directed cycle.

Now suppose that no two consecutive arcs of Dn have the same direction. Then n is even and any two consecutive arcs of Dn
have opposite direction. �

A semi-cycle (semi-path, respectively) in a directed graph is a directed subgraph whose underlying graph is a cycle (path,
respectively). A semi-cycle is odd if its length is odd. A directed graph is weakly connected if its underlying graph is connected.

Lemma 14. Let D be a weakly connected directed graph with χ ′

3(D) = 1. Then D contains at most one odd semi-cycle, andmoreover
such a semi-cycle must be a directed cycle.

Proof. Since χ ′

3(D) = 1, every odd semi-cycle in D should have 3-arc chromatic index equal to one and hence is a directed
cycle by Lemma 13.

Suppose that D contains two distinct odd semi-cycles, say, D1 and D2. Then D1 and D2 are directed cycles in D as shown
above. If D1 and D2 have common vertices, then there exists an arc uv of D1 such that u is the initial vertex of a directed path
u, x, y of length two in D2. So any 3-arc coloring of D assigns different colors to uv and xy, which contradicts the assumption
χ ′

3(D) = 1. Hence D1 and D2 are vertex-disjoint. Since D is weakly connected, there exists a semi-path v1, v2, . . . , vk in D such
that v1 ∈ V (D1) and vk ∈ V (D2). Since D1 is a directed cycle and v1 is on D1, the arc between v1 and v2 must be v2v1 and the
arc between v2 and v3 must be v3v2. Based on these and the assumption χ ′

3(D) = 1, one can show that vj+1vj, j = 1, . . . , k−1,
are arcs of D. Since D2 is also a directed cycle and vk is on D2, any 3-arc coloring of D assigns different colors to vkvk−1 and an
arc of D2. This contradiction proves the result. �

Theorem 15. Let G be a connected graph. Then
χ(G) + 1

3


≤ χ ′

3(G) ≤ χ(G) (6)

and moreover both bounds are attainable.
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Proof. Let G be a connected graph. For a proper vertex-coloring of G using χ(G) colors, the coloring of arcs of G such that each
arc is assigned the color of its tail is a 3-arc coloring of G. Hence χ ′

3(G) ≤ χ(G). The equality holds when, for example, G is an
even cycle, or the graph obtained from any complete graph Kn by adding a new vertex v′ for each v ∈ V (Kn) and joining v and
v′ by an edge.

Now we prove the lower bound in (6). By Theorem 12(c), if χ ′

3(G) = 1 then G must be a star, which implies χ(G) = 2 and
hence (χ(G) + 1)/3 = χ ′

3(G). In the following, we assume k = χ ′

3(G) ≥ 2.
Denote by D the directed graph obtained from G by replacing every edge by a pair of arcs of opposite directions. Let f be a

3-arc coloring of G (and hence of D) using colors 1, 2, . . . , k. Denote by Di the directed subgraph of D induced by those arcs of
Dwhich are colored by i under f . Then χ ′

3(Di) = 1, and so by Lemma 14, each component of Di has at most one odd semi-cycle.
Hence the vertices of Di can be colored properly by three colors. Based on this we give a proper vertex-coloring of G as follows.

First, we color properly the vertices of D1 other than sinks by three colors. (A sink in a directed graph is a vertex which is
not the tail of any arc of the directed graph.) We show that in this way we obtain a proper partial coloring of G. Assume that
two vertices of D1, say u and x, receive the same color. Then there are v, y ∈ V (D1) such that uv and xy are arcs of D1. Since
χ ′

3(D1) = 1, the arcs uv and xy are not adjacent in X(G). Moreover, as u and x are not adjacent in D1, we have v ≠ x and y ≠ u.
Consequently, in Gwe cannot have the edge {u, x}, so that the described partial coloring of G is proper.

Now we use three new colors to color properly those vertices of D2, which are not sinks. However, we color only those
non-sink vertices of D2, which did not receive any color in the previous step. Analogous to the argument above, one can show
that in such a way we obtain a proper partial coloring of G, in which we color all the vertices of D1 ∪ D2, which are not sinks in
D1 ∪ D2. (That is, we color those vertices of D1 ∪ D2 at which there starts at least one arc either in D1 or in D2.)

Repeating this process for D3, D4, . . . , Dk−1 we obtain a proper partial coloring of G using at most 3(k − 1) colors. Now
consider a component of Dk. If this component has no odd semi-cycle, then its non-sink vertices can be colored properly by two
colors. If this component contains a (unique) odd semi-cycle, then by Lemma 14 this odd semi-cycle is a directed cycle. Hence
all its vertices are already colored and the remaining non-sink vertices can be colored properly by two colors. In any case, to
color properly non-colored non-sink vertices of any component of Dk it suffices to use two colors. Thus, non-sink vertices of
∪

k
i=1 Di = D can be colored properly by at most 3k − 1 colors. Since every vertex of D is a non-sink vertex of some Di, we have

χ(G) ≤ 3χ ′

3(G) − 1 and the lower bound in (6) is established.
Let Gn be a graph consisting of n ≥ 1 edge-disjoint triangles with a common vertex u. Then χ(Gn) = 3 and χ ′

3(Gn) ≥ 2. For
each triangle of Gn, color the two arcs starting from u by color 1, and color one of the two arcs entering into u by 1 and the other
one by 2. Color the remaining two arcs in each triangle by 2. One can verify that this is a 3-arc coloring of G. Hence χ ′

3(Gn) = 2
and the lower bound in (6) is attained by Gn. �

It is easily seen that the problem of deciding whether χ ′

3(G) ≤ k can be solved in polynomial time when k = 1 or 2; see
Theorem 12. The following result shows that this problem is NP-complete when k = 3 even when restricted to planar graphs.

Theorem 16. The problem of deciding whether χ ′

3(G) ≤ 3 for a planar graph G is NP-complete.

Proof. Given a planar graph G, we construct a graph G∗ from G by adding a new vertex v′ for each v ∈ V (G) and joining v and
v′ by an edge. Obviously G∗ is planar and G∗ can be constructed in polynomial time. We show that χ ′

3(G
∗) ≤ 3 if and only if G is

3-colorable. Suppose that G∗ has a 3-arc coloring f using three colors. Color the vertices of G such that v ∈ V (G) receives color
f (vv′). It can be easily seen that this is a proper vertex-coloring of G by three colors. Thus G is 3-colorable. Conversely, suppose
G is 3-colorable and g is a proper vertex-coloring of G by three colors. For each v ∈ V (G), assign color g(v) to all arcs of G∗ with
tail v, and assign any of the three colors of g to v′v. It can be verified that this is a 3-arc coloring of G∗ and hence χ ′

3(G
∗) ≤ 3.

Thus we have proved that χ ′

3(G
∗) ≤ 3 if and only if G is 3-colorable. Since the problem of deciding whether a planar graph is

3-colorable is NP-complete [7], the problem of deciding whether χ ′

3(G) ≤ 3 is NP-complete, too. �

5. Problems

It is known that line graphs and 2-path graphs (that is, 3-path graphs as used in [11]) have forbidden subgraph characteriza-
tions; see [17, 7.1] and [11], respectively. In contrast, as far as we are aware, there is no known characterization of 3-arc graphs.

Problem 1. Characterize 3-arc graphs of connected graphs.

Other interesting problems include the following two.

Problem 2. Let G be a connected graph with δ(G) ≥ 3. Under what conditions is X(G) Hamiltonian?

Problem 3. Give a sharp upper bound on γ (X(G)) in terms of γ (G) for any connected graph Gwith δ(G) ≥ 2.

There is a wide space for improving results of this paper. For instance, the gap between the upper and lower bounds in (2)
is big (though both bounds are sharp in general) and it may be improved for some special families of graphs. Also, the lower
bound in (6) seems to be far from optimal for χ ′

3(G) > 2.
There is an extensive literature on line graphs with hundreds of publications, and also dozens of papers on path graphs

have been published (e.g. [4,11]). As these two graph operators are related [10] to the 3-arc graph operator, we expect that
techniques used previously for line graphs and path graphs may be utilized to derive properties of 3-arc graphs.
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