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Abstract

In this paper we give a classification of a family of symmetric graphs with com-
plete 2-arc transitive quotients. Of particular interest are two subfamilies of graphs
which admit an arc-transitive action of a projective linear group. The graphs in
these subfamilies can be defined in terms of the cross ratio of certain 4-tuples of
elements of a finite projective line, and thus may be called the second type ‘cross
ratio graphs’, which are different from the ‘cross ratio graphs’ studied in [A. Gar-
diner, C. E. Praeger and S. Zhou, Cross-ratio graphs, J. London Math. Soc. (2) 64
(2001), 257-272]. We also give a combinatorial characterisation of such second type
cross ratio graphs.
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1 Introduction

Exploring the symmetry of various mathematical structures is a lasting endeavor of human

beings. In particular, the study of symmetric graphs has long been one of the main streams

in algebraic graph theory [2] since Tutte’s seminal work [17]. Over decades researchers in

this area have produced a large number of beautiful results on symmetric graphs. The

reader is referred to [14, 15] for surveys on symmetric graphs and intertwined connections

between them and finite groups.

The purpose of this paper is to give a classification of a family of symmetric graphs

with complete 2-arc transitive quotients. This forms part of the broad program [9, 11, 12,
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19, 20, 21, 22] of studying symmetric graphs with 2-arc transitive quotients. Of particular

interest arising from the classification are two subfamilies of symmetric graphs which

admit an arc-transitive action of a projective linear group. Such graphs can be defined

in terms of the cross ratio of certain 4-tuples of elements of a finite projective line, but

they are different from the ‘cross ratio graphs’ studied in [6, 8]. The main result of the

paper relies on the classification [4, 10] of finite 3-transitive groups, which in turn is a

consequence of the classification of finite simple groups.

To explain our results let us introduce some notation and terminology, beginning with

the following standard definitions [5] for permutation groups. Let G be a finite group

and Ω a finite set. An action of G on Ω (with degree |Ω|) is a mapping Ω × G → Ω,

(α, g) 7→ αg such that α1 = α and (αg)h = αgh for any α ∈ Ω and g, h ∈ G, where

1 is the identity of G; we also say that G acts on Ω. If αg = α, then g fixes α. If 1

is the only element of G which fixes every α ∈ Ω, then G is faithful on Ω; otherwise

G is unfaithful on Ω. Define Gα := {g ∈ G : αg = α}, the stabiliser of α in G, and

similarly Gαβ := {g ∈ G : αg = α, βg = β} for fixed α, β ∈ Ω. The setwise stabiliser

of X ⊆ Ω in G is GX := {g ∈ G : Xg = X}, where Xg := {αg : α ∈ X}, and the

G-orbit containing α ∈ Ω is αG := {αg : g ∈ G}. If αG = Ω for some (and hence all)

α ∈ Ω, then G is transitive on Ω. If G is transitive on the set of k-tuples of distinct

members of Ω in its coordinate-wise induced action, then G is said to be k-transitive

on Ω, where k ≥ 1 is an integer. All groups in this paper can be found in [5, 13]. In

particular, M11,M12,M22,M23,M24 are the well-known Mathieu groups, and K.H denotes

the semidirect product of K by H.

Let Γ = (V (Γ), E(Γ)) be a (finite, undirected, simple) graph and s ≥ 1 an integer.

An s-arc of Γ is an (s + 1)-tuple (α0, α1, . . . , αs) of vertices of Γ such that αi, αi+1 are

adjacent for i = 0, . . . , s− 1 and αi−1 6= αi+1 for i = 1, . . . , s− 1. In particular, a 1-arc is

called an arc. Denote by Arcs(Γ) the set of s-arcs and Arc(Γ) := Arc1(Γ) the set of arcs

of Γ. The graph Γ is said to admit a finite group G as a group of automorphisms if G

acts on V (Γ) and, for any α, β ∈ V (Γ) and g ∈ G, α and β are adjacent in Γ if and only

if αg and βg are adjacent in Γ. In the case where G is transitive on V (Γ) and, under the

induced action, transitive on Arcs(Γ), Γ is said to be (G, s)-arc transitive. Thus, if G is

transitive on V (Γ), then Γ is (G, 2)-arc transitive if and only if for some α ∈ V (Γ), Gα

is 2-transitive on Γ(α), the neighbourhood of α. A (G, 1)-arc transitive graph is usually

called a G-symmetric graph. Such a graph Γ is said to be imprimitive if G is imprimitive

on V (Γ), that is, V (Γ) admits a nontrivial partition B such that Bg := {αg : α ∈ B} ∈ B
for B ∈ B and g ∈ G; call B a nontrivial G-invariant partition. In this case the quotient

graph of Γ with respect to B, ΓB, is the graph with vertex set B such that B,C ∈ B are

adjacent if and only if there exist α ∈ B, β ∈ C such that α, β are adjacent in Γ. This

quotient graph is G-symmetric under the induced action (possibly unfaithful) of G on

B. Throughout the paper we always use b := |ΓB(B)| to denote the valency of ΓB, where

ΓB(B) is the neighbourhood of B ∈ B in ΓB. Denote Γ(B) :=
⋃
α∈B Γ(α).

Continuing the work in [12], in this paper we study imprimitive G-symmetric graphs

(Γ,B) such that the quotient ΓB is a complete (G, 2)-arc transitive graph. The main result,
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P3(Kb+1) CR2(b;x, s) TCR2(b;x, s)
Example 2.2 Example 2.8 Example 2.9

Γ(=)(d, 2) and Γ(')(d, 2) Γ(1)(M11) and Γ(2)(M11) Γ(1)(M22) and Γ(2)(M22)
Examples 2.3 and 2.4 Example 2.5 Example 2.6

Table 1: Graphs in Theorem 1.1.

Theorem 1.1 below, is a classification of such graphs under certain additional conditions.

Details of the graphs in the classification together with the corresponding groups will be

given in the next section; see Table 1 for a summary. Denote by n · Σ the vertex-disjoint

union of n copies of a given graph Σ, and Kn the complete graph with n vertices. Note

that, for a prime power b = pe and x ∈ GF(b) \ {0, 1}, the subfield of the Galois field

GF(b) generated by x has the form GF(ps(x)), for some divisor s(x) of e.

Theorem 1.1 Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition

B, where G ≤ Aut(Γ). Suppose that ΓB is a complete (G, 2)-arc transitive graph of valency

b, each vertex of Γ has neighbours in exactly two blocks of B, and for any three blocks

B,C,D of B there exists exactly one vertex in B which has neighbours in both C and D.

Then b(b− 1)/2 = |B| > |Γ(C)∩B| = b− 1, G is 3-transitive and faithful on B of degree

b + 1, and either Γ = ((b − 1)b(b + 1)/6) · K3 with G an arbitrary 3-transitive group of

degree b+ 1, or one of the following (a)-(f) holds.

(a) Γ = P3(Kb+1) (path graph of Kb+1) and G is either Sb+1 (b ≥ 3), or Ab+1 (b ≥ 5),

or Mb+1 (b = 10, 11, 22, 23).

(b) Γ = CR2(b;x, s) and it admits PGL(2, b).〈ψs〉 as an arc-transitive group of auto-

morphisms, where b = pe with p a prime and e ≥ 1, x ∈ GF(b) \ {0, 1}, and s is a divisor

of s(x).

(c) Γ = TCR2(b;x, s) and it admits M(s/2, b) as an arc-transitive group of automor-

phisms, where b = pe with p an odd prime and e ≥ 2 an even integer, x ∈ GF(b) \ {0, 1}
with s(x) even and x− 1 a square of GF(b), and s is an even divisor of s(x).

(d) Γ = Γ(=)(d, 2) or Γ(')(d, 2), b = 2d − 1, where d ≥ 2, and either G = AGL(d, 2),

or d = 4 and G = Z4
2.A7.

(e) (Γ, G) = (Γ(1)(M11),M11) or (Γ(2)(M11),M11), and b = 11.

(f) (Γ, G) = (Γ(1)(M22),M22) or (Γ(2)(M22),M22), and b = 21.

The class of imprimitive G-symmetric graphs (Γ,B) such that ΓB is (G, 2)-arc tran-

sitive, |{C ∈ B : Γ(α) ∩ C 6= ∅}| = 2 for α ∈ V (Γ) and |Γ(C) ∩ Γ(D) ∩ B| = 1 for

distinct C,D ∈ ΓB(B) has been studied in [12, Section 4.1]. Theorem 1.1 classifies such

graphs under the additional condition that ΓB is a complete graph. Among the graphs

above, CR2(b;x, s) and TCR2(b;x, s) in (b)-(c) of Theorem 1.1 are especially interesting

to us. They can be defined in terms of the cross ratio of certain 4-tuples of elements of

the projective line PG(1, b) over GF(b), where b ≥ 3 is a prime power. (See Examples

2.8 and 2.9 for details.) Theorem 1.2 below gives a combinatorial characterisation of such

‘cross ratio graphs’, which is similar to the characterisation [8, Theorem 5.1] of the first
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type ‘cross ratio graphs’. Let

V2(b) := {xyz : x, y, z ∈ PG(1, b), x, y, z pairwise distinct} (1)

with the understanding that xyz = zyx. (The sequence xyz will be interpreted as a path

of length 2 in the complete graph with vertex set PG(1, b).)

Theorem 1.2 Let b = pe ≥ 3 with p a prime and e ≥ 1 an integer. Suppose that Γ

is a G-symmetric graph with V (Γ) = V2(b) and E(Γ) ⊆ {{wuy, w′u′y′} : wuy, w′u′y′ ∈
V2(b), u ∈ {w′, y′}, u′ ∈ {w, y}}, where G is a 3-transitive subgroup of PΓL(2, b) with the

induced natural action on V2(b). Then one of the following holds:

(a) Γ = ((b − 1)b(b + 1)/6) · K3 with connected components {{wuy, uyw, ywu}}, for

distinct w, u, y ∈ PG(1, b);

(b) Γ is isomorphic to CR2(b;x, s) or TCR2(b;x, s), for some x, s as in (b) or (c) of

Theorem 1.1.

2 Proof of Theorem 1.1

Let (Γ,B) be an imprimitive G-symmetric graph such that ΓB is (G, 2)-arc transitive.

Then the setwise stabiliser of B ∈ B in G, GB, is 2-transitive on the neighbourhood

ΓB(B) of B in ΓB. Thus, for distinct C,D ∈ ΓB(B), |Γ(C) ∩ Γ(D) ∩ B| is a constant.

That is, λ := |Γ(C)∩Γ(D)∩B| is independent of the choice of the 2-arc (C,B,D) of ΓB.

Moreover, if λ ≥ 1, then the incidence structure with ‘point set’ ΓB(B) and ‘block set’ B

such that C ∈ ΓB(B) is incident with α ∈ B if and only if α ∈ Γ(C) is a 2-(b, r, λ) design,

where r := |{C ∈ B : Γ(α) ∩ C 6= ∅}| = |{C ∈ B : α ∈ Γ(C)}|, which is independent of

the choice of α ∈ V (Γ). (See [1] for terminology on block designs.)

A major tool for establishing Theorem 1.1 is a construction given in [12], which we

explain now. A 2-path is a 2-arc identified with its reverse 2-arc. Let τστ ′ denote the

2-path with mid-vertex σ and end-vertices τ, τ ′. Note that τ ′στ represents the same 2-

path, and τστ ′ = ηεη′ if and only if σ = ε and {τ, τ ′} = {η, η′}. For a regular graph Σ

with valency at least 2,

B2(Σ) := {B2(σ) : σ ∈ V (Σ)}

is a partition of the 2-paths of Σ, where B2(σ) is the set of 2-paths of Σ with mid-vertex

σ. Let ∆ be a self-paired subset of Arc3(Σ), that is, (τ, σ, ε, η) ∈ ∆ implies (η, ε, σ, τ) ∈ ∆.

Define [12] Γ2(Σ,∆) to be the graph with the set of 2-paths of Σ as vertex set such that

two distinct ‘vertices’ τστ ′ and ηεη′ are adjacent if and only if they have a common edge

(that is, σ ∈ {η, η′} and ε ∈ {τ, τ ′}) and moreover the two 3-arcs (which are reverses of

each other) formed by ‘gluing’ this common edge are in ∆. For example, if σ = η′, ε = τ ′,

then the 3-arcs thus formed are (τ, σ, ε, η) and (η, ε, σ, τ), which should be in ∆ if τστ ′ and

ηεη′ are adjacent in Γ2(Σ,∆). The self-parity of ∆ ensures that Γ2(Σ,∆) is a well-defined

undirected graph. We will use the following result in the proof of Theorem 1.1.
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Theorem 2.1 ([12, Theorem 4.3]) Let Σ be a (G, 2)-arc transitive graph with valency

b ≥ 3 and ∆ a self-paired G-orbit on Arc3(Σ). Then Γ := Γ2(Σ,∆) is a G-symmetric graph

admitting B := B2(Σ) as a G-invariant partition such that ΓB is (G, 2)-arc transitive,

|B| > |Γ(C) ∩ B| for adjacent B,C ∈ B, and (λ, r) = (1, 2). Moreover, G is faithful on

V (Γ) if and only if it is faithful on V (Σ).

Conversely, any imprimitive G-symmetric graph (Γ,B) such that ΓB is (G, 2)-arc tran-

sitive of valency b ≥ 3, |B| > |Γ(C) ∩ B| for adjacent B,C ∈ B, and (λ, r) = (1, 2) is

isomorphic to Γ2(ΓB,∆) for a self-paired G-orbit on Arc3(ΓB). Moreover, G is faithful on

V (Γ) if and only if it is faithful on B.

Furthermore, in both parts of this theorem we have |B| = b(b−1)/2 and |Γ(C)∩B| =
b− 1 for adjacent B,C ∈ B. A 3-arc is called proper if it is not a 3-cycle.

Proof of Theorem 1.1 Let Γ be aG-symmetric graph admitting a nontrivialG-invariant

partition B such that ΓB ∼= Kb+1 is a complete (G, 2)-arc transitive graph of valency b,

where G ≤ Aut(Γ). Suppose that each vertex of Γ has neighbours in exactly two blocks

of B, and for any three blocks B,C,D of B exactly one vertex in B has neighbours in

both C and D. Then (λ, r) = (1, 2), and hence |B| = b(b− 1)/2 and |Γ(C) ∩ B| = b− 1

for adjacent B,C ∈ B. Also b ≥ 3 for otherwise B would be a trivial partition. Hence

|B| > |Γ(C) ∩B|.
From Theorem 2.1, Γ ∼= Γ2(Kb+1,∆) for a self-paired G-orbit ∆ on Arc3(Kb+1), and

G is faithful on B since G ≤ Aut(Γ) is faithful on V (Γ). Moreover, since ΓB is a complete

graph and is (G, 2)-arc transitive, G is 3-transitive on B. Thus, from the classification of

highly transitive permutation groups (see e.g. [4, 10]), G is one of the following groups

of degree b+ 1 with the natural 3-transitive permutation representation on V (Kb+1): (i)

Sb+1 (b ≥ 3); (ii) Ab+1 (b ≥ 4); (iii) AGL(d, 2) (b = 2d − 1 ≥ 3); (iv) Z4
2.A7 (b = 15);

(v) Mathieu groups Mb+1 (b = 10, 11, 21, 22, 23) and M11 (b = 11); and (vi) 3-transitive

groups G satisfying PGL(2, b) ≤ G ≤ PΓL(2, b) (b ≥ 3 is a prime power, note that

PGL(2, 4) ∼= A5).

In the case where ∆ contains a 3-cycle, it must consist of all 3-cycles of Kb+1, and

one can check that Γ2(Kb+1,∆) ∼= ((b− 1)b(b+ 1)/6) ·K3 and G can be any 3-transitive

group of degree b+ 1 in the list above. Henceforth we may assume that ∆ is a self-paired

G-orbit on the set of proper 3-arcs of Kb+1. In the remaining part of this section we will

determine, for each 3-transitive group G above, all such self-paired G-orbits ∆ together

with the corresponding graphs Γ2(Kb+1,∆), and thus complete the proof of Theorem 1.1.

These graphs will be given in Examples 2.2, 2.3, 2.4, 2.5, 2.6, 2.8 and 2.9, and sorted in

terms of the corresponding groups. 2

The self-paired G-orbits ∆ above were used in the classification of another family of

symmetric graphs with complete 2-arc transitive quotients; see [21, Theorem 3.19] and [7].

However, the graphs arisen therein are different from those in Theorem 1.1, and they are

defined as 3-arc graphs. (For a regular graph Σ and a self-paired subset ∆ of Arc3(Σ), the

3-arc graph [11, 18] Ξ(Σ,∆) of Σ with respect to ∆ is defined to have vertex set Arc(Σ)
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such that (σ, τ), (σ′, τ ′) are adjacent if and only if (τ, σ, σ′, τ ′) ∈ ∆.) The information

about ∆ derived from [21] will be used in our subsequent discussions.

Example 2.2 (path graph P3(Kb+1)) IfG is 4-transitive on V (Kb+1), then eitherG = Sb+1

(b ≥ 3), or G = Ab+1 (b ≥ 5), or G = Mb+1 (b = 10, 11, 22, 23). In each case G is transitive

on the set ∆ of proper 3-arcs of Kb+1, and hence ∆ is the unique self-paired G-orbit on

such 3-arcs. Thus, we obtain a unique graph, namely, Γ := Γ2(Kb+1,∆). For each proper

3-arc (τ, σ, ε, η), {τσε, ηεσ} is an edge of Γ, and moreover any edge of Γ is of this form.

Hence Γ is exactly the path graph P3(Kb+1) of Kb+1. (Given a graph Σ, the path graph

P3(Σ) [3] is the graph with 2-paths of Σ as vertices such that two ‘vertices’ are adjacent

if and only if the corresponding 2-paths have exactly one common edge. In the case

when Σ is regular of valency ≥ 2 and ∆ is the set of all proper 3-arcs of Σ, we have

Γ2(Σ,∆) ∼= P3(Σ) [12, Remark 4.5(d)].)

For any distinct σ, ε ∈ V (Kb+1), the subgraph of Γ induced by edges between B2(σ)

and B2(ε) is the complete bipartite graph Kb−1,b−1 with a perfect matching deleted. Thus,

Γ is a connected graph with order (b− 1)b(b+ 1)/2, valency 2(b− 1) and diameter 3.

From now on we consider the case where G is 3-transitive but not 4-transitive on

V (Kb+1).

Example 2.3 (Affine graphs Γ(=)(d, 2) and Γ(')(d, 2)) The group AGL(d, 2) is 3-transitive

on the point set V (d, 2) of AG(d, 2), where d ≥ 2. Let Kb+1 be defined on V (d, 2), where

b = 2d − 1 ≥ 3. For d ≥ 3, by [21, Lemma 3.9] and the discussion in [21, Remark 3.12],

there are exactly two self-paired AGL(d, 2)-orbits on the proper 3-arcs of Kb+1, namely,

∆= := {(w,u,y, z) : u,w,y, z ∈ V (d, 2) distinct, u−w = y − z}

and

∆' := {(w,u,y, z) : u,w,y, z ∈ V (d, 2) independent}.

Therefore, Γ(=)(d, 2) := Γ2(Kb+1,∆
=) and Γ(')(d, 2) := Γ2(Kb+1,∆

') are the only graphs

arising from AGL(d, 2) when d ≥ 3. The vertices of these graphs are wuy (= yuw) for

distinct w,u,y ∈ V (d, 2), and the edges of them are {wuy,uyz} for distinct u,w,y, z ∈
V (d, 2), where u−w = y − z for Γ(=)(d, 2), and u,w,y, z are independent for Γ(')(d, 2).

In other words, wuy and uyz are adjacent in Γ(=)(d, 2) precisely when in AG(d, 2) the

unique line through u, w and the unique line through y, z are parallel, and they are

adjacent in Γ(')(d, 2) precisely when these two lines are skew. In the case when d = 2, we

have b + 1 = 4 and by [21, Lemma 3.9] ∆= above is the only self-paired AGL(2, 2)-orbit

on the proper 3-arcs of K4. Hence Γ(=)(2, 2) ∼= 3 · C4 is the unique graph arising from

AGL(2, 2).

Example 2.4 (Affine graphs Γ(=)(4, 2) and Γ(')(4, 2)) The group Z4
2.A7 is a subgroup of

AGL(4, 2), where Z4
2 acts on V (K16) := V (4, 2) by translations and G0

∼= A7 is a subgroup

of GL(4, 2) ∼= A8 acting 2-transitively on V (4, 2) \ {0} in its natural action. As shown in
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[21, Example 3.16, Remark 3.12], ∆= and ∆' (for d = 4) defined in Example 2.3 are the

only self-paired (Z4
2.A7)-orbits on the proper 3-arcs of K16. Thus, Γ(=)(4, 2) and Γ(')(4, 2)

are the only graphs arising from Z4
2.A7.

Example 2.5 (Mathieu graphs Γ(1)(M11) and Γ(2)(M11)) The Mathieu group M11 with

degree b + 1 = 12 is the automorphism group of the unique 3-(12, 6, 2) design D. Let

K12 be defined on the point set of D, so that M11 is 3-transitive on V (K12). For a 2-arc

(τ, σ, ε) of K12, there are exactly two blocks of D which contain τ, σ, ε simultaneously. Let

X(τ, σ, ε) denote the union of these two blocks of D. It was proved in [21, Example 3.17]

that there are exactly two self-paired M11-orbits on the proper 3-arcs of K12, namely,

∆1 := {(τ, σ, ε, η) : η ∈ V (K12) \X(τ, σ, ε)}

∆2 := {(τ, σ, ε, η) : η ∈ X(τ, σ, ε) \ {τ, σ, ε}}.

Thus, Γ(1)(M11) := Γ2(K12,∆1) and Γ(2)(M11) := Γ2(K12,∆2) are the only graphs arising

from M11. Since B2(K12) has block size 55, these graphs have order 12 × 55 = 660. For

distinct σ, ε ∈ V (K12), there are 10 vertices in B2(σ) which have neighbours in B2(ε)

in each of these graphs. Since |V (K12) \ X(τ, σ, ε)| = 3 and |X(τ, σ, ε) \ {τ, σ, ε}| = 6

([21, Example 3.17]), it follows that Γ(1)(M11) and Γ(2)(M11) have valencies 6 and 12,

respectively.

Example 2.6 (Mathieu graphs Γ(1)(M22) and Γ(2)(M22)) The Mathieu group M22 of de-

gree b+1 = 22 is the automorphism group of the 3-(22, 6, 1) Steiner system D. Let K22 be

defined on the point set of D, so that M22 is 3-transitive on V (K22). For a 2-arc (τ, σ, ε)

of K22, let Y (τ, σ, ε) be the unique block of D containing τ, σ and ε. It was proved in [21,

Example 3.18] that there are exactly two self-paired M22-orbits on the proper 3-arcs of

K22, namely,

∆1 := {(τ, σ, ε, η) : η ∈ V (K22) \ Y (τ, σ, ε)}

∆2 := {(τ, σ, ε, η) : η ∈ Y (τ, σ, ε) \ {τ, σ, ε}}.

Hence Γ(1)(M22) := Γ2(K22,∆1) and Γ(2)(M22) := Γ2(K22,∆2) are the only graphs arising

from M22. Since B2(K22) has block size 210, the order of these graphs is 22× 210 = 4620.

For distinct σ, ε ∈ V (K22) there are 20 vertices in B2(σ) which have neighbours in B2(ε)

in each of these graphs. Since |V (K22) \ Y (τ, σ, ε)| = 16 and |Y (τ, σ, ε) \ {τ, σ, ε}| = 3

([21, Example 3.18]), Γ(1)(M22) and Γ(2)(M22) have valencies 32 and 6, respectively.

The remainder of this section is devoted to graphs arising from 3-transitive subgroups

of PΓL(2, b), where b = pe ≥ 3 with p a prime and e ≥ 1. The projective line PG(1, b)

over GF(b) can be identified with GF(b) ∪ {∞}, where ∞ satisfies the usual arithmetic

rules such as 1/∞ = 0,∞ + y = ∞, ∞p = ∞, etc. The 2-dimensional projective group

PGL(2, b) consists of all Möbius transformations

tα,β,γ,δ : z 7→ αz + β

γz + δ
(α, β, γ, δ ∈ GF(b), αδ − βγ 6= 0)
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of PG(1, b) (see e.g. [13, pp.20-21]). Note that tα,β,γ,δ = tα′,β′,γ′,δ′ if and only if (α, β, γ, δ)

is a non-zero multiple of (α′, β′, γ′, δ′). The group PGL(2, b) is sharply 3-transitive in

this action on PG(1, b), that is, it is 3-transitive and only the identity element t1,0,0,1 of

PGL(2, b) fixes three elements of PG(1, b). The Frobenius automorphism ψ : x 7→ xp of

GF(b) induces an automorphism of PGL(2, b) by ψ : tα,β,γ,δ 7→ tαp,βp,γp,δp , and the group

generated by PGL(2, b) and ψ is the semidirect product PΓL(2, b) := PGL(2, b).〈ψ〉. This

group is the automorphism group of PGL(2, b), and it acts on PG(1, b) (with ψ : z 7→ zp,

where∞p = ∞) as a 3-transitive group. We will use the following result about 3-transitive

subgroups of PΓL(2, b).

Lemma 2.7 ([8, Theorem 2.1]) Let b = pe with p a prime and e ≥ 1 an integer. A

subgroup of PΓL(2, b) is 3-transitive on PG(1, b) if and only if it is one of the following

groups:

(a) PGL(2, b).〈ψs〉, where s is a divisor of e;

(b) M(s/2, b) := 〈PSL(2, b), ψs/2tα,0,0,1〉, where p is odd, e is even, s is an even divisor

of e, and α is a primitive element of GF(b).

For a 4-tuple (u,w, y, z) of distinct elements of PG(1, b), the cross ratio (see e.g. [13,

pp. 59]) is defined as

c(u,w; y, z) :=
(u− y)(w − z)

(u− z)(w − y)
.

The cross ratio can take all values in GF(b) except 0 and 1, and is invariant under

the induced action of PGL(2, b) on 4-tuples of distinct elements of PG(1, b). Under the

Frobenius mapping ψ, we have

c(uψ, wψ; yψ, zψ) = c(u,w; y, z)ψ. (2)

Recall that, for each x ∈ GF(b) \ {0, 1}, the subfield of GF(b) generated by x has the

form GF(ps(x)), for some divisor s(x) of e. Given x, for each divisor s of s(x), let B(x, s)

denote the 〈ψs〉-orbit containing x, that is,

B(x, s) := {xψsi

: 0 ≤ i < s(x)/s}.

In the remaining part of this paper Kb+1 is taken as defined on PG(1, b), so that V2(b)

defined in (1) is the set of 2-paths of Kb+1. Since there are two kinds of 3-transitive

subgroups of PΓL(2, b) (Lemma 2.7), there are two kinds of ‘second type cross ratio

graphs’, CR2(b;x, s) and TCR2(b;x, s), which will be given in the next two examples.

The name ‘cross ratio’ is used since the adjacency relations of these graphs can be defined

in terms of cross ratio, just as the case for the (first type) ‘cross ratio graphs’ [8] CR(b;x, s)

and TCR(b;x, s). The ‘untwisted cross ratio graphs’ CR2(b;x, s) and CR(b;x, s) share a

self-paired G-orbit ∆ on the proper 3-arcs of Kb+1, that is, CR2(b;x, s) = Γ2(Kb+1,∆)

and CR(b;x, s) = Ξ(Kb+1,∆) for the same ∆. Similar relation holds for the ‘twisted cross

ratio graphs’ TCR2(b;x, s) and TCR(b;x, s).
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Example 2.8 (Second type untwisted cross ratio graphs CR2(b;x, s)) Let x ∈ GF(b) \
{0, 1}, and let s be a divisor of s(x). Define CR2(b;x, s) to have vertex set V2(b) (defined

in (1)) and arc set

{(wuy, uyz) : u,w, y, z ∈ PG(1, b) distinct, c(u,w; y, z) ∈ B(x, s)}.

Since (uyz, wuy) = (zyu, yuw) and c(y, z;u,w) = c(u,w; y, z), (wuy, uyz) is an arc of

CR2(b;x, s) if and only if (uyz, wuy) is an arc of CR2(b;x, s). Thus, CR2(b;x, s) is well-

defined as an undirected graph.

Since c(∞, 0; 1, x) = x ∈ B(x, s), by (2) we have

c(∞ψsi

, 0ψ
si

; 1ψ
si

, xψ
si

) = c(∞, 0; 1, x)ψ
si

= xψ
si ∈ B(x, s).

Let G := PGL(2, b).〈ψs〉. Then G is transitive on 4-tuples of distinct elements of PG(1, b)

with a fixed cross ratio (see e.g. [13, pp. 59]). Thus, (wuy, uyz) is an arc of CR2(b;x, s)

⇔ c(u,w; y, z) ∈ B(x, s) ⇔ c(u,w; y, z) = xψ
si

for some i, 0 ≤ i < s(x)/s ⇔ (w, u, y, z) ∈
∆ := (0,∞, 1, x)G. It is readily seen that t1,−x,1,−1 ∈ G reverses (0,∞, 1, x). Thus, ∆ is

a self-paired G-orbit on Arc3(Kb+1), and CR2(b;x, s) is precisely the graph Γ2(Kb+1,∆).

Consequently, by Theorem 2.1 it admits G as an arc-transitive group of automorphisms.

Moreover, since G is 3-transitive on PG(1, b), every self-paired G-orbit on proper 3-arcs

of Kb+1 has the form (0,∞, 1, x)G for some x ∈ GF(b) \ {0, 1}, and hence no other graph

arises from G.

For the same x, s,G,∆ as above, from the discussion in [21, Example 3.1] the 3-arc

graph Ξ(Kb+1,∆) is exactly the (first type) untwisted cross ratio graph CR(b;x, s) [8].

That is, CR(b;x, s) has vertex set {(y, z) : y, z ∈ PG(1, b), y 6= z} such that (u,w), (y, z)

are adjacent if and only if (w, u, y, z) ∈ ∆, that is, c(u,w; y, z) ∈ B(x, s).

Example 2.9 (Second type twisted cross ratio graphs TCR2(b;x, s)) Let b = pe with p

an odd prime and e ≥ 2 an even integer. Let x ∈ GF(b) \ {0, 1} such that x − 1 is a

square of GF(b) and s(x) is even, and s an even divisor of s(x). Let G := M(s/2, b) and

∆ := (0,∞, 1, x)G. Define TCR2(b;x, s) to be the graph with vertex set V2(b) and arc set

{(wuy, uyz) : u,w, y, z ∈ PG(1, b) distinct, (w, u, y, z) ∈ ∆}.

Since x − 1 is a square, we have t1,−x,1,−1 ∈ PSL(2, b) ≤ M(s/2, b). Thus, since

t1,−x,1,−1 reverses (0,∞, 1, x), ∆ is a self-paired G-orbit on the proper 3-arcs of Kb+1.

Hence TCR2(b;x, s) is indeed well-defined as an undirected graph, and it is the graph

Γ2(Kb+1,∆) and so admits G as an arc-transitive group of automorphisms by Theorem

2.1. Moreover, the 3-transitivity of G on PG(1, b) implies that every self-paired G-orbit

on the proper 3-arcs of Kb+1 has the form (0,∞, 1, x)G for some x. Hence all graphs

Γ2(Kb+1,∆) arising from G have the form TCR2(b;x, s).

For the same x, s,G, ∆ as in Example 2.9, it follows from [21, Example 3.1] that the 3-

arc graph Ξ(Kb+1,∆) is exactly the (first type) twisted cross ratio graph TCR(b;x, s) [8].
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That is, TCR(b;x, s) has vertex set {(y, z) : y, z ∈ PG(1, b), y 6= z} such that (u,w), (y, z)

are adjacent if and only if (w, u, y, z) ∈ ∆.

The proof of Theorem 1.1 is complete up to now. 2

3 Proof of Theorem 1.2

Let

B2(b) := {B2(u) : u ∈ PG(1, b)},

where

B2(u) := {wuy : w, y ∈ PG(1, b) \ {u}, w 6= y}.

Then B2(b) (= B2(Kb+1)) is a PΓL(2, b)-invariant partition of V2(b). The following lemma

will be used in the proof of Theorem 1.2.

Lemma 3.1 Let b = pe with p a prime and e ≥ 1. Let x ∈ GF(b) \ {0, 1}, and let s be a

divisor of s(x). Let Γ = CR2(b;x, s) and G = PGL(2, b).〈ψs〉, or Γ = TCR2(b;x, s) and

G = M(s/2, b), where in the latter case e, s(x), s are even and x− 1 is a square of GF(b).

Then the valency of Γ is 2s(x)/s and the neighbourhood of 0∞1 in Γ is

Γ(0∞1) = {∞1y : y ∈ B(x, s)} ∪ {∞0z : z ∈ −B(x, s) + 1}, (3)

where −B(x, s) + 1 := {−xψsi
+ 1 : 0 ≤ i < s(x)/s}. Moreover, the stabiliser in G of the

vertex 0∞1 is given by H := (G∞){0,1} = 〈t−1,1,0,1〉.〈ψs〉.

Proof Since Γ = Γ2(Kb+1,∆), where ∆ is as in Example 2.8 or 2.9 respectively, by the

definition of Γ2(Kb+1,∆) it follows that Γ(0∞1) ∩B2(u) 6= ∅ if and only if u = 1 or 0.

Consider Γ = CR2(b;x, s) and G = PGL(2, b).〈ψs〉 first. Since c(∞, 0; 1, y) = y for

y ∈ GF(b)\{0, 1}, 0∞1 and∞1y ∈ B2(1) are adjacent in Γ if and only if y ∈ B(x, s). Since

|B(x, s)| = s(x)/s, and since only B2(1) and B2(0) contain neighbours of 0∞1, the valency

of Γ is equal to 2s(x)/s. Since G∞01 = 〈ψs〉 ([8, Corollary 2.2]) and (PGL(2, b)∞){0,1} =

〈t−1,1,0,1〉, we have H = 〈t−1,1,0,1〉.〈ψs〉. Note that (1,∞, 0, z) = (0,∞, 1, y)g for some

g ∈ G ⇔ g ∈ H, z = yg, and g swaps 0 and 1 ⇔ z ∈ −B(x, s) + 1. Therefore, 1∞0

(= 0∞1) is adjacent to ∞0z if and only if z ∈ −B(x, s) + 1, and hence (3) holds.

Next let us consider Γ = TCR2(b;x, s) and G = M(s/2, b). Since e is even, −1

is a square of GF(b) and hence (PSL(2, b)∞){0,1} = 〈t−1,1,0,1〉. Since G∞01 = 〈ψs〉 ([8,

Corollary 2.2]), it follows that H = 〈t−1,1,0,1〉.〈ψs〉. Using [8, Remark 3.5(b)], we have:

0∞1 and ∞1y are adjacent in Γ ⇔ (0,∞, 1, y) ∈ (0,∞, 1, x)G ⇔ (∞, 0) and (1, y) are

adjacent in CR(b;x, s) ⇔ y ∈ B(x, s). A similar argument as in the previous paragraph

then establishes (3). 2

A transitive group G on a set Ω induces an action on Ω × Ω, and the G-orbits on

Ω × Ω are called G-orbitals on Ω. Such a G-orbital ∆ is called self-paired if (α, β) ∈ ∆

implies (β, α) ∈ ∆. For a self-paired G-orbital ∆ other than {(α, α) : α ∈ Ω} (the trivial
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G-orbital), the graph with vertex set Ω and arc set ∆ is an undirected graph, called

a G-orbital graph on Ω, which admits G as an arc-transitive group of automorphisms.

Conversely, any G-symmetric graph with vertex set Ω is isomorphic to a G-orbital graph

on Ω. (See [14] for a more detailed discussion.)

Proof of Theorem 1.2 Let Γ and G satisfy the conditions of Theorem 1.2. Then by

Lemma 2.7, for some divisor s of e, G = PGL(2, b).〈ψs〉, or G = M(s/2, b) (where p is odd,

and s and e are even). From the discussion above, the graph Γ must be an orbital graph

for some non-trivial self-paired G-orbital on V2(b). Since G is 3-transitive on PG(1, b),

without loss of generality we may assume that this orbital is ∆′ := (0∞1, xuz)G, where

x, u, z ∈ PG(1, b) are pairwise distinct such that (∞, {0, 1}) 6= (u, {x, z}). The assumption

on Γ implies that u ∈ {0, 1} and ∞ ∈ {x, z}. If u = 1, then ∆′ := (0∞1, x1∞)G and

x ∈ PG(1, b) \ {∞, 1} by setting z = ∞ without loss of generality. Similarly, if u = 0,

then ∆′ := (1∞0, z0∞)G and z ∈ PG(1, b) \ {∞, 0} by letting x = ∞. From Lemma

3.1, we have H := (G∞){0,1} = 〈t−1,1,0,1〉.〈ψs〉. Given x, t−1,1,0,1 ∈ H maps (0∞1, x1∞)

to (1∞0, z0∞), where z = −x + 1, and hence (0∞1, x1∞)G = (1∞0, z0∞)G. Similarly,

for a given z, t−1,1,0,1 maps (1∞0, z0∞) to (0∞1, x1∞), where x = −z + 1, and hence

(1∞0, z0∞)G = (0∞1, x1∞)G. Therefore, the two types of self-paired G-orbital ∆′ above

(arising from u = 1 and u = 0) produce the same family of G-symmetric graphs, and

hence it suffices to consider only the first type.

Let ∆′ := (0∞1, x1∞)G, where x ∈ PG(1, b) \ {∞, 1}. It may happen that x = 0,

and in this case by the 3-transitivity of G on PG(1, b), Γ must consist of all 3-cycles

{wuy, uyw, ywu} for pairwise distinct w, u, y ∈ PG(1, b), and hence case (a) in Theorem

1.2 occurs. In the following we suppose x 6= 0. The self-parity of ∆′ implies that ∆ :=

(0,∞, 1, x)G is a self-paired G-orbit on the set of proper 3-arcs of Kb+1. Since 0∞1 is

adjacent to x1∞ ∈ B2(1) by the definition of ∆′, we have Γ(0∞1) ∩ B2(1) 6= ∅. Also, as

shown above, t−1,1,0,1 ∈ H maps (0∞1, x1∞) to (1∞0, z0∞), where z = −x + 1. Thus,

0∞1 is adjacent to z0∞ ∈ B2(0) in Γ, and hence Γ(0∞1) ∩ B2(0) 6= ∅. On the other

hand, suppose Γ(0∞1) ∩ B2(u) 6= ∅ for some u, say, 0∞1 is adjacent to wuy ∈ B2(u).

Then there exists an element of G which maps (0∞1, x1∞) to (0∞1, wuy). This element

must be in H and maps 1 to u, and hence u = 1 or 0. Therefore, Γ(0∞1) ∩ B2(u) 6= ∅ if

and only if u = 1 or 0.

Since G is transitive on the arcs of Γ and B2(b) is a G-invariant partition of V2(b), H

must be transitive on the vertices of Γ(0∞1) ∩ (B2(1) ∪B2(0)). Thus this set consists of

vertices x′1∞, z′0∞ for x′ ∈ E(x) := {xψsi
: 0 ≤ i < e}, z′ ∈ E(z) := {zψsi

: 0 ≤ i < e},
and vertices x′0∞, z′1∞ for x′ ∈ F (x) := {−xψsi

+1 : 0 ≤ i < e}, z′ ∈ F (z) := {−zψsi
+1 :

0 ≤ i < e}. Since z = −x + 1, we have F (x) = E(z) = −E(x) + 1, F (z) = E(x), and

consequently

Γ(0∞1) ∩B2(1) = {∞1x′ : x′ ∈ E(x)} (4)

Γ(0∞1) ∩B2(0) = {∞0z′ : z′ ∈ −E(x) + 1}. (5)

Note that E(x) is contained in the subfield GF(ps(x)) generated by x, and hence each

element of E(x) is left invariant by ψs(x). Thus, Γ(0∞1) is left invariant by 〈H,ψs(x)〉
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and consequently 〈G,ψs(x)〉 leaves the G-orbital of arcs of Γ invariant. In other words,

〈G,ψs(x)〉 is contained in Aut(Γ). Thus we may assume that ψs(x) ∈ G, and hence that s

divides s(x). This implies E(x) = B(x, s). Comparing (3) with (4)-(5), we conclude that

the neighbourhoods of 0∞1 in Γ and in CR2(b;x, s) or TCR2(b;x, s) are the same, and they

admit the same arc-transitive group G of automorphisms. Therefore, Γ ∼= CR2(b;x, s)

or TCR2(b;x, s), depending on whether G = PGL(2, b).〈ψs〉 or G = M(s/2, b), and this

completes the proof. 2

4 Remarks

Denote

B2(u;w) := {wuy : y 6= u,w}

for each pair u,w ∈ PG(1, b) with u 6= w. The graph CR2(b;x, s) can be thought as

obtained from CR(b;x, s) by unfolding each vertex of the latter to b − 1 vertices of the

former, namely, each vertex (u,w) of CR(b;x, s) is unfolded to the b − 1 vertices of

CR2(b;x, s) contained in B2(u;w). Note that each vertex wuy of CR2(b;x, s) has precisely

two pre-images (u,w), (u, y) under this operation. It is evident that {(u,w), (y, z)} 7→
{wuy, uyz} for (w, u, y, z) ∈ ∆ defines a bijection between the edges of CR(b;x, s) and

the edges of CR2(b;x, s), and {wuy, uyz} is the only edge of CR2(b;x, s) between B2(u;w)

and B2(y; z), where ∆ := (0,∞, 1, x)G as in Example 2.8. Similarly, TCR2(b;x, s) can

be obtained from TCR(b;x, s) by ‘unfolding’ each vertex (u,w) to the b − 1 vertices in

B2(u;w) in the same manner.

In a subsequent paper [16] we will have a detailed study of the second type cross ratio

graphs and answer a few questions about them.
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