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Abstract

We give a general Harper-type lower bound for the bandwidth of a graph which is a common
generalization of several known results. As applications we get a lower bound for the bandwidth
of the composition of two graphs. By using this we determine the bandwidths of some composi-
tion graphs such as (P, x Ps)[H],(Pr x C)[H] 2r # 5),(C; x C5)[H] (6 <2r<s), etc., for any
graph H. Interestingly, the bandwidths of these graphs have nothing to do with the structure of
H in general.

1. Introduction

Let G=(V(G),E(G)) be a simple graph with order n=|V(G)|. A bijection f : V(G)
—{1,2,...,n} is called a labeling of G, and B(G, f)=maxucr)|f(4) — f(v)|
is the bandwidth of labeling f. The bandwidth of G, denoted by B(G), is defined
to be the minimum bandwidth of labelings of G.

The bandwidth problem for graphs has attracted many graph theorists for its strongly
practical background and theoretical interest. Because of the NP-completeness of the
decision problem for finding the bandwidths of arbitrary graphs (even for trees of
maximum degree 3, see [6,12]), people are interested in finding bandwidths for special
graphs. In this direction, to make the lower bounds for the bandwidth as sharp as
possible is of great significance. For example, Harper’s lower bound [7] and various
generalizations of it [8,10,11,15] have been used extensively in determining bandwidths
for special graphs.
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The present paper consists of two parts. In the first part (Section 2) we will give a
general Harper-type lower bound for the bandwidth from which several known lower
bounds can be derived. In particular, we will give a generalization of Chvatal’s density
lower bound [4]. Such a bound is in fact Harper-type in a sense. In the second part
(Section 3), we will first give a lower bound for the bandwidth of the composition
of two graphs by using the results shown in Section 2. Then we will determine the
bandwidths of some composition graphs. As we will see, the bandwidths of (P, x Py)
[H] 2<r<s), (Pr x CyH] (2r # s) and (C, x C)[H] (6 <2r<s) are independent
of the structure of H in general. They rely only on the order of H.

2. Harper-type lower bounds

The terminology and notation in the paper follow those of [1]. Since the bandwidth
of a graph G is the maximum bandwidth of the components of G [2], we will always
suppose in this section that G is connected. For S C V(G), let S = V(G)\S. For a
positive integer r, let

0")(S) = {u € S: there exists v € § such that d(u,v)<r}
and

VINS)={v € S: there exists u € S such that d(u,v)<r}.

Here d(u,v) is the distance between u and v in G. In particular, (S) = d(S) and
V(S) = VI)(S) are the inner and outer boundaries of S, respectively. Define

() _ : @) 3
07(8) = in V¥ (u) N 8],

(r) _ : )
o7(S) = in V()N s].

For a labeling f of G, let u; = f~!(i) be the vertex with label i, 1<i<n, and
Sy = f“({1,2,...,k}) = {ul,uz,...,uk}, 1<k <n. Clearly, S} = {uk+1,uk+2,...,un}‘
Let

a = o(Sy) = min{i: w € IS},

B =B"(S) = max{j: u; € VO(Sp)},

DY) ={ueS: fuyza} = {Uytgi1,... .t}

DY(Sk) = {v € Sk f(0)<B} = {ths1, ka2, .., up} .
Then )(S;) € DV(Sk) C Sk, VO(Sp) € DY(Si) C Sy Clearly,

o =k+1— D7) (1)
and

B =k + DS )
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Let Df,')(Sk) =X UY be a subset of V(G) with the largest cardinality such that (i)
X CaN(S), Y CVI(S,), and (ii) u € X, v € Y imply d(u,v)<r. With this notation
we can prove the following:

Theorem 1. Let f be a labeling of G. Then for any integers r and k with 1<r,
1<k<n,

B(G, )= max{[41/r], [42/r], [43/r]},
where A; = |DV(Sp)|+0"(Sk)—1, 42 = DL (S))[+87(Se)—1 and A3 = |DT(S)|-1.
Proof. It is easy to see that if a < b and d(u,,up)<r then B(G, f)=(b — a)/r. Let

a = a)(Sy) be as above. Since u, € 07)(Sy), there exists up € V)(S,) such that
d(uy, up) <r. Choosing b maximal gives

b2k + |[VOu) N Skl =k + 67(Sk). 3)

Now (1) and (3) give B(G, f)=(b—a)/r=A4,/r. In a similar way we find B(G, f)=A4,/r.
Finally, let o/ = min{i: u; € X}, = max{j: u; € Y}. Then ' — o’ >43, and so
B(G, f)=A43/r. Theorem 1 follows. [

Theorem 1 implies several known results. First note that D(_l)(Sk),D(J:)(Sk) and
Dgl)(Sk) are precisely the sets D™ (S;), D" (S ) and D°(S}), respectively, defined in [8].

Theorem 1 gives
Corollary 1 (Li and Lin [8]). For any labeling f of G,
B(G, f)> max max{|D~(S0)},ID* (S0, ID(S)] - 1}.

For SCV(G), let
By(S) = [(107($)] +82(S) - 1y/r],
By(S) = [(IVV(S)] + 6(8) — 1)/r] -
Since d7)(S) €DV (k) and VO(Sy) CDY(S), we have
Corollary 2. For any labeling f of G and any integers r and k with 1<r and
1<k <n,
B(G, f)> max{B1(Sk), Bx(Sk)} = max{[|0"(S)|/r], [V (Sp)l/r]}
As in [10], an integer-valued function ¢ defined on subsets of V(G) is called a

generalized weight function if (i) o(D) = 0 and (ii) @(S U {x}) = ¢o(S) or ¢(S) + 1
for each SCV(G) and x € S. For any such ¢ and integer k, let

M(p,k)= {SCV(G): o(S)=Fk and o(S\{u}) <k

for at least one vertex u € S}
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Theorem 2. Let ¢ be a generalized weight function on subsets of V(G). Then for
any integers v and k with 1 <r and 1 <k <o(V(G)),

B(G)= i B(S),B,(S)}.
(G) Sefﬁf}%gk) max{B;(5),B,(S5)}

Proof. For any labeling f, there exists ¢/ such that ¢(S;) = k, and if ¢ is minimal
then o(S,\{us}) < & and so Sy € M(¢,k). By Corollary 2,

B(G, f)= max{B\(S8;), B2(S¢)} = _min max{B1(S), B2(S)}.
SEM(p,k)
Since f was arbitrary, the result follows. [

Setting r = 1 in Theorem 2, we get

Corollary 3 (Yuan [15]). For any generalized weight function o,

B(G)= 1<k21<%/(<;)) Serﬂrll%r(pl’k)max{W(S)] +0-(S) — L|V(S)| + 6+(S) -1},

where 5_(S) = 6°)(S) and 5,(S) = 51(S).
Noting that §_(S)>1,0.(S)>1, we have

Corollary 4 (Lin [10]). For any generalized weight function ¢,
B(G)> max {|2(S)],|V(S)]}.

max min
1 <k<@(V(G)) SEM(0,k)

Setting ¢(S) = |S| in Corollary 4, we get Harper’s classical result.

Corollary 5 (Harper [7]). B(G)> max min max{|0(S)|,|V(S)|}.
I<k<n [S|=k

For each v € V(G),67(v) = |[VOW)| = |{u € V(G) : 1<dw,v)<r}|,0 () =
[07)(v)| = 1. So Theorem 2 implies

. > i @ . 4
Corollary 6. B(G)>= 1<I;nsal))((G) Ugll}(%)[lv )|/r] 4)

In particular, B(G)> [(|V(G)| — 1)/D(G)] (Chvatal [4]), where D(G) is the diameter
of G.

This Corollary shows that Chvatal’s density lower bound is Harper-type in a sense.
The following example shows that the lower bound (4) is attainable and sometimes
better than Chvatal’s bound.

Example 1. Let G = P3 x P3, the grid with 3 rows and 3 columns. Then by Chvatal’s
lower bound we get B(G) > [(9—1)/4] =2. But (4) gives B(G) > minyep(q)[ |V (v)]/2]
= [5/2] = 3. In fact, B(G) = 3.
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3. Applications: the bandwidths of some composition graphs

Harper [7] found the exact value for the bandwidth of the n-cube @, by using
Corollary 5. Among the graphs whose bandwidths are already known, several are in
the form of graph products. The (cartesian) product of graphs G and H, written G x H,
is the graph whose vertex set is V(G) x V(H), two vertices (u,v) and («',v") being
adjacent if either u = 4’ and v is adjacent to v’ or vice versa.

Theorem 3. Let P, and C, be the path and the cycle on n vertices, respectively. Then
(1) If max{r,s} =2, then B(P, x Ps) = min{r,s} ([5]);
(i1) If s=3, then B(P, x Cy) = min{2r,s} ([2]);
(ili) If r,s =3, then B(C, x Cy) = 2 min{r,s} — 0,5 ([9]), where J,; is the Kronecker
delta.

These results can be proved concisely by choosing the generalized weight function ¢
in Corollary 4 appropriately, as shown in [10]. Recently, Li and Lin ({8]) completely
determined the bandwidth of the join of & arbitrary graphs by applying their boundary
inequality (Corollary 1). Partial results on this problem can be found in [14] also.

Theorem 2 may be more convenient to use than Corollary 3, as shown in the proof
of the following result.

Theorem 4 (Yuan [15]). Let G., be any graph constructed from a cycle C =
vy -~ vy and t pairwise disjoint graphs Gi,...,Gy of ¢ vertices each, by joining
each vertex in G; to v; and v (1 <i<t,v,41 = v1). Then B(G) = h(¢,t), where

/+1—tJ

h(£,t) =20 — [—[m—

Proof. We first obtain a lower bound for B(G) from Theorem 2 by setting » =
[¢/2], k =1 and @(S) = |S| for each S C V(G). If ¢ is odd, then

VO = V(G - 1=t +1)—1=2£[t)2] = (£ +1—1)
for each S with |S| = 1, while if ¢ is even then

VO ZV(G) = - 1=t +1)—£—1=2£[t2] = (£ +1~1)

for each such S (with equality for some §). Noting that 5$)(S)> 1, we find from
Theorem 2 that

B(G)> lrgi_anV")(S)l/ﬂ = h(Z,1).

If each G; in G, is complete, denote the latter by G;,. It was proved in [13] that
B(G;,) = h(¢,t). But B(G)<B(G;,) since GC G, and so it follows that B(G) =
h(Z,t) as required.
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For two graphs G and H, the composition G[H] is the graph with vertex set V(G) x
V(H) in which (u,v) is adjacent to (#/,v") if u is adjacent to &’ in G or u = ' and v is
adjacent to v’ in H. The bandwidths of the compositions of certain graph powers were
discussed in [3]. In what follows, we will use the lower bounds given in the previous
section to determine the bandwidths of some composition graphs. For this purpose we
need the following:

Theorem 5 (Chinn et al. [2]). B(GIH])<(B(G)+ 1)|V(H)| - 1.

For each u € V(G), let V, = {(u,v): v € V(H)} C V(G[H]). Then the subgraph H,
of G[H] induced by V, is isomorphic to H. Let

p : V(GH]) = V(G)

be the projection defined by p(x) = u for each x = (u,v), and p(S) = {p(x): x € S}
for § C V(G[H]). For every generalized weight function ¢ on subsets of V' (G), define
0*(S) = o(p(S)) for S C V(G[H]). Then ¢* is a generalized weight function defined
on subsets of V(G[H]). Also, for any S C V(G[H]),

VoS = Ve(p(S))| - |V(H)| + o(H), ()

where 6(H) is the minimum vertex degree in H.

Theorem 6. Suppose both ¢ and y are generalized weight functions defined on subsets
of V(G). Define

Be(4) = min |Vg(B)l,

WA <TG BN

= max min |Vg(4)|,
15(G) lsksq?‘(V(G))AeM(qa,k)l o(4)|

7](;2#( )= 1<k<(p(V(G))Aerﬁgw,k)max{lvG(A)l’BG(A)}'
Then
(i) B(GIH]) Zno(G)|\V(H)| + 6(H),
(il) B(GIH]) Z 1y (G)|V(H)| + 6(H).

Proof. Since (ii) implies (i), we prove only (ii). Choose & such that 1 <k <o(V(G))
and let f be any labeling of G[H]. Since ¢* is a generalized weight function, there
exists  such that ¢*(S;) = k, and if ¢ is minimal then S, € M(¢*,k). Thus Corollary 2
gives B(G[H], /)= |Vaun(Sy)| and (5) gives

B'(GH, f)=|Va(p(Se))l, (6)

where B'(G,H, f) is defined by B(G[H], f) = B(G,H, )|V (H)| + 6(H).
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For each j with u*(S,)<j<u(V(G)), choose ¢ minimal so that u*(S;) = j. Then
S, € M(u*,j) and S; 2 S, whence p(S;) € M(u,j) and p(S;) 2 p(Ss). Corollary 2
gives B(G[H], /)= Vu)(S:)|, and so (5) gives

B(G.H, /)=Ve(pSO)> min [Vo(B). ™

B 2 p(Sy)

Since j was arbitrary, it follows from this that B'(G, H, f)> Bs(p(S¢)), and together
with (6) and the fact that p(S;) € M (@, k) this gives

B'(G.H, )> max{|Va(p(S)). Ba(p(S)} > , min  max{|V(4)], fe(4)}
The result now follows from the arbitrariness of £ and f. O
Theorem 6 generalizes Theorem 2 of [3]. Combining Theorems 5 and 6, we get

Theorem 7. If B(G)=n,(G) or 1,,(G) for generalized weight functions ¢ and p,
then

B(G[Kn]) = (B(G)+ 1)m — 1.
This theorem can be applied to prove

Theorem 8. Let G be the graph constructed from (t + 1) pairwise vertex-disjoint
graphs Gy, Gy, ..., G, by joining each vertex of G; to each vertex of G;41,0<i<t—1,
where |V(Go)| = |V(G)| = 1, [V(Gy)| = -+ = |V(Gi—1)| = ¢ and t=5. Then
B(G[Kn]) = 2¢m — 1.

Proof. It is easy to see that if 4 CV(G) and |4| = ¢ + 2, then |V(4)|=2¢ — 1;
indeed, equality holds if and only if 4 C Gy U G UG, or AC G, U G U Gya. Now
Corollary 4, with ¢(4) = |4| for each 4, implies that

B(G)=1,(G)> min |Vg(4)|=2¢ 1.
(G)=ny(G) lAriglglzl e(4)]

But it was proved in [15] that B(G) = 2¢ — 1, and so B(G) = #,(G) and it follows
from Theorem 7 that B(G[K,]) =2/m—1. O

Theorem 7 also implies the following:

Theorem 9. (i) B((P, X P))[Ky]) = m(min{r,s} + 1) —1 (max{r,s}>2);
(il) B((Pr X Co)[Kp)) = m(min{2r,s} +1) =1 (s=>3);
(iii) B((C; x Cs)[Kn]) = m2min{r,s} — 6,5+ 1) -1 (r,s=3);
(iv) If r,s are even and r=s, or r is odd and s is even, or both r and s are odd
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and s=r, then

s(r+1)

BUK, x K)Kn]) = =

m-—1;

_ i
W) BOEK ) =m | 145 V J 1
i=0

2

Proof. If G is one of P, X Py, P, x Cs, C, X Cs, it was proved in [10] that B(G) = 5,(G)
or 1,,(G) for suitable generalized weight functions ¢ and u. If G = K, x K, then
B(G) = 14,(G) for some ¢ and u (see [11]). If G = @y, then B(G) = 5,(G) for the
function ¢ defined by ¢(S) = |S| [7]. Therefore, the result follows from Theorems 3
and 7 and the values of B(G) given in Theorem 3 and [7,11]. O

Based on Theorem 9, we now endeavor to determine the bandwidths of (P, x Ps)[H],
(P, x C;)[H] and (C, x Cs)[H] for arbitrary graph H. We take both P, x P; and P, x C;
as defined on the set V,; = {(i,j): 1<i<r, 1<j<s} with the edge sets E(P, x P;) =
{@ )i/ i=i"and |j-jl=1,0rj=j and |i — | = 1} and E(P, x C;) =
EPr x PYU{(G1)({s): 1<i<r}. Denote R; = {(i,j): 1<j<s}1<i<r) and
0, ={(i,j): 1<i<r}(1<j<s). For a subset 4 of the vertex set of P, x P,, if

() ANQy ={G,1): 1<i<r, i#r—1}, ANR, ={(»1)}, and

(i) for j = L,2,....{Gj+ 1),i+ Lj+1),....(i + ¢, j + 1)} C4 implies {(max
{Li—1})), (max{1,i — 1} + 1,/),....,(i + o, /), (i + a+ 1,/)} CA4, or if

1) An O ={@G1): 1<isri#2}L,ANR = {(1,1)}, and

(ii') for each j = 1,2,....{(j+ 1), + L,j+ 1),...,(i + o,j + 1)} CA implies
{G—1,/),0)),...,(min{i + a4+ 1,7},/)} C A4,
then we say A is descending with respect to Q;. Symetrically, we can define subsets 4
which are descending with respect to Q,,R; or R,. Note that if 4 is descending with
respect to ) or O,, then A4 intersects at most » —2 ;.

Lemma 1. Suppose 2<r<s,ACV,;, and V(4) = Vp,«p,(A4).
(i) If r < s and there exists unique Q, such that |AN Q,| =r, then |V(4)| =r;
(ii) If r = s and there exists unique Q, such that |ANQ,| =r—1, then |V(4)|=r.
Furthermore, if AN Q, contains an isolated vertex of the subgraph G4 of P, X P,
induced by A, then |V(A)| = r if and only if A is descending with respect to O,
or Q.

Proof. We prove (ii) only since the proof of (i) is similar. Suppose r=s and
|[4AN Q, =r— 1. If A intersects every Q;, then clearly |V(4)|>r. In the follow-
ing suppose, say, 4 N Qps1 = B(a<b) and AN Q; # O for each j,a<j<b. We will
prove |V(4)N(U; 5, @) =7 by induction on b. The inequality is true if b = a. Suppose

b>aand A/ =A\Qs. Let O} ={(i,b) € ANQp: (i,b— 1) € A},0; =(4AN Op)\O}.
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Since 4 N Qpy1 = 0, by the induction hypothesis we have

v n (| onl = (vaHndJ ol - 1gih

j=za jza
+(V(Q") N Qp—1)\V(A N Qp—1)|
+(VAN Q) NON\V(AN Qp—1)| + 4N O]

> (IVA)YN ()= 10D + 140 Osl

jza

= vHndJolzr 8)

Jjza

Thus, we have proved that |V(4) N (U, Q)| >r and hence

V@)= V(| onlzr. 9)

jza

Note that if |V(4)| =r, then from (8)—(9) we must have a=1, 0, =ANQ0,, V(4NODp)
N O, CV(ANQp_1)N Qp, and |V(4")| = r. Repeatedly using these facts we know
if |V(4)| = r and 4 N Q; contains an isolated vertex of G4, then A4 is descending
with respect to Q. Similarly, if 4N Q; = @ for some j < a, and if |[V(4)| = r and
ANQ, contains an isolated vertex of G4, then 4 is descending with respect to Q. Con-
versely, if 4 is descending with respect to Q; or Q,, then |V(4)| = r. This completes
the proof. O

Lemma 2. Suppose ACV,; and V(A) = Vp,xc,(4).
(i) If 2r=s + 1 and there exists unique R; with |ANR;| =5 — 1, then |V(4)|=s;
(ii) If 2r<s—1 and there exists unique Q; such that |ANQ;| = r, then |V(4)| >2r.

Proof. We prove (ii) only. Without loss of generality, we may suppose [ANQ| =r.
If ANQ; # 0 for each j, then |V(4)|>s—1>2r. In the following, suppose AN Qp11 =
ANQs_, = H(1<b<s—c—1), but ANQ; # B for each j with 1 <j<b or s—c+1</j<s.
Ifb+c—1=0, then 0O, UQ; C V(4) and hence |V(4)|=2r. If b+c~1=s5-2 (ie,
Op+1 coincides with Qs_.), then |V(4)|=(s —2)+ 122r. f 1<b+c—1 <s5-2,
the induction on b + ¢ — 1 ensures that |[V(4)|>2r. [

By using Lemmas 1 and 2 we can prove
Lemma 3. Let K,, be the empty graph of order m.

(i) If 2<r<s, then B((P, X P)Kn]))Zm(r+ 1) - 1;
(il) If 2r # s, then B((Py x Cs)[Km])=m(min{2r,s} +1) — 1.
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Proof. (i) Denote G =P, xP;. Let f be a labeling of G[K,] and S =
F71{1,2,...,k}). Let p and ¥, be defined as before.

Case 1: r <s. Let a = min{k : max,<;<,|p(Sk) N Qj| = r},A = p(S,) and u =
p(f~'(a)). Then there is unique Q; such that |4 NQ;| =r. By Lemma 1 (i) we have
|[VG(4)|=r. By the minimality of a, we have ¥, NS, = {f~'(a)}. Note that u is
adjacent to at least one vertex of 4 in G, so V,\{f"!(a)} C Vi%,1(Sa)- Thus we get

B(GIR L, )21V gz, 1(S) 2m|Va()| + (m — D=m(r +1) - 1.

Case 2: r = 5. Let a = min{k : max; <<, |p(St) N Q)| = — 1},4 = p(S,) and
u = p(f~'(a)). Then |Vg(4)|=r by Lemma 1 (ii), and ¥, NS, = {f~Ya)} by
the minimality of a. If |Vg(4)|=r + 1 or u is adjacent to a vertex of 4 in G, then
B(G[Kn], f)=m(r+1)—1, as we have just shown in Case 1. If |[Vg(4)| =r and u is
isolated in the subgraph G4 of G induced by 4, then 4 is descending with respect to
O or O, (Lemma 1(ii)). So 4 intersects at most » —2 Q. In such case we consider

= min{k: max;<;<, |[p(S ) NRi| =r — 1}, B = p(S;) and v = p(f~'(b)). Clearly,
a < b and ACB. So B intersects at least » — 1 R;. Thus, B is descending with respect
to neither Ry nor R,. From Lemma 1(ii) we know either |V(B)|>r+1 or v is not an
isolated vertex of Gg. In both cases we get B(G[I?m],f)>|VG[Em](Sb)| zm(r+1)—1.
The result follows from the arbitrariness of f.

(ii) Let f be a labeling of (P, x C;)[K]. Let

{min{k: max |p(Sk) Rl =s—1} if 2r=s+1,
— 1<igr

min{k: max [p(S)NQ;|=r} if2r<s—1.
I<jss

Note that p(f~!(a)) is adjacent to at least one vertex of p(S,) in P, x Cs. So we get
from Lemma 2 that B((P, X C)[Kn], f)=>m(min{2r,s} 4+ 1) — 1. This completes the
proof. O

Theorem 10. Let H be any graph of order m. Then

m + max {B(H), [mT"IJ} if (r,5) = (1,2),(2, 1),
m(min{r,s} + 1) — 1 if (r,5) # (1,1),(1,2), (2, 1).
max{B(H)+2m,3m—[—m-2+_—l-‘} if (r,s) = (1,3),

m(min{2r,s} + 1) — 1 if (r,s) # (1,3) and 2r # 5.

(i) B((P, x P5)[H]) = {
(ii) B((P, x Cy)[H]) =

Proof. (i) If (r,s) = (1,2) or (2,1), then the result follows from Proposition 3 of [8].
If r=1,5>3, or r 23,5 =1, the result is exactly Corollary 5 of [3]. In general case, the
result follows from Lemma 3(i), Theorem 9(i) and the fact that (P, x Py)[K,,] C(P, x
P)[H] C(Pr X P)[Kn].

(i) If (r,s)=(1,3), then (P, x C;)[H] is the join of three copies of H and
the result follows from Proposition 3 of [8]. If r=1, s>4, the result is just
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Corollary 9 of [3]. If r 22 and 2r # s, then the result follows from Lemma 3(ii) and
Theorem 9(ii). O

In a similar way we can prove 2rm — 1 <B((P, x Cp )[HD)<Q2r + 1)m — 1 and
m(2min{r,s} — d,5) — 1<B((C, x C)H])<m(2min{r,s} — é,5 + 1) — 1 for any
graph H of order m. Unfortunately, these are insufficient to give exact values of the
bandwidths of (P, x Cy.)[H] and (C, x C;)[H]. Nevertheless, we have

Theorem 11. Let H be any graph of m vertices.

(1) If 6<2r<s, then B((C, x C))[H]) = m(2r+1)—1; (10)
) BUCs x CTHT) = Tm—1 if s>4, 1
(i) BUCs x CHD = o~ (an
i BC x ey oML iS5, b
Gif) B(Cox COHD =1 (12)

Proof. (i) The result follows from Theorems 9(iii) and 10(ii) and the fact that
(P, x COIH1C(Cr x COHTS(Cr X CKnl-

(ii) Note that (11) has overlap with (10) when s > 6. Nevertheless, we will give
an independent proof of (11) since it may shed light on determining B((C, x C;)[H])
when r <s<2r. From Theorem 9(iii) it suffices to show that

Tm—1 if s=4,

B((C3 x Co)[Kn])= { 6m—1 ifs=3.

Let G=C; x C;. For SCV(G[K,]), let A= p(S) and 4o be the set of isolated
vertices of the subgraph of G induced by A. Then

[V(S)| Zm| V()| Zm|V(4o)], (13)
IV(S)Zm(|V(A)] + 4] = [4o]) — (S| = |4o]), (14)

where V(S) = Vg 1(5),V(4) = Vg(4), etc. If s>4, we consider S with IS| =
3m+1. Then |4]| >4 and by (13) and (14) one can check that |V(S)|=7m — 1. Hence
B(GIK,]) = ming—3m4+1 |V(S)|=Tm — 1 by Corollary 5. If s = 3, consider S with
|S| = m + 1. A similar argument shows that B(G[K,])=6m — 1.

(iii) By an analogous discussion as above we can prove

Im—1 ifs=5,

B((Ca x C5)[Kml)= { 8m—1 ifs=4,

which implies (12). This completes the proof. O

A noticeable feature of Theorems 10 and 11 is that the bandwidths of the considered
composition graphs have nothing to do with the structure of H. This is somewhat
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surprising. Theorem 10(i) is a generalization of Theorem 3(i), and Theorems 10(ii)
and 11 are partial generalizations of Theorems 3(ii) and 3(iii), respectively. From the
foregoing discussion we have a good reason to conjecture that B((P, x Cy)[H]) =
m(2r +1) — 1 and B((C, x C)[H]) = m(2r — 6,5+ 1) — 1 (r<s<2r) for any graph
H on m vertices.
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