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Abstract

Let P and Q be, respectively, hereditary and cohereditary properties defined on the subsets of
a finite set S. We first prove that several functions related to P and Q interpolate over some
families of subsets of S. By using this we then derive a number of interpolation results for
graphs, hypergraphs and matroids. (€ 1998 Elsevier Science B.V. All rights reserved

1. Introduction

Let # be a family of objects under consideration and ¢ : # — Z an integer-valued
function defined on #. If for any X, X' € # and integer £ with @(X)<k<o(X'),
there exists X" € # such that ¢(X"')=*%, then following [12] we say that ¢ interpo-
lates over & . Obviously, this is equivalent to saying that the image set (& ) consists
of consecutive integers. The study on interpolation seems to be initiated by the homo-
morphism interpolation theorem for graphs [10]. In 1980, Chartrand [4] asked whether
the number of pendant vertices interpolates over the family of spanning trees of a
connected graph. With the affirmative answer to this question a lot of interpolation
properties for some families of subgraphs of a given graph have been discovered in
recent years. The reader can consult, for example [11,12,17,18,21,22]. The purpose
of this paper is to extend the study on interpolation to some families of subsets of a
finite set. This point of view enables us to generalize a number of interpolation results
known for graphs to the cases of hypergraphs and matroids.
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2. An interpolation theorem for some functions related to hereditary and
cohereditary properties

Let S be a finite set and P a property associated with the subsets of S. When a
subset of S possesses the property P, call it a P-set, otherwise a P-set. P is hereditary
[6,13] if the subsets of any P-set are also P-sets. Dually, a property O associated
with the subsets of § is said to be cohereditary [6] if each superset of any Q-set is a
QO-set. In this section we will always use P and Q to denote, respectively, a hereditary
property and a cobereditary property. For X C S, a partition {X1, ..., X;} of X is called
a P-partition [6] (respectively QO-partition) of order ¢ if each X; is a P-set (respectively
QO-set). It is clear that X has a P-partition if and only if {x} is a P-set for each x € X,
or, equivalently, the P-sets contained in X cover X. In the following we always assume
this is true. We also make the reasonable assumption that the empty set is a P-set.
Thus any X C § has a P-partition. We define the P-chromatic number of X, denoted by
2p(X), to be the minimum order of a P-partition of X. As we will see later, this is a
natural generalization of both conditional chromatic number and conditional chromatic
index of a graph defined in [9]. Dually we call

max{#: X has a Q-partition of order ¢}, if X is a Q-set,
xo(X)= :
0, otherwise,

the Q-cochromatic number of X.

Two other invariants related to hereditary property P were introduced in [13,3].
Denote by fp(X) the maximum cardinality of a P-set contained in X, and ap(X) the
minimum cardinality of a subset of X which has non-empty intersection with every
P-set contained in X. It was proved [3] that ap(X) + Bp(X)=|X|, which generalizes
the classical equalities due to Gallai [7] and Hedetniemi [13].

Let ¢ be an integer-valued function defined on the subsets of S. If p(X)— 1< (X —
{x})<@(X) for any X and each x € X, then we call ¢ a positive function, as used in
[12] for graphical invariants. Similarly, if (X)<@X — {x})<o(X)+ 1, we call ¢ a
negative function. For two subsets X, X’ of §, if X' =X - {x} for an element x € X or
X =X"—{x'} for an element x’ € X', then we call X — X' a single element deletion
or addition transformation (EDA). If X' = (X — {x})U{x'} for some x€X — X’ and
x' €X' — X, then we call X — X' a single element transformation (SET). A family &
of subsets of S is said to be EDA-SET connectable if, for any X, X' € &, there exists
a sequence X =X, X|,...,X, =X’ with all terms in % and each X; — X;., is either an
EDA or a SET, 0<i<n — 1. The idea of the following simple but useful proposition
was repeatedly used by many authors [11,12,17,18,21,22].

Proposition 1. Suppose # is EDA-SET connectable and N[X]={X}U{X' € %
X - X' is an EDA or a SET}. If ¢ interpolates over N[X] for each X € #, then
¢ interpolates over F. In particular, any positive or negative function interpolates

[~

over #
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In this section we will use this elementary observation to prove an interpolation
theorem for the invariants defined above. First we have

Lemma 1. The invariants yp, yo,%p and Bp are all positive.

Proof. Suppose xe X C S hk=yp(X) and I=yp(X — {x}). If {X),.... X} is a
P-partition of X and, say, x € X}, then {X; — {x},X>,...,X;} is a P-partition of X — {x}
with order at most k. Thus, / <k. On the other hand, if {X|,...,X;} is a P-partition of
X — {x}, then {{x},X\,...,X;} is a P-partition of X since {x} is a P-set. So we have
k<!+ 1 and hence yp is positive.

Now suppose k = yo(X ) and /= yo(X —{x}). If £ =0, then obviously /=0. If / =0,
one can easily check that £ < 1. In either case we get k — 1 </<k. So we can suppose
in the following that neither & nor / is zero. Let {X),..., X} be a Q-partition of X and
x€X;y. If k=1, then evidently /=0 or 1. If k=2, then {(XUX2) — {x},X;,..., X}
is a Q-partition of X — {x} since Q is cohereditary. In both cases we get k — 1 </. On
the other hand, we have / <k because any Q-partition of X — {x} can be extended to
a Q-partition of X by adding x to one block of it. So yp is positive.

Let Y be a P-set con:ained in X with the maximum cardinality. If x ¢ Y, then
Y CX—{x}. If x€Y, then ¥ —{x} is a P-set contained in X —{x}. In either case we get
Bp(X) — 1 <Bp(X — {x}). This, together with the obvious inequality Bp(X — {x})<
Bp(X), ensures that fp is positive. Combining this result with the equality ap(Z) +
Bp(Z)=1|Z|(VZ C§) we know op is positive. This completes the proof. [

Let m,n be integers with m<n and p be a positive or negative function defined on
the subsets of S. Let P’ and Q' be hereditary and cohereditary properties associated
with the subsets of S, respectively. Let

Fi1={XCS: |X|=m},
FHr={XCS8: mglX|<n},
F3={XCS: u(X)<n},
Fy={X CS: w(X)=n),
Fs={XCS: X is a P'-set},
Fe={XCS: X is a Q'-set}.
It can be proved that
Lemma 2. Each &% is EDA-SET connectable, 1 <i<6.

Combining Proposition 1 with Lemmas 1 and 2 we get

Theorem 1. Let & be a family of subsets of S.
(1) If F is EDA-SET connectable, then yp, yo, op and Bp all interpolate over F.
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(2) Any positive or negative function interpolates over %;,1<i<6.
(3) In particular, yp,xo,%p and Bp all interpolate over #,1<i<6.

3. Applications: Interpolation theorems for graphs, hypergraphs and matroids

Indeed, Theorem 1 is based on a very simple idea. Nevertheless, it has wide ap-
plicability. Theoretically, it can be applied to any finite mathematical structure and
interesting interpolation resuits can be derived by setting P and Q to be, respectively,
hereditary and cohereditary properties associated with the substructures of the given
structure. In this section we exemplify some results of such kind for graphs, hyper-
graphs and matroids.

3.1. Matroids and greedoids

First we have

Corollary 1. Let M =(S, #) be a matroid on a finite set S and B and #* the sets
of bases and co-bases of M, respectively. Then for any hereditary property P and
cohereditary property Q associated with the subsets of S, yp, %o, % and Bp all
interpolate over %, B* and ¢.

Proof. The connectedness of the matroid base graph [14] implies the SET-connectabi-
lity of # and #*. From this and the fact that the property of being independent set
is hereditary we know that ¢ is EDA-SET connectable. The result then follows from
Theorem 1(1). Cl

The similar result is true for greedoids (see [16] for terminology and notation for
greedoids). Korte and LovVasz {15] proved that the base graph of every 2-connected
greedoid is connected. So we get

Corollary 2. Let (S, #) be a greedoid with base set B and the set B* of base
complements. Let P and Q be hereditary and cohereditary properties, respectively,
associated with the subsets of S. If (S, #) is 2-connected, then yp, o, ap and fip all
interpolate over B, #* and §.

It was proved [12,21] that the edge chromatic number y’, edge independence number
B’ and edge covering number o interpolate over the family of spanning trees of a
connected graph. Corollaries 1 and 2 generalize these results to the cases of matroids
and greedoids.

3.2. Graphs

Theorem 1 and Corollary 1 are particularly applicable to graphs. For a graphical prop-
erty P, if every edge-induced subgraph of any graph possessing P has P as well, then
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P is said to be edge-induced hereditary [13]. Dually, we call a graphical property Q
edge-induced cohereditary if whenever G is an edge-induced subgraph of G’ and G has
O then G’ has Q as well. For a given graph G =(V(G), E(G)) with order p= [V (G)
and size ¢ = |E(G)|, we set S = E(G) and define 1p(G[X]) = xp(X), 1p(GIX]) = x0(X),
etc., for each X C E(G). Then the concepts of positive and negative invariants coin-
cide with that defined in [.2] and we can view P and Q as hereditary and cohereditary
properties defined on the subsets of £(G). Note that y,(G[X]) is just the P-chromatic
index [9] of G[X] and a5{G[X]) and BH(G[X]) are, respectively, the invariants o (P)
and f;(P) defined in [13]. For each integer # with p — w<h<gq (where w is the
number of components of G), the family C,(G) of spanning s-edge subgraphs of G
with exactly @ componerts is the set of bases of a matroid on E(G). In fact, this
matroid is just the elongation [19] of the cycle matroid of G to height 4 and the set
of bases of its dual matroid is C;(G)={G — E(C): C € C4(G)}. In particular, if G is
connected then C,_(G) and C;‘_l(G) are exactly the set of spanning trees and the set
of cotrees of G, respectively. A graphical property P’ is said to be spanning hereditary
if a graph has P’ implies all spanning subgraphs of it have P’ as well. The spanning
cohereditary property is understood in a similar way. From Theorem 1(2) and (3) and
Corollary 1 we get

Corollary 3. Let P' and Q' be spanning hereditary and spanning cohereditary
properties, respectively. Then any positive or negative invariant interpolates over the
Sfollowing families of subgraphs of G:
(a) The family of spanning m-edge subgraphs.
(b) The family of spanning subgraphs having at least m and at most n edges.
(c) The family of spanning subgraphs having the property P'.
(d) The family of spanning subgraphs having the property Q'
(e) The family Ci(G) of spanning h-edge subgraphs with the same number of com-
ponents as G.
(f) The family C;(G) of spanning subgraphs whose complements with respect to G
belong to Cp(G).
In particular, for any edge-induced hereditary property P and edge-induced
cohereditary property @, Xp, Ko, *p and P, all interpolate over the families

(a)—(f).

Corollary 3 implies a number of interesting results of which some are known and the
others are new. For given integer / and L, let P’ (respectively Q') be the property of
being graphs with maximum (resp. minimum) degree at most L (resp. at least /). Then
(c) (resp. (d)) is just the family of spanning subgraphs of G with maximum (resp.
minimum) degree <L (resp. >/) discussed in [12]. As noticed in [12,21] there are
a number of invariants, such as connectivity, edge-connectivity, independence number,
edge-independence number, edge-covering number, domination number, etc., which are
either positive or negative. So we get the results of Corollary la, Theorem 4 and
Corollary 4a of [12] immediately from Corollary 3.
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Table 1
P 1p
Planarity Thickness
Acyclicity Arboricity
With at most one cycle Unicyclicity {8]
Being linear forests Linear arboricity [8]
Without paths of length » n-edge chromatic number [22]
Without odd cycles Biparticity [8]
Table 2
7
Q e
Nonplanarity Coarseness
Non-acyclicity Anarboricity {8}
Being graphs other than paths Unpath number (apathy, [8])

As shown in [8,9,22], a number of invariants can be expressed as yp or x’Q. We list
some of them in Tables 1 and 2. From Corollary 3 we have

Corollary 4. All the invariants listed in Tables | and 2 interpolate over the families
(a)—(f) in Corollary 3.

If we take S = V' (G), then the concepts of positive and negative function differ from
that used in [12]. In such case we use the terminologies of vertex positive invariant and
vertex negative invariant in the obvious way. A graphical property P is induced hered-
itary [13] if the vertex-induced subgraphs of any graph possessing P also possess P.
We have the dual notation of induced cohereditary property Q. Call X CV(G) a P-set
(resp. QO-set) if G[X] possesses P (resp. Q). Define xp(G[X1)=yxp(X), xo(GIX]) =
%0(X), and so on. Then yp(G[X]) is the P-chromatic number [9]. If P is the property
of being edgeless graphs, then ap and fp are just the ordinary vertex covering number
and vertex independence number. If we define the Q-sets to be dominating sets of
a graph G, then @ is cohereditary and the domatic number [20] d(G)=yo(V(G)).
Similarly, the total domatic number [20], f-domatic number [23] and total f-domatic
number [23] can be expressed as yp. If P is the property of being an irredundant set,
then it is hereditary and the upper irredundance number [S] IR(G) = Bp(V(G)). We
assert from Theorem 1 that xp, xp,%p, fp and particularly all the invariants mentioned
above interpolate over, say, the family of m-vertex subgraphs of G.

3.3. Hypergraphs

We refer to [1] for the terminologies and results on hypergraphs, but repeat some
basic definitions used in the following.
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A hypergraph H =(V,&) is a finite vertex set V' together with a family & of subsets,
called the edges, of V. Here we do not require that | J,.,e=V.If € C &, we call (V,%)
a partial hypergraph of H generated by ¢ and we write H —e=(V,6 —{e}) fore€ &.
If all the edges of H have the same cardinality », then H is r-uniform. # C & is a
matching if the edges in .# are pairwise disjoint. The matching number v(H) of H is
the maximum number of edges in a matching of H. The transversal number t(H) is
the minimum cardinality of a set of vertices of A which intersects every edge of H.
A set of vertices of H is a stable set of H if it contains no edge of cardinality great
than one. The stability nuriber f(H ) is the maximum cardinality of a stable set of H.
The chromatic number (1) of H is the minimum order of a partition of its vertices
into stable sets. The degree dy(x) of a vertex x is the maximum number of edges
different from {x} whose pairwise intersections are exactly {x}. Let 8(H) and A(H)
be the minimum and the maximum degrees of the vertices of H, respectively. Let
r(H)= max{|e|: e€ &} be the rank of H and r an integer with 1<r<r(H). X CV
is called a cligue of rank r if either |[X|<r or |X|>=r and each subset of X with
cardinality » is contained in at least one edge of H. Denote by w,(H) the maximum
cardinality of a clique of H with rank r.

Lemma 3. (1) The invariants v, t, y, 0 and A are positive and f is negative (with
respect to edges).

(2) If H is r-uniform, then w,(H) - 1<w,(H — e)<w,(H) holds for each edge e
of H.

Proof. (1) As an example we prove the positiveness of ¢ and 4. Obviously, we have
dy_o(x)<dy(x) for any vertex x and edge e of H. Let ej,...,e; be the edges of
H with k=dy(x).e; # {x} and e; Ne;={x}, i# /. If e#¢; for each e;, then we get
dy(x)<dy_e(x). Otherwise let, say, e=e¢;. Then e,,...,e; are edges of H which
intersect pairwise at {x}. Anyway we have dy(x) — 1 <dy_.(x)<dpg(x), implying the
positiveness of both ¢ and 4.

(2) Let X be a maximum clique of rank r. If [X|<r, then X is also a clique of
H — e of rank r. If |[X|># and |X Ne|<r, then any subset of X with cardinality r
cannot be contained in e and hence must be contained in an edge of A — e. In such
case X is also a clique of H —e. If [X Ne|=vr, then e CX and X — {x} is a clique of
H — e for each x€e. In all cases we get w,(H) — 1 <w,(H — e). This, together with
the evident inequality w,(/{ — e¢)<w,(H), completes the proof of (2).

We observe that if P is the property associated with the subsets of & such that
& is a P-set if and only if the edges in ¥ are pairwise disjoint, then P is hered-
itary and v(H)=Bp(H). If P is such that X CV is a P-set if and only if X is a
stable set of H, then B(H )= Bp(H), y(H)= yp(H). If P is the property such that the
P-sets are cliques with rank r, then w,(H)=fp(H). In general, for any hereditary
property P and cohereditary property Q associated with the subsets of &, we define
1p(( V,(g)):xp((g),;(’Q((V,‘é)):xQ(‘g), and so on, for partial hypergraphs (V,%¥) of
H. We call a hypergraphical property P’ partially hereditary if a hypergraph has P’
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implies any partial hypergraph of it has P’. The partial cohereditary property is un-
derstood in the dual way. Note that these concepts coincide with that of spanning
hereditary and spanning cohereditary properties in Section 3.2 when P’ and Q' are
graphical properties. Combining Theorem 1 and Lemma 3 we obtain

Corollary 5. For any hereditary property P and cohereditary property Q associated

with the subsets of &, the invariants ¥}, Xb, tpy Bp, v, T, ¥, 8, A and B all interpolate

over the following families of partial hypergraphs of H=(V,&):

(a) The family of m-edge partial hypergraphs.

(b) The family of partial hypergraphs having at least m and at most n edges.

(c) The family of partial hypergraphs having a given partially hereditary
property P’

(d) The family of partial hypergraphs having a given partially cohereditary
property Q.

Moreover, if H is r-uniform, then w, interpolates over all these families as well,

As examples we mention two familiar hereditary properties, namely the property
P such that  C £ is a Pj-set if and only if ¥ has a system of distinct representa-
tives (SDR) and the property P, such that € is a P-set if and only if (V,%) is an
{-Helly hypergraph. Here (V,%) is an /-Helly hypergraph [2] if (), e #0 for any
%’ C € satistying the condition that any / edges (not necessarily distinct) of 4’ have
a nonempty intersection. Thus, a 2-Helly hypergraph is just a Helly hypergraph in the
usual sense. Note that yp (%) is the minimum order of a partition of ¥ into subsets
each with a SDE and fp, (%) is the maximum number of edges in a subset of &
which has a SDR. The invariants xp, and fp, can be accordingly interpreted. From
Corollary 5, xp,%p,Bp, i=1,2, all interpolate over the families (a)—(d).

4. Concluding remarks

A P-partition {Xi,...,X;} of XCS is called complete [6] if XiUX; is a P-set
for each pair i,,!+# j. The maximum order of a complete P-partition of X is the P-
achromatic number [6], denoted by Yp(X). As a generalization to the homomorphism
interpolation theorem for graphs it was proved in [6] that for each &k between yp(X) and
Yp(X) there exists a complete P-partition of X with order £&. What is the counterpart
of this result in the case of Q-partition?

Corollaries 1, 2 and 5 are not in their fullest version and one can derive more in-
terpolation results from Theorem 1. For example, consider a matroid M = (S, #) and
a matroid invariant g. Then the positiveness of u means u(M|X)— 1< u(M|(X —{x}))
<M|X) for any X C§ and x € X, where M |X is the restriction [19] of M to X, sim-
ilarly for the negativeness of u. (We mention that the rank function and in general any
submodular function p defined on the subsets of S satisfying u(x) — u(@)<1, x€S, is
positive.). Let F(M,u,n )={XCS: uM|X)<n} and FM,pun")={XCS:
u(M\X)=n}. Then we know from Theorem 1 that if ¢ and u are positive or negative,
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then ¢ interpolates over both F(M,u,n~) and F(M,pu,n"). In particular, xp, xo, %p
and Bp interpolate over these two families, where P and Q are as in Corollary 1.

Finally, although we discuss finite structures only the idea used can be applied to
infinite sets and mathematical structures.
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