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Abstract

For an integer-valued function f defined on the vertices of a graph G, the f-domination num-
ber y7(G) of G is the smallest cardinality of a subset D C V(G) such that each x€ V(G) — D
is adjacent to at least f(x) vertices in D. When f(x)=k for all x € V(G), 7/(G) is the
k-domination number y:(G). In this note, we give a tight upper bound for y; and an im-
provement of the upper bounc for a special f-domination number p;x of Stracke and Volkmann
(1993). Some upper bounds for y, are also obtained. (© 1998 Elsevier Science B.V. All rights
reserved

Let G=(V(G),E(G)) be a finite, undirected, simple graph. The domination number
of G, denoted by y(G), is the smallest cardinality of a set D C ¥ (G) such that each
x € V(G) — D is adjacent to at least one vertex in D. Extensive studies on y(G) and
domination-related topics have been done in the last thirty years. In 1985, Fink and
Jacobson [4,5] introduced the concept of k-domination. For a positive integer k, a set
DCV(G) is called a k-dominating set if each x€ V(G) — D is adjacent to at least
k vertices of D. The k-domination number y;(G) is then defined to be the smallest
cardinality of a k-dominating set of G (see [4]). The following upper bound for v
was proved in [1].
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Theorem 1 (Caro and Roditty [1]). Let G be a graph of p vertices and the minimum
degree 6(G)=((n+ 1)/n)k — 1, where n and k are positive integers. Then

n
?k(G)SﬁTﬂ ¢))]

This theorem generalizes the result that y.(G)<kp/(k + 1) if 8(G)=k (see [2]).
In [6], a more general domination concept was introduced. For an integer-valued
function f defined on V(G), a set DCV(G) is called an f-dominating set of G
if each x€V(G) — D is adjacent to at least f(x) vertices in D. The f-domination
number y;(G) is defined to be the smallest cardinality of an f-dominating set of G
(see [8]). For integers j,k with 0<j<k, Stracke and Volkmann [6] defined the func-
tion fji(x)= min{j,j — k + d(x)}, where d(x) is the degree of vertex x in G. Then
they studied the fj;-domination number p;,(G) and obtained the following
result.

Theorem 2 (Stracke and Volkmann [6]). If G is a graph of p vertices and 0<j<k,
then

2j—k

Lok e ick<aj—n,
Hik(G) < 2 —k+1? if j<k<2j-2

P2 if k>2j-1.

(2)

In this note we first generalize Theorem 1 to the case of f-domination number. With
this generalization we then give an upper bound for y;; which improves (2) slightly.
As consequences, we obtain some upper bounds for y;. First we have the following
theorem of which a weaker form appeared in [8].

Theorem 3. Let f be an integer-valued function defined on V(G) and let n be a
positive integer. If f(x)<(n/(n+ ))d(x)+ 1+ 1/n) for each x € V(G), then

n
Yr(G)< Py 3)

Proof. The proof applies a similar idea used in [1]. Set
= n+1 - 1)).
v xg%,a()é)((,n + 1) f(x) —n(d(x)+ 1))

Then
d@> @ 1=, @

and the given inequality implies v<1.

Let 1, Va,..., Vuy1 be a partition of V(G) such that H =G — U?:E(G[V,-]) contains
as many edges as possible, where G[V;] is the subgraph of G induced by V. Let
dg(x) denote the degree of x in H. Then dy(x)= [(n/(n+1))d(x)] for each x € V(G)
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(see [3], an explicit proof can be found in [7, pp. 233]). In fact, suppose to the
contrary that (n + 1)dg(x)<nd(x) for a vertex, say, x € V1. Let /=2 be such that
the number of vertices in ¥; which are adjacent to x is as small as possible. Let
WMi=W—{x}, Wi=V,U{x} and W;=V,, i#1,l. Then G — U;':IIE(G[VK]) has more
edges than H, a contradiction. From (4) we have

dn(x) > Lil (f’j;lf(x)— I —%)]

- [f(x) - ’—}j{—ﬂ

{f(x), if —n<v<l,

> f(x), otherwise.

Without loss of generality we may assume |V}| = max; <;<n+1|¥i|. From the inequality
above we know that V(G) — J; is an f-dominating set of G. Thus,

p _n
n+1 n+1

y(G)<p—Nl<p~—- p-

Corollary 4. Let A be a subset of V(G) with §(G[A])=1. Let
5G4
SGMAD —k+ 1’
[ k—1
S(G[A]) — k + 1

for each k with 1<k <3(G[A]). Then y(G)< p — |4|/(ng + 1).

if (3(G[AD) —k+ DIk —1)

no
-l , otherwise

Proof. Since no>(k — 1)/(6(G[4]) — k + 1), we have

ng

1
i (5(G[A])+ 1+ n_0>'

k<
no

Hence, 7x(G[A]) <(no/(no + 1))|4] by Theorem 3. Since a minimum k-dominating set
of G[A] together with ¥ (G) — 4 yields a k-dominating set of G, we get
A
w(G)<p— Al +m(GAD< p ~ Ao
ny+1

Theorem 3 is a generalization of Theorem 1, and the upper bound in (3) is attainable.
For example, let xo be a fixed vertex of the complete graph K. Let flx)=p—12
and f(x)=p—1 for all xe V(K,) — {xo}. One can easily check that for n=p —1
the condition in Theorem 3 holds, and it follows from (3) that ys(K,)< p—1. In fact,
y¢(Kp)= p — L. Using Theorem 3 we can prove the following:
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Theorem 5. Let j,k be integers such that 0<j<k. Then

k.._
]T—k_p’ if j+1<k<2j-3
k e
1 (G)< ¢ A+1p’ = (5)
L 1P, if k=2j—1.

Proof. If k>2j—1, it was proved in [6] (also implied in Corollary 4 of [8]) that
1;,k(G)< % p. For the case j + 1 <k <2j — 3, we claim that

2j k i 1
Sk <=5 (d()+1+5—k—_—1). ©)

We divide this into two cases.

Case 1. d(x)zk. Then f;x(x)=j and (6) becomes j(2j — k)<(2j —k — 1)
(d(x) + 1) + 1. To prove this, it suffices to show j(2j—k)<(2j—k—1)(k+1) + 1,
or, equivalently, to show

3 -2\ 1.
( —2—) <zU -2

which is true since j<k <2j — 2.

Case 2: d(x)<k — 1. Then fji(x)=j — k +d(x) and (6) is equivalent to d(x) +
1<(k—j+1)(2j~k)+ 1. To prove this, it suffices to check k <(k—j+1)(2j—k)+1,
which is equivalent to

3 -2V 1. .,
- —(j-2 1.
( 7 ) < 4( Jj=2Y+
But this is true as we have proved earlier. Thus, (6) is valid provided that

j+1<k<2j—3. From Theorem 3 we get

—k-1
2 — k

2
waG)< <L

By a similar discussion as above it can be easily shown that f;,;_2(x)< %(d(x)+ 1)
and fix(x)<(k/(k + 1))(d(x)+ 1) for each x € V(G). Again, we get ujs; 2(G)< %p
and w x(G)<(k/(k +1))p from Theorem 3. This completes the proof. [J

Note that although (5) is just slightly better than (2) when j + 1<k <2j — 3, the
proof is simpler. Theorem 5 implies the following improvement of Theorem 2 of [6].
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Corollary 6. Let k and I be integers with 1 <k<! and let 4;={x € V(G): d(x)=1}.
Then

|41l Akl 22| 42—l
<p-— .
7{G)< p — max {k.ug}as"zk_a -1 k+10 3 2 7
Proof. Similar to the proof of Theorem 2 of [6]. O
If I1<8(G), then |4,| = p. So (7) implies
Corollary 7. For any integer k=1,
( 2k —8(G)— 1 .
[ S A < —
oG
XD, i s6)=k,
(G)< § AG)+1 (®)
p, if (G)=2k—2>2,
ip, if 8(G)=2k— 1.

This is an improvement of Corollary 2 in [6].
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